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Status epilepticus (SE) is a life-threatening condition with a mortality of up to 60% in the advanced and comatose
forms of SE. In one out of five adults, first and second line fails to control epileptic activity, leading to refractory
status epilepticus (RSE) and in around 3% to super-refractory status epilepticus (SRSE), where SE continues de-
spite anesthetic treatment for 24 h or more. In this rare but devastating condition, innovative and safe treatments
are needed. In a recent review on the use of vagal nerve stimulation in RSE and SRSE, a 74% response rate for ab-
rogation of SE was reported. Here, we review the currently available evidence supporting the use of
neurostimulation, including vagal nerve stimulation, direct cortical stimulation, transcranial magnetic stimula-
tion, electroconvulsive therapy, and deep brain stimulation in RSE and SRSE.

This article is part of the Special Issue “Proceedings of the 7th London-Innsbruck Colloquium on Status Ep-
ilepticus and Acute Seizures”.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Status epilepticus (SE) represents a neurological and medical emer-
gency associated with high mortality and morbidity. More specifically,
generalized (tonic-clonic) convulsive SE and comatose nonconvulsive
SE (NCSE) can be life-threatening, with a mortality up to 60% [1]. The
pharmacological treatment of convulsive SE is based on a stepwise ap-
proach, with benzodiazepines being the first-line treatment. However,
in approximately 30-40% of cases, SE cannot be adequately controlled
by benzodiazepines and requires the intravenous administration of an-
tiepileptic drugs [2,3]. If the ictal activity persists, anesthetics may be re-
quired to control refractory SE (RSE). In most severe cases, SE continues
or recurs 24 h or more after the onset of anesthetic therapy (or recurs on
the reduction or withdrawal of anesthesia). Such condition has been
termed super-refractory SE (SRSE) [4] and represents an uncommon
but important clinical condition with very high mortality and morbidity
[4,5], where various pharmacological and nonpharmacological thera-
pies are applied, most often without any evidence from clinical studies.
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In a recent population-based study, the incidence of RSE was 7.2 (95%
confidence intervals [CI]: 3.3-13.8), whereas that of SRSE was 1.2
(95% CI: 0.1-5.1)/100.000 adults/year [5]. We recently reviewed the
current experience with vagal nerve stimulation (VNS) in RSE and
SRSE and found a 74% response rate for abrogation of SE [6].

In this narrative review, we present the currently available evidence
supporting the use of neurostimulation, including VNS, direct cortical
stimulation, transcranial magnetic stimulation, electroconvulsive ther-
apy, and deep brain stimulation (DBS), to treat RSE and SRSE after fail-
ure of medical interventions.

2. Historical background

The birth of neurophysiology dates back to the seminal studies con-
ducted by the Italian physician and physicist Luigi Galvani (1737-1798),
who observed how application of electricity to dead frogs led to muscu-
lar movements. Results of his observations were reported in the famous
treatise “De viribus electricitatis in motu musculari commentarius” (Com-
mentary on the effects of electricity on muscular motion), published in
Bologna in 1791 [7].

In 1803, the Italian scientist Giovanni Aldini (1762-1834), nephew
of Galvani, demonstrated the efficacy of electricity in the body of
Georg Foster, who had been executed for murdering his wife and child
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by drowning them in Paddington Canal, London. Aldini stimulated
Foster's corps with electric current and, according to a record of the ex-
periment, “On the first application of the process to the face, the jaws of
the deceased criminal began to quiver, and the adjoining muscles were
horribly contorted, and one eye was actually opened. In the subsequent
part of the process, the right hand was raised and clenched, and the legs
and thighs were set in motion” [8]. This public demonstration of the
electrostimulation technique led to an increased interest towards “Gal-
vanism”, which culminated in the publication of the famous novel
“Frankenstein; or, The Modern Prometheus” (first edition 1818) by
the English writer Mary Shelley (1797-1851).

The electrical excitability of the brain was subsequently demonstrated
by Gustav Theodor Fritsch (1838-1927) and Eduard Hitzig (1838-1907),
who stimulating the cortex of live dogs and observing movements on the
contralateral muscles, provided experimental evidence of a motor area in
the cortex [9]. Their original experiments would later be replicated by
David Ferrier [10]. The first who used electrical stimulation in living
humans was the American physician Roberts Bartholow (1831-1904);
he conducted a series of experiments on Mary Rafferty, who suffered
from a deleterious epithelioma using faradic stimulation: unfortunately,
the woman had several seizures after increase of stimulation strength
and fell into coma, dying a few days later [11].

Electrical stimulation of the human cortex in patients with epilepsy
was systematically investigated by Wilder Graves Penfield (1891-1976)
and Herbert Jasper (1906-1999), and led to the identification of distinct
cortical areas with specific functions. More specifically, electrical corti-
cal stimulation in patients with epilepsy provided extremely valuable
information. The technique currently known as “electrocorticography”
revealed that (1) electrical stimulation of the cortex can silence down
periodic spiking, (2) local stimulation may have distant effects in an ep-
ileptogenic network, and (3) electrical stimulation may ignite or inter-
rupt seizures [12]. The demonstration that neocortical stimulation
could interrupt seizures settled the basis for the clinical use of
neurostimulation in epilepsy. The pilot studies with thalamic, subtha-
lamic, neocortical, and hippocampal stimulation date back to the
1990's and eventually led to the approval of vagal nerve stimulation
(VNS) for the treatment of epilepsy (1996). In subsequent years, tha-
lamic stimulation (2010), trigeminal nerve stimulation (2012), respon-
sive neurostimulation (RNS) (2013), and hazard ratio-responsive (HR-
responsive) VNS (2014) were also approved for clinical use.

3. General remarks and biological principles

Stimulation of brain tissues is by far more complex than that involv-
ing single neurons and their axons. This is due to surrounding tissue
properties, orientation of axons, electrolytes type of stimulation, field
distribution, and many other factors, which can determine the biologi-
cal effect on neuronal networks. Hence, although on the one hand elec-
trical stimulation can lead to predictable responses at individual nerve
fiber or axon level, such predictability is lost when stimulating the neu-
ronal tissue — which comprise elements with different excitability prop-
erties such as soma and dendrites. Consequently, fields of distribution of
currents can only be estimated, and net effects cannot be classified sim-
ply as excitatory or inhibitory, also because biological effects close to the
electrode may be different from those further away [13].

Besides these biological issues, there are clinical ones that should be
considered: acute interruption of seizures is different than prevention of
seizures [14] or prevention of epileptogenesis [ 15], and mechanisms un-
derlying SE (especially its later stages) may be fundamentally different
than those responsible for single seizures [16]. Hence, SE has its own pe-
culiarities which need to be taken into account.

4. Experimental evidence

In spite of the abundant use of neurostimulation in humans, there is
still a striking shortage of a deep understanding of the mechanisms of

neurostimulation, as well as good experimental data, which inform
clinical studies. In this section, the key findings of experimental data
are given in brief. Studies gathered from animal models have shown
that different neurostimulation techniques (VNS, trigeminal nerve
stimulation, electroconvulsive therapy) can modulate widespread
brain networks but can also affect the activity of selective network
nodes (Fig. 1). Hence, the site of stimulation plays a crucial role in the
resulting anticonvulsant or proconvulsant effect [17] (Table 1).

In a seminal study, Woodbury et al. found that VNS was able to re-
duce the severity of maximal electroshock seizures in rats, by abolishing
the extensor component of the tonic phase; furthermore, it proved ef-
fective in shortening or preventing tonic seizures induced by pentylene-
tetrazol [18,19]. A subsequent study in Wistar rats showed that VNS
with square pulses (0.5 ms) at Hz 0.01 to 1.2 mA for 20 s reduced
interictal spike frequency by 33% during and the effect lasted <3 min
[20]. When the electrical stimulation was applied at seizure onset,
there was a significant reduction of seizure duration, whereas stimula-
tion starting more than 3 s after onset failed to control seizures. The in-
hibition of experimental seizures by repetitive VNS was also
subsequently demonstrated in the 1990ties in a canine model of epi-
lepsy [21]. This study allowed to identify the optimal stimulus parame-
ters to control seizures (strength, approximately 20 V; electrode
resistance, 1 to 5 Q; frequency, 20 to 30 Hz; duration, approximately
0.2 ms), and provided further evidence that VNS can exert an anticon-
vulsant effect following the stimulation of small-diameter afferent un-
myelinated fibers.

A marked suppression of network excitability with high-frequency
stimulation following DBS was demonstrated in a sheep model of epi-
lepsy [22]. After stimulating (30 s, at 6 V), the anterior thalamic nucleus
raw local field potential (LFP) responses were recorded. The averaged
evoked potentials were elicited by different stimulation amplitudes
showing a graded input-output response; furthermore, averaged
evoked potentials were elicited by different stimulation burst frequen-
cies. Different DBS stimulation burst frequencies had different effects
on LFPs recorded in the hippocampus. Hence, stimulation of these
brain regions produced evoked potentials that were dependent on stim-
ulus location and parameters. The effects of different burst frequencies
of thalamic stimulation (10-s burst) on penicillin-induced spiking
were investigated. High-frequency thalamic DBS produced a clear inhi-
bition of epileptiform activity in the hippocampus which far outlasted
the duration of the stimulation. These findings supported a potential
therapeutic mechanism for DBS in the treatment of epilepsy.

As these studies clearly show, stimulus parameters especially fre-
quency, polarity, and shape have a profound impact on the effect of
the stimulation.

Ideally, clinical trials should be based upon a solid foundation of ex-
perimental work documenting the basis for a therapeutic effect and the
optimal parameters for producing such an effect. However, much of the
clinical work in neurostimulation is only loosely based on fundamental
principles derived from experimental work. Hence, clinical trials were
performed (in part successfully) with limited understanding of the
basic mechanism underlying neurostimulation.

5. Current evidence for neurostimulation in status epilepticus

Several neurostimulation techniques are currently available for the
treatment of epilepsy (Fig. 2), but the evidence supporting their use
for the treatment of SE is sparse and of low quality.

5.1. Vagal nerve stimulation

Vagal nerve stimulation involves intermittent electrical stimulation
of the left cervical vagus nerve by means of an implanted helical elec-
trode connected to a pulse generator. Negative electrode generates ac-
tion potentials that travel afferently via sensory fibers, whereas
efferently traveling action potentials are mostly blocked by the positive
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Fig. 1. Types and localisation of brain modulation in seizures and Status epilepticus.

electrode. Potentials that are not blocked could cause adverse effects.
The therapeutic efficacy of VNS appears to be mediated by the activation
of fast myelinated fibers in the vagus nerve [23]. Its anticonvulsant ef-
fect can be explained by several mechanisms, such as the modulation
of neurotransmitter expression with increased inhibition and reduced
excitability [24], changes in cerebral blood flow [25], desynchronization
of electroencephalographic (EEG) rhythms [26], and antiinflammatory
effects mediated by norepinephrine [27] (Fig. 3).

Clinical studies established the efficacy of VNS in patients with epi-
lepsy. Five randomized trials conducted in a total of 439 patients with
focal drug-resistant epilepsy were included in a Cochrane systematic re-
view, comparing different types of VNS stimulation therapy [28]. The
overall risk ratio for 50% or greater reduction in seizure frequency was
1.73 (95% Cl: 1.13 to 2.64) for high-frequency VNS compared to low-fre-
quency VNS (moderate quality of evidence); the risk ratio for treatment
withdrawal was 2.56 (95% CI: 0.51 to 12.71; low quality of evidence).

The electrophysiologic effects of VNS on the human hippocampus
and mesial temporal lobe structures were definitely demonstrated
using intracranial depth electrodes in a patient undergoing presurgical
evaluation for drug-resistant epilepsy [29]. Epileptiform activity was re-
corded from depth electrode left hippocampus (interictal spike fre-
quency), and spike frequencies before and during VNS at 5- and 30-Hz
were investigated. The anticonvulsant effect was strictly dependent on
the stimulation frequency, as 30-Hz stimulation led to a significant

Table 1
Diversity of effects of brain stimulation in animal models.
(Adapted from ref. [7]).

decrease, whereas the 5-Hz stimulation was associated with a signifi-
cant increase in epileptiform activity.

The use of VNS or other neurostimulation techniques is currently
listed among the options for the treatment of SRSE, particularly after
the failure of ketamine, magnesium, immunotherapy, and hypothermia
or ketogenic diet [2,3]. Perhaps not surprisingly, in the preliminary re-
sults of a global audit of treatment of RSE, only a very few cases were
treated with either VNS (3 out of 347, 0.9%), electroconvulsive therapy
(1 case, 0.3%), or transcranial magnetic stimulation (1 case, 0.3%) [30].

Very recently, a systematic and comprehensive review of the litera-
ture has been performed to assess the efficacy of acute VNS implanta-
tion for the treatment of SE [6]. Overall, 43 patients with various
etiologies of RSE or SRSE were included. Although cessation of SE was
67% and long-term seizure reduction 49%, results should be interpreted
with caution for the high risk of publication bias (evidence level IV).
However, the tolerability of acute VNS for SE appears to be good, with
only 2 reported patients with bradycardia and 1 with seizure aggrava-
tion, and none with perioperative complication.

Some issues remain open with regard to the use of acute VNS im-
plantation for SE. Optimal stimulation paradigms, timing of the acute
implantation, and potential synergies with pharmacological agents
should be further investigated. The role of age and etiology should
also be assessed, considering that concomitant drugs could make it dif-
ficult to isolate the response of VNS from natural history (e.g., patients

Site of stimulation Anticonvulsant effects

No effects Proconvulsant effects

Cerebellum Deep nuclei and superficial: cat, rabbit, rat
Caudate

Substantia nigra
Subthalamic nucleus
Brainstem

Cat, monkey
Rat (3,4-AP, flurothyl), cat (penicillin)
Rat (flurothyl, GAERS)

solitarius.: cat
Hypothalamus Rat (focal carbachol, PTZ)

Ant. Nc. of thalamus Rat (PTZ, Hc. kainate, pilocarpine)
Hippocampus/amygdalon Rodent Hc. slice preparations

Piriform cortex Rat (delayed kindling, low frequency stimulation)
Neocortex Cat (undercut model), rodent (slice)

Lc. coeruleus: rat (PTZ, penicillin, kindling), raphe: rat (PTZ, kindling), Nc. tractus

Cat (cobalt), rat, cat
(penicillin)

Rabbit, cat (penicillin)

Rat (Hc. stimulation, GAERS)

Monkeys (electrical
stimulation)

Older cat (flurothyl)
Rat (flurothyl)
Dorsal raphe nucleus: rat
(kindling)
Rat (low frequency
stimulation)
Rat (low frequency Rat (kainic acid)
stimulation, PTZ)
Rodent Hc. slice preparations  Kindling and evoked seizures
Kindling in rodents
Evoked seizures multiple
species

Abbreviations: Ant.: anterior; GAERS: Genetic Absence Epilepsy Rats from Strasbourg; Hc.: hippocampus; Lc.: locus; Nc.: nucleus; PTZ: pentylenetetrazole; 3,4-AP: 3,4-aminopyridine.
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Fig. 2. Types of neurostimulation techniques and targets used for patients with epilepsy.
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(Reproduced with permission from: Vonck K, Boon P. Epilepsy: closing the loop for patients with epilepsy. Nat Rev. Neurol. 2015;11:252-4).

with N-Methyl-d-aspartate (NMDA) encephalitis also receiving im-
mune therapy). Finally, the time to clinical response, and stimulation
parameters should be recorded carefully in a standardized way, to
allow conclusions on a possible causal relationship between VNS and
SE cessation.

5.2. Responsive neurostimulation

Responsive neurostimulation aims to suppress ictal activity by
delivering stimulation directly in response to electrographic activity;
as such, it can be targeted to the specific brain regions involved in the
seizure and is time-specific, as stimulation is provided only when
needed [31]. The NeuroPace RNS System, an implantable responsive
neurostimulator system was evaluated in a multicenter, randomized,
double-blinded trial for the treatment of drug-refractory epilepsy
[32]. During the 12-week study period, seizures were significantly
reduced in the treatment compared to the sham group (—37.9%
versus — 17.3%; p = 0.012), with no difference between the groups
in adverse events. Overall quality of life was also significantly im-
proved (p <0.02) without deterioration in mood or neuropsycholog-
ical function.

So far, only one case of RNS being used to treat a case of SE was re-
ported [33]. It was a 37-year-old man with drug-resistant focal epilepsy
due to cortical dysplasia in motor cortex who developed SRSE. Detection

and stimulation parameters were adjusted over a 14-day period using
RNS (Neuropace®), and SE ceased 15 days after implant, with return
to neurological baseline status at 6 weeks of follow-up. However, “keta-
mine infusion was started the day after this stimulation change as pen-
tobarbital infusion was weaned, and all IV anesthesia was discontinued
96 h later”. Hence, because of the change in concomitant medications, it
is not possible to establish a strong causal relationship between RNS and
SE cessation.

5.3. Direct cortical stimulation

So far, 8 patients (1 with RNS) with RSE of various etiologies (mostly
epilepsia partialis continua or focal motor SE) have been reported, with
successful implantation in 7/8 patients and seizure control in 87%
[34-37]. Data on long-term seizure reduction were not sufficiently de-
scribed (the shortest follow-up was 6 weeks). No adverse effects were
reported.

As for VNS, also for the use of direct cortical stimulation, there are
still some open issues: the stimulus parameters used so far in SE are em-
piric and need validation and standardization in larger case series with
less clinical heterogeneity (particularly with regard to etiology and
age); time to response and effect of concurrent treatments should be
collected prospectively to assess the clinical response.
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5.4. Deep brain stimulation

Overall, 4 patients with RSE of different etiologies (1 absence SE in
juvenile absence epilepsy; 1 common variable immunodeficiency-
associated encephalomyelitis; 2 cases of unknown cause) treated with
intracranial neurostimulation have been reported so far. Three patients
underwent electrical stimulation of the centromedian thalamic nuclei
[38-40] and one of the anterior nucleus of the thalamus [41]. Although
successful implantation occurred in 3 of 4 patients and seizure control in
75%, long-term seizure reduction was not sufficiently reported. No ad-
verse effects were reported for implantation in SE cases; however, the
occurrence of SRSE was reported in a patient following DBS implanta-
tion for treating Parkinson's disease [42].

5.5. Repetitive transcranial magnetic stimulation

Overall, 23 patients with various etiologies of SE and RSE have been
reported with different types of stimulation (low and high frequency)
[43]. Success rate was 43.5% with relapse occurring in 76.5%, and long-
term outcomes (>6 months) not reported.

5.6. Transcutaneous direct current stimulation (tDCS)

Evidence on the use of transcutaneous direct current stimulation
(tDCS) in SE is anecdotal. In animals, pilocarpine-induced SE in imma-
ture rats treated with tDCS was associated with 21% reduction in con-
vulsions on postnatal day 55 [44].

A case report described the effect of tDCS in a 20-years-old woman
with epilepsia partialis continua involving the left hand; tDCS (adminis-
tered at 2 mA for 20 min with cathode over C4) led to complete cessa-
tion of epilepsia partialis continua, but involuntary movements
gradually reappeared [45]. The efficacy of tDCS was reported also in a
previously healthy teenager who presented with de novo epilepsia

partialis continua and metabolic stroke resulting from the homozygous
p.Ala467Thr POLG mutation [46].

However, in a controlled study, 5 patients with focal, refractory con-
tinuous spikes and waves during slow sleep underwent cathodal tDCS
or sham stimulation before sleep (1 mA; 20 min) in 5 successive sessions
[47]. Cathodal tDCS did not reduce the spike index in any of the patients.

5.7. Electroconvulsive therapy

The use of electroconvulsive therapy in psychiatry was proposed in
1934 by Ladislas Joseph Meduna as a treatment for major depressive
disorder, mania, and catatonia [48]. The goal of electroconvulsive ther-
apy for treating psychiatric disorders is to elicit seizures and, conse-
quently, to allow withdrawing medication. The placement of
electrodes, as well as the dose and duration of the stimulation is deter-
mined on a per-patient basis, and short-acting anesthetics such as
methohexital, etomidate, or thiopental are given, together with a mus-
cle relaxant such as suxamethonium (succinylcholine), and occasionally
atropine to inhibit salivation [48]. Brief pulses of electrical stimulus with
800 mA (up to several hundred watts) induce current flows for 1 to 6 s.
The mechanism underlying the clinical effects of electroconvulsive ther-
apy, including its potential efficacy in terminating SE, is poorly under-
stood. Its adverse effects include retrograde amnesia, anterograde
amnesia, confusion, and permanent memory changes.

So far, 27 patients with SE of various etiologies undergoing electro-
convulsive therapy administered according to psychiatric standard pro-
tocols have been reported, with a success rate of 59% [49,50]. The most
frequent adverse effects include transient lethargy or amnestic episode,
or confusion; no cardiac arrest or death has been reported.

6. Conclusions and future directions

So far, neurostimulation has been investigated in few cases of RSE and
SRSE (VNS: 43; electroconvulsive therapy: 27; repetitive transcranial
magnetic stimulation: 23; direct cortical stimulation: 8; DBS: 4), with var-
ious success rates (43.5% repetitive transcranial magnetic stimulation;
59% electroconvulsive therapy; 67% VNS; 75% DBS; 87% direct cortical
stimulation). In all of the published studies, publication bias is likely to
have affected the efficacy results, and poor reporting prevents drawing
robust conclusions. Noninvasive neurostimulation (tDCS) appears to be
ineffective or to have very low efficacy against SE. On the other, the differ-
ent neurostimulation techniques discussed above have been remarkably
well tolerated, with no systemic effects, or procedure- or device-related
complications.

Future directions of neurostimulation for the treatment of SE include
the investigation of neuronal targets so far unexplored (e.g., cingulate
gyrus, amygdala, entorhinal cortex, Forel H-field), adopting new stimula-
tion algorithms and parameters [51]. A more targeted selection of patients
and a prospective collection of data from more clinically homogeneous
populations and longer follow-up will improve our understanding of
the acute and chronic effects of neurostimulation. This will proceed in
parallel with the development and implementation of better devices
(electrodes, stimulators, cables) and technological improvements. Multi-
center prospective observational studies and device registries with stan-
dardized reporting are required to further assess the efficacy of different
neurostimulation techniques for the treatment of SE.
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