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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

Depending on the scale of observation, many engineered and natural materials show different mechanical behaviour. Thus, size 
effect theories, based on a multiscale approach, analyse the intrinsic (due to microstructural constraints, e.g., grain size) and 
extrinsic effects (caused by dimensional constraints), in order to improve the knowledge in materials science and applied 
mechanics. Nevertheless, several problems regarding Solid Mechanics and Materials Science cannot be solved by conventional 
approaches, because of the complexity and uncertainty of materials proprieties, especially at different scales.  
For this reason, a simple model, capable of predicting a fracture toughness at different scale, has been developed and presented in 
this paper. This model is based on the Golden Ratio, which was firstly defined by Euclide as: “A straight line is said to have been 
cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less”. Intimately 
interconnected with the Fibonacci sequence (1, 2, 3, 5, 8, 13, …), this number controls growth in Nature and recurs in many 
disciplines, such as art, architecture, design, medicine, etc.., and for man-made and natural brittle materials, the Golden Ratio 
permits to define the relationship between the average crack spacing and the thickness of quasi-brittle materials. In these cases, the 
theoretical results provided by the Golden Ratio, used to calibrate a size-effect law of fracture toughness, are in accordance with 
the experimental measurements taken in several test campaigns carried on different materials (i.e., rocks, ice, and concrete).  
This paper presents the case of fracture toughness of snow, in which the irrational number 1.61803 recurs when the geometrical 
dimensions vary. This aspect is confirmed by the results of experimental campaigns performed on snow samples. Thus, we reveals 
the existence of the size-effect law of fracture toughness of snow and we argue that the centrality of the Golden Ratio in the fracture 
properties of quasi-brittle materials. Consequently, by means of the proposed model, the KIC of large samples can be simply and 
rapidly predicted, without knowing the material performances but by testing prototypes of the lower dimensions. 
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1. Introduction 

For most man-made materials, like concrete and metals, it is well known that failure originates from microscale 
damage and propagates to larger scales (Chiaia and Frigo, 2009). This is true also for natural materials like snow, since 
the imperfections in the snowpack play a leading role in snow avalanche release. The avalanche formation was 
analyzed by several and different approaches, i.e.,: stability index (Föhn, 1987); failure criteria (stress (McClung, 
1979) and coupled stress-energy ones (Chiaia et al., 2008)); strain-rate (Bader and Salm, 1990) and fracture mechanics 
approaches (McClung, 1981); collapse theories (Heieli and Zaiser, 2008), and damage mechanics ones (Chiaia and 
Frigo, 2009). It is the clear evidence that fracturing is the most fundamental mechanisms on the release processes of 
avalanche formation: from damage process in the snowpack to the failure at the interface of two different snow layers 
(MODE II), to the following crown fracture in tension (MODE I), leading to dry snow slab avalanche. 

Accordingly, much of the focus in Snow Mechanics and Snow Engineering, it is now to improve the knowledge on 
the fracture properties of snow, in which the referring mechanical property has always individuated in the fracture 
toughness or the stress intensity factor (McClung, 1981). But, the measurement of fracture proprieties presents many 
complications due to complexity of both the behavior of the snow - material (difficulties in the repeatability of the 
material and to maintain constant its properties during the tests) and to perform tests in laboratory and full-scale (for 
logistical, instrumental and extreme weather conditions reasons). Due to this, only a few data on fracture toughness of 
snow are still available (Kirchner et al., 2000; Kirchner et al., 2002a,b; Faillettaz et al., 2002; and Schweizer et al., 
2004). In all previous studies, cantilever beam tests were used to determine fracture toughness applying the linear 
elastic fracture mechanics (LEFM) theory, varying the snow type and density. In 2004, arguing that the standard size 
requirements for LEFM were not fulfilled for the used snow specimens, Schweizer introduced the discussion on size 
effect pointing out the application of the test results to snow slope models (Schweizer et al., 2004). Related to avalanche 
release process, always in the framework of LEFM, Bažant et al. (2003) formulated a size effect law of fracture 
toughness in shear. These authors highlight how this propriety is strongly variable with the scale, showing an increase 
of the stress intensity factor of snow with increasing sample size. However, this behavior is in contradiction with most 
of the scaling laws, which identify a decreasing trend of the observed characteristic with an increase of the observation 
scale. A well-known example is the behavior of the ultimate tensile strength of concrete. Its decrease that increases 
with the size of the structure has been confirmed by experimental measurements. 

Anyhow, it is known that the variation of the nominal values of some quantities does not follow the decreasing 
performance rules of a solid with respect to the considered scale. An intuitive example is the size effect of the 
embrittlement increasing of the structural response with increasing sample size, already highlighted by Galileo Galilei 
in the “Discorsi e dimostrazioni matematiche a due nuove scienze attenenti alla mecanica & i movimenti locali” 
(1638). 

The contrast is present just on Mechanics of Materials, considering the fracturing phenomenon where a variation 
of nominal values of some quantities follows the growth rule of performance with the considered scale. 

Restricting the analysis to the materials with a brittle and quasi-brittle behavior (e.g., the snow), a significant 
examples are the fracture toughness and the fracture energy of ice (Frigo et al, submitted), rocks and concrete (Chiaia 
et al., 2013; Fantilli et al., 2014) that show this “contradictory“ behavior. 

Following the evidence in concrete (Fantilli and Chiaia, 2013), Fantilli et al. (2015 and 2016) analyze the crack 
pattern of brittle and quasi-brittle man-made composites (e.g., basic, reinforced and fiber-reinforced concrete 
elements), compared to natural ones (e.g., rocks). In both cases, the cracking phenomenon of brittle layers depends on 
the scale of observation and it is driven by a unique size-effect relationship ruled by the Golden Section number. 
Herein, a Golden Scaling Law is introduced and used to predict the crack pattern (i.e. the crack spacing) of concrete 
and rock structures at different scales referred to a reference scale. 

The observation that crack pattern phenomena are basically driving by two mechanical proprieties, the fracture 
energy and the friction, leads to authors to investigate and demonstrate the relevance of the Golden Scaling Law also 
for the fracture properties of concrete, rock and ice subjected to a scaling effects (Chiaia et al., 2013; Fantilli et al., 
2014, Frigo et al., submitted). 

This paper reports the evidence of the Golden Scaling Law also in the framework of snow mechanics in accordance 
with the experimental measurements taken in several laboratory campaigns (Sigrist et al., 2005) carried on different 
scale. 
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2. The Golden Scaling Law 

Usually denoted by the Greek letter Phi (), The Golden ratio (or the Golden section, Divine Proportion, etc.) is a 
special irrational number with infinitely digits. 

Euclid (300 b.C.) proposed a first definition of the Golden Ratio. In particular, in the VI book of the Elements, the 
third definition states: “A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to 
the greater segment, so is the greater to the less” (Fig. 1). 
 

 
 

Fig. 1. Definition of the Golden Ratio for a straight segment (Fantilli et al., 2014) 

 

For the geometric point of view, in the line segment depicted in Fig.1, it is possible to localize a point where the 
ratio of the whole line (A) to the large segment (B) is the same as the ratio of the large segment (B) to the small one 
(C). Only when this ratio is equal to the Golden Ratio (i.e., to the irrational number), can the proportion be satisfied: 
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Usually, the value of  is rounded off to 1.618 (Hom, 2013). 
The Golden Section seems to represent the standard of perfection, harmony and aesthetic beauty in architecture, 

design and arts (for music, to sculpture, painting, etc …). Typical Italian examples, which  is applied, are: the 
Pantheon in Rome, the cathedral of Milano, the portal of Castel del Monte in Andria, the Last Supper and the Mona 
Lisa painted by Leonardo da Vinci; The Creation of Adam and the Sistine Chapel by Michelangelo; and The Birth of 
Venus by Botticelli. But the evidence of Phi can also be found in body proportions, geometrically represented by 
Leonardo da Vinci’s Vitruvian man, and by Le Courbusier’s “Anthropometric scale MODULOR”. 

In addition,  appears in several forms of nature, from the number of the flower petals (that follows the Fibonacci 
sequence), to the DNA molecules and spiral galaxies (Hom, 2013). 

Golden Section can be instituted in mathematical series and geometrical patterns (Akhtaruzzaman et al., 2011), 
from the construction of the Pentagon and the Pentagram (the first written testimony on the subject is in the XIII book 
of the Elements by Euclide), to the Fibonacci sequence (1, 2, 3, 5, 8, 13…). In physics, Phi, intimately interconnected 
with the Fibonacci sequence, controls growth in several natural patterns. In fact, the limit of the ratios of two 
successive terms of the series tends to the Golden Ratio. 

As the Golden Section has been observed in the crack pattern of some brittle materials (Fantilli and Chiaia, 2013; 
Fantilli et al., 2015 and 2016), we investigate the possibility of extending the validity of the Golden Scaling Law 
(GSL) also to some snow material properties. Thus, according to (Chiaia et al., 2013; Fantilli et al., 2014), if the 
fracture propriety of natural brittle material increases with the size, a size effect law having the general form of a 
power function (Rilem TC QFS, 2004) can be introduced:  
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where D0 is the reference dimension, D the dimension at the generic scale, sr is the characteristic of the physical 
property, sr0 the characteristic of the physical property at the generic scale; the exponent  is calculated thanks to the 
equation:  














log
log n                                      (3) 

in which n is the ratio between D and D0 . 
The reliability of the law has been verified through comparison with experimental data obtained in earlier studies 

on samples of brittle and quasi-brittle materials, e.g. concrete (Perdikaris and Romeo, 1992) and rock (Bažant et al., 
1991 and 1993). Fitting experimental data, according to the experimental results reported by Fantilli et al. (2014), 
when D/D0 = 4, the fracture properties of brittle and quasi-brittle materials (concrete, rock and ice) increase of a factor 
, and therefore the exponent 0.35. 

3. Validation of the model in snow samples 

To validate the model for the fracture toughness of snow, a set of samples are herein taken into consideration (Fig. 
2). The three-point bending tests (3PB-tests) are those of the experimental campaign performed by Sigrist et al. (2005) 
on the decomposed and fragmented, small rounded, 0.5-1 mm, F-4F (according to ICSSG, Colbeck at al., 1990) 
snowpack in the surroundings of Davos, Switzerland. 

As reported in the original paper (Sigrist et al., 2005), the snow specimens were extracted by a naturally deposited 
snow, with a density around 186 ± 12 (kg m-3), and each one was cut out by snow cover thanks to a beam-shaped 
aluminum cases. The samples presented a uniform (10 cm) thickness B in order to avoid a possible thickness effect 
(“2D similarity”, according to Bazant and Planas, 1998), and all are notched at central cross section with a thin metal 
saw blade for a length. 

The experiments were conducted in the SLF (Institute for Snow and Avalanche Research) cold laboratories in 
Davos at temperatures between -7 and -15 ˚C in a standard material testing apparatus. 

 

 

Fig. 2. Three-point bending tests of snow beams: geometrical dimensions of the specimens. 

 
The load P (see Fig. 2) was applied in displacement control by means an aluminum cylinder with a 5 cm diameter 

(Sigrist et al, 2005), and other two aluminum cylinders with a 6 cm diameter supported the samples at the base in 
order to avoid high local snow deformations at the loading points. 

To explore the size effect of fracture toughness of snow, Sigrist et al. (2005) tested a size range of 1:4  3PB samples, 
varying the size H (and the length, L) of the beam from 8 cm to 32 cm (Set “E” of Table 2 and Fig. 10 in original 
paper). Only four different sizes of cases were tested (Table 1). 

On 1989, to investigate the size effect on fracture of ice, underlying the centrality of fracture toughness in Ice 
Mechanics, Dempsey defined the basic rules of experiments on ice and related measurements of the MODE I critical-

 Barbara Frigo et al. / Structural Integrity Procedia  00 (2017) 000–000  5 

stress-intensity-factor (KIc). As the theory of LEFM is generally applied to freshwater ice, Kc in MODE I (opening 
mode) is symbolically substituted by KQ (Dempsey, 1991), following the ASTM E399-83: 

 Q
initiation
apparentQ PraKKK ,,                                      (4) 

where KQ assembles all the hypothesis of a standard test and the knowledge deficiency of any different ice. The 
apparent fracture toughness depends on the length of the crack a, on the crack tip radius r,and on the maximum load 
PQ. 

Following the same philosophy, Sigrist et al. (2005) calculated the MODE I KQ combining the 3PB-solution and 
the pure bending one given by Tada at al. (2000), defining: 
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where s is a span of the specimen, the functions f1 (a/H) and f2(a/H) are reported in Tada et al. (2000), and Mm is 
the moment per beam width due to the body weight (Sigrist et al., 2005) calculated as: 
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in which gsHG PB 3 and  is the snow density, g the the	gravity	acceleration.	For each 3PB test, the related 
values of KQ are reported in Table 1.	

 

     Table 1. Three-point bending tests by Sigrist et al. (2005). 

Snow sample H   [cm] L   [cm] a/H H/L B   [cm] KQ   [kPa m0,5] 

3PB1 8 20 0.1 0.4 10 1.0717 

3PB1 8 20 0.1 0.4 10 1.1575 

3PB1 8 20 0.1 0.4 10 1.2 

3PB2 13 31 0.1 0.4 10 0.9286 

3PB2 13 31 0.1 0.4 10 0.9858 

3PB2 13 31 0.1 0.4 10 1.1858 

3PB2 13 31 0.1 0.4 10 1.6572 

3PB3 20 50 0.1 0.4 10 1.2572 

3PB3 20 50 0.1 0.4 10 1.4143 

3PB3 20 50 0.1 0.4 10 1.4429 

3PB4 32 80 0.1 0.4 10 1.3858 

3PB4 32 80 0.1 0.4 10 1.4715 

3PB4 32 80 0.1 0.4 10 1.6 

3PB4 32 80 0.1 0.4 10 1.8143 

 
 
As for the fracture properties of concrete, rock and ice specimens, the fracture toughness of snow becomes  times 

higher when the geometrical dimensions of the specimen are scaled with a size factor 4 (i.e., due to constant thickness 
of the specimens). Similarly, the fracture toughness of the 3PB samples, tested by Sigrist et al. (2005) and made with 
a natural snow, with a density around 186 ± 12 (kg m-3), varies according to the proposed size effect law. As Fig. 3 



 Barbara Frigo et al. / Procedia Structural Integrity 3 (2017) 261–268 2654 Barbara Frigo et al. / Structural Integrity Procedia  00 (2017) 000–000 

where D0 is the reference dimension, D the dimension at the generic scale, sr is the characteristic of the physical 
property, sr0 the characteristic of the physical property at the generic scale; the exponent  is calculated thanks to the 
equation:  
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Fig. 2. Three-point bending tests of snow beams: geometrical dimensions of the specimens. 

 
The load P (see Fig. 2) was applied in displacement control by means an aluminum cylinder with a 5 cm diameter 
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order to avoid high local snow deformations at the loading points. 
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On 1989, to investigate the size effect on fracture of ice, underlying the centrality of fracture toughness in Ice 
Mechanics, Dempsey defined the basic rules of experiments on ice and related measurements of the MODE I critical-
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stress-intensity-factor (KIc). As the theory of LEFM is generally applied to freshwater ice, Kc in MODE I (opening 
mode) is symbolically substituted by KQ (Dempsey, 1991), following the ASTM E399-83: 

 Q
initiation
apparentQ PraKKK ,,                                      (4) 

where KQ assembles all the hypothesis of a standard test and the knowledge deficiency of any different ice. The 
apparent fracture toughness depends on the length of the crack a, on the crack tip radius r,and on the maximum load 
PQ. 

Following the same philosophy, Sigrist et al. (2005) calculated the MODE I KQ combining the 3PB-solution and 
the pure bending one given by Tada at al. (2000), defining: 
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where s is a span of the specimen, the functions f1 (a/H) and f2(a/H) are reported in Tada et al. (2000), and Mm is 
the moment per beam width due to the body weight (Sigrist et al., 2005) calculated as: 
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in which gsHG PB 3 and  is the snow density, g the the	gravity	acceleration.	For each 3PB test, the related 
values of KQ are reported in Table 1.	
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3PB2 13 31 0.1 0.4 10 0.9858 

3PB2 13 31 0.1 0.4 10 1.1858 

3PB2 13 31 0.1 0.4 10 1.6572 

3PB3 20 50 0.1 0.4 10 1.2572 

3PB3 20 50 0.1 0.4 10 1.4143 

3PB3 20 50 0.1 0.4 10 1.4429 

3PB4 32 80 0.1 0.4 10 1.3858 

3PB4 32 80 0.1 0.4 10 1.4715 

3PB4 32 80 0.1 0.4 10 1.6 

3PB4 32 80 0.1 0.4 10 1.8143 
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shows, Eq.(2) with  = 0.35 gives a reasonable approximation of MODE I KQ also in the case of large specimens (i.e., 
size factor = 4). 

 
 

 

Fig. 3. Comparison between the measured fracture toughness of snow and the proposed size effect law (Eq. 2)  

 
Fig. 3 reports the variability of the GSL depending on the choosing value of KQ of D0, equal to 8 (3PB1). The 

applicability of the GSL is relyed to the choose of the KQ0.  Fig. 3 reports the comparison between the the measured 
fracture toughness of snow and the GSL defined by KQ0 equal to (a) minimum value of 3PB1 test with D0 = 8; (b) the 
maximum and (c) the median one (Table 1), (d) the calculated average value (equal to 1.1431 kPa m0,5).  

We note that the GSL (with  =0.35) fits the fracture toughness measurements, also considering as a KQ0  the 
avegare value of the three data. The best fit is obtained with lower value of KQ, (Fig. 3.a) equal to 1.0717 kPa m0,5. 
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Conclusions 

According the results shown in the previous sections, the following conclusions can be drawn:  

 As concrete, ceramic, rocks and ice, snow shows grain size depending behavior and present a structurally similar 
brittle response.  

 Similarly to the crack pattern of reinforced concrete ties and beams, the golden ratio also recurs in the fracture 
mechanism of snow. In particular, GSL can be used to calculate the fracture toughness of snow at different scale.  

 With respect to the existing experimental data, the proposed GSL can predict fracture properties (i.e, KIQ ) for 
snow with good accuracy by using a single parameter (and a single test, as well). 

Future works will report the comparison of the GSL with existing traditional size effect models (e.g.; Size Effect 
Law – SEL (Bažant, 1984) and the Multifractal Scaling Law – MFSL (Carpinteri, 1994; Carpinteri A., Chiaia, B. 
1997)) for the given data of fracture toughness, testing the accuracy of the proposed scaling law. 
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