
Please cite this article in press as: Stocchi M., Marchesi M. Fast wavelet transform assisted predictors of streaming time series. SoftwareX (2017),
https://doi.org/10.1016/j.softx.2017.09.006.

SoftwareX () –

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Fast wavelet transform assisted predictors of streaming time series
Marco Stocchi a,*, Michele Marchesi b
a Department of Electronics Engineering, University of Cagliari, v. Marengo 9, Italy
b Department of Mathematic Sciences and Informatics, University of Cagliari, v. Porcell 4, Italy

a r t i c l e i n f o

Article history:
Received 12 December 2016
Received in revised form 20 July 2017
Accepted 28 September 2017

Keywords:
Streaming datasets
Time series forecast
Fast wavelet transform
Shift variance theorem

a b s t r a c t

We developed an implementation of a novel shift variance theorem of the fast wavelet transform (FWT),
suitable to the multiresolution analysis of streaming univariate datasets, using compactly supported
Daubechies Wavelets. The theorem is used to reduce the computational complexity of the FWT, and also
to reduce drastically the number of wavelet coefficients to be estimated in forecasting the one step ahead
discrete wavelet transform. For this reason, any FWT performed using the found shift variance properties
is herein named reduced FWT. An effective real value prediction of a sampled input time series can be
obtained performing the inverse DWT of an estimated crystal, and this is the purpose of the proposed
predictor herein namedWa.R.P. (Wavelet transform Reduced Predictor). The C++ code implementing the
FWT and the novel theorem is available to research purposes, and to build efficient industrial applications.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_SOFTX-D-17-00070
Legal Code License MIT
Code versioning system used none
Software code languages, tools, and services used C++
Compilation requirements, operating environments & dependencies TargetMachine x86, subsystem: Console. Compilation requirements

and dependencies inherited from Microsoft Visual Studio 2015 project
defaults for release x86 solution configuration

If available Link to developer documentation/manual
Support email for questions marco.stocchi@diee.unica.it

Software metadata

Current software version 1.0
Permanent link to executables of this version
Legal Software License MIT
Computing platforms/Operating Systems Microsoft Windows (suggested)
Installation requirements & dependencies only the source code is provided
If available, link to user manual — if formally published include a
reference to the publication in the reference list
Support email for questions marco.stocchi@diee.unica.it

* Corresponding author.

E-mail address:marco.stocchi@diee.unica.it (M. Stocchi).

1. Motivation and significance

The use of wavelet analysis of time series has been demon-
strated to be an effective and powerful method to analyze digital
signals and, recently, it has been used also to forecasting purposes,
as outlined in manuscript [1] sec. 1 ‘‘Introduction’’. In this paper,

https://doi.org/10.1016/j.softx.2017.09.006
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2017.09.006
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX%5FSOFTX-D-17-00070
mailto:marco.stocchi@diee.unica.it
mailto:marco.stocchi@diee.unica.it
mailto:marco.stocchi@diee.unica.it
https://doi.org/10.1016/j.softx.2017.09.006
http://creativecommons.org/licenses/by/4.0/

Please cite this article in press as: Stocchi M., Marchesi M. Fast wavelet transform assisted predictors of streaming time series. SoftwareX (2017),
https://doi.org/10.1016/j.softx.2017.09.006.

2 M. Stocchi, M. Marchesi / SoftwareX () –

we describe the main features of the proposed software, imple-
menting a CPU efficient fast wavelet transform and its variant, a
decimated DWT whose calculation is assisted by the novel shift
variance theorem (SVT of the FWT), described in manuscript [1]
sec. 2. ‘‘Method’’.

The majority of wavelet approaches to the analysis of digital
signals involve the use of undecimated wavelet transforms, that
are characterized by shift invariance features, but are also affected
by representation redundancy and by a strong need ofmemory and
computational resources. In manuscript [1] sec. 2 ‘‘Method’’ we
demonstrate that the decimated, convolutional discrete wavelet
transform (also called fast wavelet transform) possesses some im-
portant shifting features that are applicable to the multiresolution
analysis (MRA) of streaming datasets, and that, under certain con-
ditions, such features can be successfully used both to accelerate
the computation of the FWT of streaming time series, and to effi-
ciently preprocess univariate time series candidate to be forecasted
via statistical estimators or machine learning predictors.

The proposed software implements both the FWT algorithm
and its SVT variant. Moreover, motivated by the possibility to
perform the FWT using the above mentioned theorem, we provide
a test suitable to evaluate the theorem on the computational effi-
ciency of the SVT assisted transform (also named reduced FWT).

The proposed software is endowed with a series of C++ files,
created in order to let the user test separately various aspects of
the contents illustrated in the manuscript [1].

The first test file (T1.cpp) allows to perform FWT operations
on a streaming dataset, reporting the reconstruction errors for
each differentwavelet filter applied. The user can choose execution
parameters such as the source size and the number of tests to
be performed for each wavelet. Such test file also shows how to
instantiate FWT transform objects at runtime.

The goal of the second test file (T2.cpp) is to test the FWT
implementation and its SVT variant. The user can choose the num-
ber of correctness tests performed (these consist in comparing for
equality the results obtained executing the classic FWT and the SVT
assisted transform); it is also possible to choose the number of tests
performed in order to evaluate the efficiency and, finally, the user
could also repeat the tests changing the input source size. A final
console report of the execution time allows the user to check the
validity of the corollary on the asymptotic computational efficiency
of the reduced FWT of streaming 1D datasets (see manuscript [1]
sec. 2.1 ‘‘Theorem on coefficients transposition’’).

Finally, the case-study (the Bitcoin-USD hourly exchange
rates prediction, i.e. a forecast attempt of a streaming finan-
cial time series) implements the Wa.R.P. engine (as proposed
in the manuscript [1]). It is contained in a C++ file (named
DSPX_predictor.cpp) which includes a set of header files con-
taining support classes suitable to create a inference engine as-
sisted by the reduced FWT; a full multilayered perceptron imple-
mentation (used for the machine learning purposes of the case
study); a small set of files containing helper classes and functions
suitable to manipulate financial series data. We also provide the
files DSPX_benchmark_ann.cpp, DSPX_benchmark_svm.cpp,
and DSPX_benchmark_wdnn.cpp, in order to respectively repro-
duce the forecasting benchmark results of a multilayered percep-
tron — MLP, support vector machines (the latter developed using
the SVM implementation described in [2]), andWavelet denoising-
based neural networks —WDNN.

2. Software description

The FWT and the reduced FWT algorithms are developed using
a template approach, and are declared in a C++ header file. An
associated set of compilable files allow users and researchers to
performpreliminary tests, and at the same time to learn how to use

the algorithms by examples. The user should create a default C++
console project on its compiler and add the files listed in Appendix.
The software must directly compile as a release x86 version (with
optimization for speed) with no errors and no warnings. The user
should include in the build both the project default stdafx.cpp
and the DSPX_singletons.cpp files, but only one of the testing
.cpp files listed in the table of Appendix under the section ‘‘Test’’.

2.1. Software architecture

The software, implementing the FWT and its SVT variant, is
template based and developed in C++ language. Structures are
gathered in a namespace contained in a single header file. This
allows to maximize its reusability as a core component of both
desktop and server applications.

2.2. Software functionalities

The code is composed of a structure implementing the shift
variance theorem, an abstract structure implementing the fast
wavelet transform interface, and a transformer class (derived from
the abstract structure) that can be instantiated at compile time
with theDaubechies orthonormalwavelet filters. A helper function
is provided, useful to create Daubechies FWT transform objects at
runtime.

The FWT abstract structure offers virtual methods to be called
in order to perform the forward and inverse discretewavelet trans-
form using the FWT algorithm. It is endowed with two overloaded
methods to be called in order to perform a forward transform.
The first overload performs a classical FWT on the input series;
the second overload allows to pass information about varying
coefficients, back step sizes and the matrix Q , in order to perform
a SVT transform, as described in manuscript [1] sec. 2.1 (Theorem
on coefficients transposition).

The shift variance theorem structure is endowed with a con-
structor taking the input source size and the wavelet filter size as
arguments. It features eight public methods, allowing the user to
compute the needed parameters to perform a reduced FWT; the
main ones are described in the followings.

The boolean method is_scaling_coefficient() allows to
test if the ordinal index of a given coefficient of a transform crystal
belongs to the φ coefficients of the DWT (the reader should refer
to the coefficients indicated by eq. (8) of the manuscript [1], i.e.:
cM,0, cM,1, . . . , cM,ncM

).
The boolean method is_SVT_coefficient() detects if a co-

efficient, whose ordinal index is given, is one of the unchanging
coefficients of the crystal (SVT coefficient). In this case, the coeffi-
cients can be automatically retrieved.

Themethod back_steps() allows to calculate, for a given SVT
coefficient, the rowof theQ matrix inwhich to fetch the retrievable
coefficients. Such reassignment procedure is outlined in eq. (12)
of the manuscript [1]. For efficiency purposes, the user is advised
to cache the back steps in a vector, before performing a series of
SVT transforms. A possible implementation of such procedure is
provided in the T2.cpp test file (see struct Q, a wrapper object
to work with a Q matrix).

Finally, the method variant_coefficients() allows to ex-
tract the number of non-SVT coefficients, as described in eq. (11)
of the manuscript [1]. The interested reader can also look at Table
A.1 of the manuscript, which reports the number of varying coef-
ficients for each wavelet filter N and for each recursion step of the
FWT of a streaming dataset.

Please cite this article in press as: Stocchi M., Marchesi M. Fast wavelet transform assisted predictors of streaming time series. SoftwareX (2017),
https://doi.org/10.1016/j.softx.2017.09.006.

M. Stocchi, M. Marchesi / SoftwareX () – 3

Fig. 1. Flow chart of a possible implementation of a Wa.R.P. system. At each forecast step, an iterator points to the index of the DWT coefficient to be forecasted. When the
iterator points to a SVT coefficient, its actual value can be transposed from matrix Q . Otherwise, a specialized and trained Neural Network performs its prediction.

3. Illustrative examples

Fig. 1 shows the flowchart of a Wa.R.P. predictor system em-
ploying different types of machines for prediction purposes. it
is similar to the software contained in the case study files. The
representation reports a single forecasting step of the one step
ahead crystal of a streaming dataset series. Theoretically, an iter-
ator points to the coefficient ordinal index of the crystal to test
the SVT theorem. If the iterator is effectively pointing to an SVT
coefficient, there is no need to forecast the coefficient itself since
it can be retrieved and transposed from matrix Q , as outlined in
eq. (12) of the manuscript [1]. If the iterator points to a non SVT
coefficient, the latter must be estimated and this can be performed
testing a machine trained to such purpose.

In the header file DSPX_engine.h, belonging to the case study
test, we parsimoniously provide only a set of multilayered per-
ceptrons. However, far from being the only possible solution, a
developer could decide to specialize the template predictor class
with different types of predictors, depending on the operational
requirements of the software. In the flowchart representation, for
example, a theoretic virtual predictor canmorph to different types
of predictor machines (MLPs, Self Organizing Layers, SVMs, etc.);
such decision could be taken considering the known statistical
properties of the coefficients’ series to forecast.

4. Impact

The software here proposed allows to explore and take ad-
vantage of the shift variance properties of the FWT which, at the
best of our knowledge, was not fully researched before (instead,
other types of shift invariant wavelet transforms, such as those
cited in manuscript [1] sec. 1 ‘‘Introduction’’, were developed).

The shift variance theorem, formalized in the sec. 2 ‘‘Method’’,
was implemented and can be used both for efficiency reasons
(e.g. increasing the absorption rate of a streaming data set analysis)
and to prediction purposes (dramatically reducing the number of
wavelet coefficients to be estimated in the attempt to forecast the
one step ahead DWT crystal).

The software has now been released for the first time. Within
the authors’ research group, its use has been initially intended to
research purposes. A projected pathway, useful to achieve indus-
trial impact using the software, is outlined in manuscript [1] sec. 1
‘‘Introduction’’. As such, an efficient SaaS application, suitable to
provide DWT calculation services, is presently under development.

The implementation of the Daubechies FWT and its SVT variant
are contained in a single header file, in order to allowanydeveloper
to use it as a core component of applications aimed to perform
analysis and prediction of streaming time series. Considering the
increasing number of devices connected to the internet, such as IoT
sensors and surveillance devices, capable of generating streaming
time series, we believe that an efficient method of performing
wavelet analysis (such as the one here proposed), could lead to the
creation of commercial IaaS of PaaS applications, similar to the one
we are currently developing.

5. Conclusions

After having explored and formalized the shift variance prop-
erties of the Fast Wavelet Transform performed on streaming uni-
variate datasets, we developed a C++ implementation of the FWT
and its SVT variant, and integrate it in a prediction system named
Wa.R.P., in order to test the forecasting accuracy of a discrete
wavelet transform assisted machine learning framework.

Satisfactory results, obtained in the case study named ‘‘Bitcoin-
USD hourly exchange rates prediction’’, suggest that the reduced

Please cite this article in press as: Stocchi M., Marchesi M. Fast wavelet transform assisted predictors of streaming time series. SoftwareX (2017),
https://doi.org/10.1016/j.softx.2017.09.006.

4 M. Stocchi, M. Marchesi / SoftwareX () –

Table A.1
List of files and their content (‘‘Notes’’). ‘‘Artificial Neural Networks’’ namespace gathers a template based implementa-
tion of generic multilayer perceptrons; ‘‘Financial Data’’ namespace gathers classes and functions for basic manipulation
of financial data; ‘‘Fast Wavelet Transform’’ provides the classes needed to perform the FWT and its reduced variant;
‘‘Inference engine’’ files contain the classes and functions developed for prediction implementation and case-study pur-
poses; ‘‘Test’’ files are ‘‘.cpp" files to be executed alternatively, in order to perform single different type of tests and to
reproduce the present research.

Artificial neural networks Notes

DSPX_ann_def.h Artificial NN and typedefs
DSPX_ann_helper.h Random, math, statistic, functors
DSPX_ann_neuron.h Generic artificial neuron template class
DSPX_ann_layer.h Generic layer template class
DSPX_ann_layer_input.h Artificial Neural Networks input layer
DSPX_ann_neuron_perceptron.h Rosenblatt Rumelhart Perceptron
DSPX_ann_neuron_output.h Output neuron template class
DSPX_ann_layer_perceptron.h Layer spec. hosting Perceptrons
DSPX_ann_layer_output.h Layer spec. hosting Output Neurons
DSPX_ann_network.h Neural Nets variadic template class
DSPX_ann_network_perceptron.h Generic Multilayer Perceptron
DSPX_ann_network_help.h Helper functions, test and train MLPs

Financial data Notes

DSPX_financial_convert.h Time conversions for financial strips
DSPX_financial_bar.h Financial bar tuple and I/O
DSPX_financial_data.h Financial data handler and I/O

Fast wavelet transform Notes

DSPX_fast_wavelet_transform.h FWT, Shift Variance Theorem

Inference engine Notes

DSPX_help.h Standard streams and memory helpers
DSPX_engine.h Predictors and WARP inference engine

Test Notes

T1.cpp Test FWT and Inverse FWT
T2.cpp Test Efficiency FWT, reduced FWT
DSPX_predictor.cpp WARP system main
DSPX_benchmark_ann.cpp ANN benchmark system
DSPX_benchmark_svm.cpp SVM benchmark system
DSPX_benchmark_wdnn.cpp WDNN benchmark system

Singletons Notes

DSPX_singletons.cpp Singletons — include in build everytime

Precompiled header Notes

stdafx.h Precompiled header

FWT, despite being a decimated and shift variant operation, can be
used to preprocess digital shifting signals to be input to statistical
estimators or regressor machines.

Finally, the implementation of the shift variance theorem al-
lows to perform FWT operations of 1D streaming time series in
a very efficient way, greatly reducing the number of operations
otherwise carried out using the classical FWT algorithm.

Appendix. List of files and instructions to compile

In Table A.1 we list all the files containing the published code.
Such software, as well as all the supporting files listed next, are
hosted on a Github repository and available for download at the
following URL:

https://github.com/marcoStocchi/DSPX_Fast_wavelet_transfor
m_assisted_predictors_of_streaming_time_series.

The .cpp test files (T1.cpp, T2.cpp, DSPX_predictor.cpp)
are main routines testing several facets of the DWT and its SVT
implementation, aswell as to reproduce the case study: only one of
them should be included in the build when compiling the solution.

TheDPSX_singletons.cpp instantiates singleton objects and
global variables, and must be always included in the build.

References

[1] Stocchi M, Marchesi M. Fast wavelet transform assisted predictors of streaming
time series. Digit Signal Process SoftwareX 2017. http://dx.doi.org/10.1016/j.ds
p.2017.09.014.

[2] KingDE. Dlib-ml: Amachine learning toolkit. JMach Learn Res 2009;10:1755–8.

https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
https://github.com/marcoStocchi/DSPX_Fast_wavelet_transform_assisted_predictors_of_streaming_time_series
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2
http://refhub.elsevier.com/S2352-7110(17)30048-1/sb2

	Fast wavelet transform assisted predictors of streaming time series
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	List of files and instructions to compile
	References

