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We consider a continuous linear time invariant systemwith ellipsoidal parametric uncertainty structured into subsystems. Since the
design of a local controller uses only information on a subsystem and its neighbours, we combine the plug and play idea and robust
distributed control to propose one distributed control strategy for linear system with ellipsoidal parametric uncertainty. Firstly
for linear system with ellipsoidal parametric uncertainty, a necessary and sufficient condition for robust state feedback control is
proposed by means of linear matrix inequality. If this necessary and sufficient condition is satisfied, this robust state feedback gain
matrix can be easily derived to guarantee robust stability and prescribed closed loop performance. Secondly the plug and play idea
is introduced in the design process. Finally by one example of aircraft flutter model parameter identification, the efficiency of the
proposed control strategy can be easily realized.

1. Introduction

Modern engineering system offers many examples of man-
made systems characterized by a large numbers of states
and inputs. One concept about large-scale systems is always
thought as the result of many subsystems interacting through
the coupling of physical variables or the transmission of infor-
mation over one communication network. Complexity of
these large-scale systems brings some challenges such as the
application of simulation, analysis, and control design algo-
rithms.

Consider the problem of control design algorithms for
large-scale systems; two common used algorithms are cen-
tralized control scheme and distributed control scheme. In
centralized control scheme, all control variables are com-
puted by a single regulator.Therefore all subsystems transmit
their outputs to the central controller in order to design
the control inputs which will be sent back to actuators
collocated with subsystems. But a centralized control scheme
for the large-scale systems will suffer from many problems
such as (1) computational complexity, a centralized regulator

needs a considerable amount of computing power and mem-
ory in order to compute control inputs within a sampling
interval, (2) communication network, a centralized control
requires a star-like topology of the communication network
that impacts the cost of the control system, and (3) reli-
ability, a failure in a single subsystem or in a link could
comprise the proper functioning of the overall controlled
large-scale system. In order to remedy the above drawbacks,
each subsystem in distributed control scheme is equipped
with a local controller that receives the outputs from the
corresponding subsystem and computes the control inputs. It
means that each subsystem is equippedwith a local controller,
but controllers can transmit and receive quantities fromother
subsystems.Therefore if these pieces of information are prop-
erly used, the goal of stabilizing the closed loop large-scale
system and guaranteeing prescribed level of performance can
be achieved.

Now one new idea of distributed control scheme is
proposed to design the local controller in large-scale systems
in reference [1], where the design of a local controller
uses only information from parent subsystems. This new
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approach has several advantages. First, the communication
flow at the design stage has the same topology of the
coupling graph that is usually sparse. Second, after each
parent subsystem has sent required quantities to its children,
the design of local controllers can be finished in parallel.
Third, the complexity of synthesizing a local controller for
a subsystem scales only with the number of its parents
rather than the total number of subsystems. Fourth, if a
subsystem joins an existing network, at most, subsystems
that are influenced by it can retune their controllers. In
a similar way, if a subsystem leaves the network, at most,
its children can retune their controllers. In [1], this kind
of distributed control scheme is named as the plug and
play distributed control. The main essence of plug and play
distributed control scheme is that, when a subsystem joins or
leaves an existing network of subsystems, there is a procedure
for automatically assessing if the operation does not spoil
stability and constraint satisfaction for the overall large-scale
system. In these years, research on plug and play distributed
control is being untaken. In [2], a linear system structured
into physically coupled subsystem was considered, further
one plug and play distributed model predictive control was
proposed to guarantee asymptotic stability and satisfaction
of constraints on system inputs and states. Reference [3] con-
sidered the problem of designing distributed controllers for
large-scale linear constrained systems composed by a number
of interacting subsystems. Several aspects of plug and play
distributed control were improved in [4], and based on the
computation of robust control invariant sets, all critical steps
in the design of a local controller could be solved through
linear programming strategy. Reference [5] considered the
control of a large-scale system composed of state coupled
linear subsystems that could be added or removed offline; the
possibility of coping with constraints on system variables was
studied in [6], while guaranteeing stability, robustness, and
global optimality. Plug and play distributed methods span
from cooperative to noncooperative, which requires limited
computational load in [7]. A review about architectures for
distributed model predictive control can be seen in [8].
Generally plug and play distributed control procedures are
very attractive for large-scale systems where the number of
subsystems varies with time [9]. And the plug and play idea
provides a scalable procedure for the addition and removal
of new generation units [10]. Furthermore, plug and play
distributed controllers can facilitate the revamping of control
systems and allow one to automatically assess feasibility of the
whole process.

Using above descriptions and advantages of plug and
play distributed control, in this short note, we apply this
new plug and play idea into the robust control scheme to
propose one new method (plug and play robust distributed
control method). The goal of the robust control scheme is to
guarantee that one 𝐻∞ norm with respect to one transfer
function from external noise to system output is less than one
given upper bound [11]. Here the controller is the common
stable state feedback controller, and under the condition that
the assumedmodel structure is given previously, we solve the
problem of how to design one robust distributed controller
with ellipsoidal parametric uncertainty system. First, we

derive one necessary and sufficient condition under which
the robust distributed controller exists by using the linear
matrix inequality tool for each subsystem. This necessary
and sufficient condition of linear matrix inequality form can
guarantee the robust stability and performance requirement.
Then the distributed state feedback controller is chosen as one
matrix from the state spacematrix form directly [12]. Second,
the idea of plug and play is merged into the robust distributed
control and one plug and play robust distributed control
algorithm is formulated. Finally, some simulation examples
are used to illustrate the efficiency of our new method.

2. Model Description

Consider a continuous time linear invariant system.

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵1𝑢 (𝑡) ,
𝑦 (𝑡) = 𝐶 (𝜃) 𝑥 (𝑡) + 𝐵2𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝑅𝑛 and 𝑢(𝑡) ∈ 𝑅𝑚 are state and input, respec-
tively, at time 𝑡 and 𝑦(𝑡) ∈ 𝑅𝑝 is output. Then the above four
matrices satisfy

𝐴 ∈ 𝑅𝑛×𝑛,
𝐵1 ∈ 𝑅𝑛×𝑚,

𝐶 (𝜃) ∈ 𝑅𝑝×𝑛,
𝐵2 ∈ 𝑅𝑝×𝑚.

(2)

As one unknown parameter vector 𝜃 ∈ 𝑅𝑛 lies inmatrix𝐶(𝜃),
(1) is a parameterized model. Assume all matrices are known
a priori except for matrix 𝐶(𝜃), this assumption signifies
that (1) has uncertain zeros [13]. Assume that the unknown
parameter vector 𝜃 is in one given ellipsoidal parametric set𝑈𝜃.

𝑈𝜃 = {𝜃 : (𝜃 − 𝜃0)𝑇 𝑅 (𝜃 − 𝜃0) ≤ 1} , (3)

where variables 𝜃0 and 𝑅 are used to express the center
and volume corresponding to the above given ellipsoidal
parametric set 𝑈𝜃. The state 𝑥(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡) ⋅ ⋅ ⋅ 𝑥𝑀(𝑡))
is partitioned into𝑀 vector 𝑥𝑖(𝑡) ∈ 𝑅𝑛𝑖 , where 𝑖 ∈ 𝑀 = 1 : 𝑀
and 𝑛 = ∑𝑖∈𝑀 𝑛𝑖. Similarly the input and the output are
composed by𝑀 vector 𝑢𝑖(𝑡) ∈ 𝑅𝑚𝑖 , 𝑦𝑖(𝑡) ∈ 𝑅𝑝𝑖 such that

𝑢 (𝑡) = (𝑢1 (𝑡) 𝑢2 (𝑡) ⋅ ⋅ ⋅ 𝑢𝑀 (𝑡)) , 𝑚 = ∑
𝑖∈𝑀

𝑚𝑖
𝑦 (𝑡) = (𝑦1 (𝑡) 𝑦2 (𝑡) ⋅ ⋅ ⋅ 𝑦𝑀 (𝑡)) , 𝑝 = ∑

𝑖∈𝑀

𝑝𝑖. (4)

Assume that (1) can be equivalently described by the 𝑖th
subsystem (Σ𝑖), 𝑖 ∈ 𝑀, given by

(Σ𝑖)
𝑥̇𝑖 (𝑡) = 𝐴 𝑖𝑖𝑥𝑖 (𝑡) + 𝐵1𝑖𝑢𝑖 (𝑡) + ∑

𝑖∈𝑁𝑖

𝐴 𝑖𝑗𝑥𝑗 (𝑡)
𝑦𝑖 (𝑡) = 𝐶𝑖 (𝜃𝑖) 𝑥𝑖 (𝑡) + 𝐵2𝑖𝑢𝑖 (𝑡) ,

(5)
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where
𝐴 𝑖𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 ,
𝐵1𝑖 ∈ 𝑅𝑛𝑖×𝑚𝑖 ,

𝐶𝑖 (𝜃𝑖) ∈ 𝑅𝑝𝑖×𝑛𝑖 ,
𝐵2𝑖 ∈ 𝑅𝑝𝑖×𝑚𝑖 ,
𝐴 𝑖𝑗 ∈ 𝑅𝑛𝑖×𝑛𝑗 ,

𝑖, 𝑗 ∈ 𝑀.

(6)

𝑁𝑖 is the set of parents of subsystem 𝑖, and it is defined as

𝑁𝑖 = {𝑗 ∈ 𝑀 : 𝐴 𝑖𝑗 ̸= 0, 𝑖 ̸= 𝑗} . (7)

Further since 𝑦𝑖(𝑡) depends on the local state 𝑥𝑖(𝑡) only,
subsystems (Σ𝑖), 𝑖 ∈ 𝑀 are output-decoupled and 𝐶 =
diag (𝐶1 𝐶2 ⋅ ⋅ ⋅ 𝐶𝑀). Also the unknown parameter vector𝜃 ∈ 𝑅𝑛 is partitioned into the 𝑀 vector 𝜃𝑖 ∈ 𝑅𝑛𝑖 , where𝑖 ∈ 𝑀 = 1 : 𝑀 and 𝑛 = ∑𝑖∈𝑀 𝑛𝑖.

We treat 𝑤𝑖(𝑡) = ∑𝑖∈𝑁𝑖 𝐴 𝑖𝑗𝑥𝑗(𝑡) as a disturbance and
reformulate (5) as follows:

(Σ𝑖)
𝑥̇𝑖 (𝑡) = 𝐴 𝑖𝑖𝑥𝑖 (𝑡) + 𝐵1𝑖𝑢𝑖 (𝑡) + 𝐵3𝑖𝑤𝑖 (𝑡)
𝑦𝑖 (𝑡) = 𝐶𝑖 (𝜃𝑖) 𝑥𝑖 (𝑡) + 𝐵2𝑖𝑢𝑖 (𝑡) , (8)

where 𝑤𝑖(𝑡) ∈ 𝑅𝑛𝑖 , 𝐵3𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 and vector 𝜃𝑖 ∈ 𝑅𝑛𝑖 is also in
one given ellipsoidal parametric set 𝑈𝜃𝑖 .

𝑈𝜃𝑖 = {𝜃𝑖 : (𝜃𝑖 − 𝜃𝑖0)𝑇 𝑅𝑖 (𝜃𝑖 − 𝜃𝑖0) ≤ 1} , (9)

where variables 𝜃𝑖0 and 𝑅𝑖 are all similar to above definitions.
After combining (8) and (9), the problem of our paper is
to design one stable distributed state feedback controller𝑢𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) under the condition of disturbance 𝑤𝑖(𝑡) and
ellipsoidal parametric set 𝑈𝜃𝑖 . The state feedback matrix 𝐾𝑖
satisfies that 𝐾𝑖 ∈ 𝑅𝑚𝑖×𝑛𝑖 .

For the convergence of next analysis, we need the follow-
ing two assumptions to express that subsystems (Σ𝑖), 𝑖 ∈ 𝑀
are state coupled and input decoupled.

Assumption 1. Matrix𝐴 is composed by blocks𝐴 𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑀
and 𝐵 = diag (𝐵1 𝐵2 ⋅ ⋅ ⋅ 𝐵𝑀).

The physical meaning of assumption 1 is that each sub-
system is coupled through state variables only. In reference
[14], this type of coupling is sometimes called dynamic cou-
pling. This dynamic coupling exists in many communication
networks.

Assumption 2. Thematrix pairs (𝐴 𝑖𝑖, 𝐵𝑖), ∀𝑖 ∈ 𝑀 are control-
lable.

Under these two assumptions, if one stable distributed
state feedback controller 𝑢𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) is obtained, then the
controller

𝑢 (𝑡) = (𝑢1 (𝑡) 𝑢2 (𝑡) ⋅ ⋅ ⋅ 𝑢𝑀 (𝑡))
= (𝐾1𝑥1 (𝑡) 𝐾2𝑥2 (𝑡) ⋅ ⋅ ⋅ 𝐾𝑀𝑥𝑀 (𝑡)) (10)

can be used to control system (1), while guaranteeing stability
and robustness [15]. By observing (8) again, we obtain one
closed loop transfer function 𝑇𝑖(𝑞, 𝜃𝑖) from external distur-
bance to system output 𝑦𝑖(𝑡).

𝑇𝑖 (𝑞, 𝜃𝑖) = (𝐶𝑖 + 𝐵2𝑖𝐾𝑖) (𝑞𝐼 − 𝐴 𝑖𝑖 − 𝐵1𝑖𝐾𝑖)−1 𝐵3𝑖. (11)

The goal of robust distributed control is to find one stable
feedback controller𝐾𝑖 to satisfy the following inequality.󵄩󵄩󵄩󵄩𝑇𝑖 (𝑞, 𝜃𝑖)󵄩󵄩󵄩󵄩∞ < 𝛾, ∀𝜃𝑖 ∈ 𝑈𝜃𝑖 , (12)

where 𝛾 is a given upper bound, and𝐻∞ norm is defined as.

󵄩󵄩󵄩󵄩𝑇𝑖 (𝑞, 𝜃𝑖)󵄩󵄩󵄩󵄩∞ = sup
𝑤∈[0,2𝜋]

󵄩󵄩󵄩󵄩󵄩𝑇𝑖 (𝑒𝑗𝑤, 𝜃𝑖)󵄩󵄩󵄩󵄩󵄩
= sup
𝑤∈[0,2𝜋]

𝜎 [𝑇𝑖 (𝑒𝑗𝑤, 𝜃𝑖)] , (13)

where ‖ ⋅ ‖ denotes the maximal singular value; the existence
of that stable state feedback controller𝐾𝑖 satisfying inequality
(12) can be verified by a linear matrix inequality condition
[16]. Further this linear matrix inequality condition is a
necessary and sufficient condition in the robust control
theory.

3. One Necessary and Sufficient Condition

In this section, we derive one linear matrix inequality condi-
tion in one state feedback𝐻∞ problem. Further in this prob-
lem, the unknown parameter vector 𝜃𝑖 is known in one given
ellipsoidal parametric set 𝑈𝜃𝑖 . This linear matrix inequality
condition can be formulated as the followingTheorem 3.

Theorem 3. Assume the following equality holds

𝐵𝑇2𝑖 [𝐶𝑖 𝐵2𝑖] = [0 𝐼] . (14)

Then the following two statements are equivalent to each other:

(1) There exists one state feedback controller

𝑢𝑖 (𝑡) = 𝐾𝑖𝑥𝑖 (𝑡) (15)

which satisfies ‖𝑇𝑖(𝑞, 𝜃𝑖)‖∞ < 𝛾.
(2) There exists a symmetric matrix 𝑋𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 such that
[𝐴 𝑖𝑖𝑋𝑖 + 𝑋𝑖𝐴𝑇𝑖𝑖 − 𝛾2 (𝐵1𝑖𝐵𝑇1𝑖 − 𝐵3𝑖𝐵𝑇3𝑖) 𝑋𝑖𝐶𝑇𝑖 (𝜃𝑖)𝐶𝑖 (𝜃𝑖)𝑋𝑖 −𝐼 ]

< 0.
(16)

Proof. From the results in [17], we see that the 𝐿2 gain of one
linear time invariant system is equivalent to the 𝐻∞ norm
of its transfer matrix function. Then the condition that 𝐻∞
norm of one transfer matrix function is less than scalar 𝛾
can be transformed to that its 𝐿2 gain is less than scalar 𝛾.
Furthermore the necessary and sufficient condition that the𝐿2 gain is less than scalar 𝛾 can be reformulated as follows.
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Taking one quadratic function as that,

𝑉𝑖 (𝑥𝑖 (𝑡)) = 𝑥𝑇𝑖 (𝑡) 𝑃𝑖𝑥𝑖 (𝑡) , 𝑃𝑖 > 0, (17)

such that, for all variables 𝑡, we have
𝑑𝑉𝑖 (𝑥𝑖 (𝑡))𝑑𝑡 + 𝑦𝑇𝑖 (𝑡) 𝑦𝑖 (𝑡) − 𝛾2𝑤𝑇𝑖 (𝑡) 𝑤𝑖 (𝑡) < 0. (18)

Substituting 𝑢𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) into (8), we obtain.

(Σ𝑖)
𝑥̇𝑖 (𝑡) = [𝐴 𝑖𝑖 + 𝐵1𝑖𝐾𝑖] 𝑥𝑖 (𝑡) + 𝐵3𝑖𝑤𝑖 (𝑡) ,𝑦𝑖 (𝑡) = [𝐶𝑖 (𝜃𝑖) + 𝐵2𝑖𝐾𝑖] 𝑥𝑖 (𝑡) . (19)

Substituting equation (19) into (18), we see that

𝑥̇𝑇𝑖 (𝑡) 𝑃𝑖𝑥𝑖 (𝑡) + 𝑥𝑇𝑖 (𝑡) 𝑃𝑖𝑥̇𝑇𝑖 (𝑡) + 𝑦𝑇𝑖 (𝑡) 𝑦𝑖 (𝑡)
− 𝛾2𝑤𝑇𝑖 (𝑡) 𝑤𝑖 (𝑡) < 0. (20)

Through complexmathematical operations, one linearmatrix
inequality is obtained.

[[𝐴 𝑖𝑖 + 𝐵1𝑖𝐾𝑖]𝑇 𝑃𝑖 + 𝑃𝑖 [𝐴 𝑖𝑖 + 𝐵1𝑖𝐾𝑖] + [𝐶𝑖 (𝜃𝑖) + 𝐵2𝑖𝐾𝑖]𝑇 [𝐶𝑖 (𝜃𝑖) + 𝐵2𝑖𝐾𝑖] 𝑃𝑖𝐵3𝑖
𝐵𝑇3𝑖𝑃𝑖 −𝛾2𝐼] < 0. (21)

Equation (21) is equivalent to the notion that there exists 𝐾𝑖
and 𝑄𝑖 = 𝑃−1𝑖 such that

[[𝐴 𝑖𝑖 + 𝐵1𝑖𝐾𝑖]𝑇𝑄𝑖 + 𝑄𝑖 [𝐴 𝑖𝑖 + 𝐵1𝑖𝐾𝑖] + 𝐵3𝑖𝐵𝑇3𝑖 𝑄𝑖 [𝐶𝑖 (𝜃𝑖) + 𝐵2𝑖𝐾𝑖]𝑇
[𝐶𝑖 (𝜃𝑖) + 𝐵2𝑖𝐾𝑖] 𝑄𝑖 −𝛾2𝐼 ] < 0. (22)

Introduce one new variable 𝑌𝑖 = 𝐾𝑖𝑄𝑖, and then (22) can be
rewritten as

[𝐴 𝑖𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖𝑖 + 𝑌𝑇𝑖 𝐵1𝑖 + 𝐵1𝑖𝑌𝑖 + 𝐵3𝑖𝐵𝑇3𝑖 [𝐶𝑖 (𝜃𝑖) 𝑄𝑖 + 𝐵2𝑖𝑌𝑖]𝑇
[𝐶𝑖 (𝜃𝑖) 𝑄𝑖 + 𝐵2𝑖𝑌𝑖] −𝛾2𝐼 ] < 0. (23)

Applying the Schur complement formula [18], (23) is equiva-
lent to the following inequality:

𝐴 𝑖𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖𝑖 + 𝑌𝑇𝑖 𝐵1𝑖 + 𝐵1𝑖𝑌𝑖 + 𝐵3𝑖𝐵𝑇3𝑖
+ [𝐶𝑖 (𝜃𝑖) 𝑄𝑖 + 𝐵2𝑖𝑌𝑖]𝑇 [𝐶𝑖 (𝜃𝑖) 𝑄𝑖 + 𝐵2𝑖𝑌𝑖]𝛾2 < 0. (24)

If (14) holds, then (24) can be simplified as

𝐴 𝑖𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖𝑖 + 𝑌𝑇𝑖 𝐵1𝑖 + 𝐵1𝑖𝑌𝑖 + 𝐵3𝑖𝐵𝑇3𝑖
+ 𝑄𝑖𝐶𝑇𝑖 (𝜃𝑖) 𝐶𝑖 (𝜃𝑖) 𝑄𝑖 + 𝑌𝑇𝑖 𝑌𝑖𝛾2 < 0. (25)

Equation (25) is equivalent to the following inequality:

𝐴 𝑖𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖𝑖 − 𝐵1𝑖𝐵𝑇1𝑖 + 𝐵3𝑖𝐵𝑇3𝑖
+ 𝑄𝑖𝐶𝑇𝑖 (𝜃𝑖) 𝐶𝑖 (𝜃𝑖) 𝑄𝑖𝛾2 < 0. (26)

Applying the Schur complement formula again, we obtain.

[𝐴 𝑖𝑖𝑋𝑖 + 𝑋𝑖𝐴𝑇𝑖𝑖 − 𝛾2 (𝐵1𝑖𝐵𝑇1𝑖 − 𝐵3𝑖𝐵𝑇3𝑖) 𝑋𝑖𝐶𝑇𝑖 (𝜃𝑖)𝐶𝑖 (𝜃𝑖)𝑋𝑖 −𝐼 ]
< 0,

(27)

where we use a new variable 𝑋𝑖 = 𝛾2𝑄𝑖, thus concluding the
proof.

Theorem 3 gives one necessary and sufficient condition
for the existence of a robust controller when the parameter
vector is uncertain.

Now by using that linear matrix inequality (16), we con-
tinue to study one special case; that is, matrix𝐶𝑖(𝜃𝑖) is written
as the following special structure:

𝐶𝑖 (𝜃𝑖) = (𝜃𝑖 0)𝑇 ∈ 𝑅𝑛𝑖×𝑛𝑖 . (28)

Then the necessary and sufficient condition with respect to
this special case can be reformulated as Theorem 4.
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Theorem 4. Consider the parameterized system structure (8),
and matrix 𝐶𝑖(𝜃𝑖) is given as (28) and other matrices are
known. Assume (14) also holds, and then the following two
statements are equivalent:

(1) There exists one state feedback controller

𝑢𝑖 (𝑡) = 𝐾𝑖𝑥𝑖 (𝑡) (29)

which satisfies ‖𝑇𝑖(𝑞, 𝜃𝑖)‖∞ < 𝛾 for all 𝜃𝑖 ∈ 𝑈𝜃𝑖 .
(2) There exists a symmetric matrix 𝑋𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 and one

scalar 𝜏 ∈ 𝑅, 𝜏 > 0 such that
[[[
[

𝜏𝑅𝑖 𝑋𝑖 𝜏𝑅𝑖𝜃𝑖0𝑋𝑖 −𝑀𝑖 0
𝜏𝜃𝑇𝑖0𝑅𝑖 0 1 + (𝜏𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1)

]]]
]
> 0,

𝑀𝑖 = 𝐴 𝑖𝑖𝑋𝑖 + 𝑋𝑖𝐴𝑇𝑖𝑖 − 𝛾2 (𝐵1𝑖𝐵𝑇1𝑖 − 𝐵3𝑖𝐵𝑇3𝑖) .
(30)

Proof. Considering system (8) and (28), we continue to com-
pute that

𝐶𝑖 (𝜃𝑖)𝑋𝑖 = (𝜃𝑇𝑖0 )𝑋𝑖 = (𝜃𝑇𝑖 𝑋𝑖0 ) . (31)

Substituting (31) into (16), then that linear matrix inequality
is rewritten as

[[[
[

𝐴 𝑖𝑖𝑋𝑖 + 𝑋𝑖𝐴𝑇𝑖𝑖 − 𝛾2 (𝐵1𝑖𝐵𝑇1𝑖 − 𝐵3𝑖𝐵𝑇3𝑖) 𝑋𝑖𝜃𝑖 0
𝜃𝑇𝑖 𝑋𝑖 −𝐼 0
0 0 0

]]]
]
< 0. (32)

According to the structure of𝑋𝑖𝜃𝑖, we simplify the above (32)
as

[ 𝑀𝑖 𝑋𝑖𝜃𝑖
𝜃𝑇𝑖 𝑋𝑖 −𝐼 ] < 0. (33)

From Schur complement formula, we see that linear matrix
inequality (33) is equivalent to the following two linearmatrix
inequalities:

𝑀𝑖 < 0,
−1 − 𝜃𝑇𝑖 𝑋𝑖𝑀−1𝑖 𝑋𝑖𝜃𝑖 < 0. (34)

Rewrite (34) as

(𝜃𝑖1)
𝑇(−𝑋𝑖𝑀−1𝑖 𝑋𝑖 0

0 −1)(𝜃𝑖1) < 0. (35)

Similarly the ellipsoidal parameter set 𝑈𝜃𝑖 is rewritten as

(𝜃𝑖1)
𝑇( 𝑅𝑖 −𝑅𝑖𝜃𝑖0

−𝜃𝑇𝑖0𝑅𝑖 𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1)(𝜃𝑖1) < 0. (36)

Applying 𝑆-Procedure strategy [18] and combining (35) and
(36), there exists one scalar 𝜏 > 0, such that

(−𝑋𝑖𝑀−1𝑖 𝑋𝑖 0
0 −1) − 𝜏( 𝑅𝑖 −𝑅𝑖𝜃𝑖0

−𝜃𝑇𝑖0𝑅𝑖 𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) < 0. (37)

Rewriting (37), we obtain one simplified form.

(−𝑋𝑖𝑀−1𝑖 𝑋𝑖 − 𝜏𝑅𝑖 𝜏𝑅𝑖𝜃𝑖0
𝜏𝜃𝑇𝑖0𝑅𝑖 −1 − 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1)) < 0. (38)

Applying the Schur complement formula, linear matrix
inequality (38) is equivalent to the following two linearmatrix
inequalities:

−1 − 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) < 0,
−𝑋𝑖𝑀−1𝑖 𝑋𝑖 − 𝜏𝑅𝑖 − 𝜏2𝑅𝑖𝜃𝑖0𝜃𝑇𝑖0𝑅𝑖−1 − 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) < 0. (39)

It means that

1 + 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) > 0,
𝑋𝑖𝑀−1𝑖 𝑋𝑖 + 𝜏𝑅𝑖 − 𝜏2𝑅𝑖𝜃𝑖0𝜃𝑇𝑖0𝑅𝑖1 + 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) > 0. (40)

Combining (34) and (40) and then using Schur complement
formula, we get

[[
[
𝜏𝑅𝑖 − 𝜏2𝑅𝑖𝜃𝑖0𝜃𝑇𝑖0𝑅𝑖1 + 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) 𝑋𝑖

𝑋𝑖 −𝑀𝑖
]]
]
> 0. (41)

Because linear matrix inequality (41) is linear with respect to
variable𝑋𝑖 and nonlinear of variable 𝜏, rewrite (41) as

[𝜏𝑅𝑖 𝑋𝑖𝑋𝑖 −𝑀𝑖]

− [𝜏𝑅𝑖𝜃𝑖00 ] 11 + 𝜏 (𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1) [
𝜏𝑅𝑖𝜃𝑖00 ]𝑇 > 0.

(42)

Applying Schur complement formula again, the result (32)
can be obtained, thus concluding the proof.

As linear matrix inequality (30) is linear with respect to
variables 𝑋𝑖, 𝜏, and 𝛾2, then that minimization performance
bound will give a necessary and sufficient condition for
the existence of the robust distributed controller. From the
robust control theory, we conclude that when the above
necessary and sufficient condition is satisfied, then one robust
distributed control state feedback controller𝐾𝑖 can be chosen
as the following form directly:

𝐾𝑖 = − (𝐵𝑇2𝑖𝐵2𝑖) 𝐵𝑇1𝑖 = −𝐵𝑇1𝑖, (43)

where the second equality holds under the condition of (14).
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4. Plug and Play Idea

In this section, we study the plug and play idea and the
redesign of new controllers when subsystems are added to or
removed from system (8). Note that plugging in and unplug-
ging of subsystems are regarded as offline operation [19].

(1) As a starting point, consider a system composed by
subsystems (Σ𝑖), 𝑖 ∈ 𝑀 with its robust distributed controller𝑢𝑖, 𝑖 ∈ 𝑀.

Consider the plugging of subsystem (Σ𝑀+1), which is
characterized by variables as follows:

𝐴𝑀+1,𝑀+1, 𝐵1,𝑀+1, 𝐵2,𝑀+1, 𝐵3,𝑀+1, 𝐶𝑀+1, 𝑥𝑀+1, 𝑢𝑀+1,
𝑁𝑀+1, (𝐴 𝑖𝑗)𝑗∈𝑁𝑀+1 ,

(44)

into an existing system structure. In order to design controller𝑢𝑀+1, we verify whether (16) in Theorem 3 holds; if it holds,
then the robust distributed state feedback controller 𝑢𝑀+1 can
be chosen as form (43). If the above design process stops, we
deem that subsystem (Σ𝑀+1) cannot plug in. Set 𝑆𝑖 = {𝑗 :𝑖 ∈ 𝑁𝑗} to be the set of successors to system 𝑖, since each
subsystem (Σ𝑗), 𝑗 ∈ 𝑆𝑀+1 has the new neighbour (Σ𝑀+1).
When 𝑁𝑗 gets larger, the necessary and sufficient condition
will be violated. It means that, for each 𝑗 ∈ 𝑆𝑀+1, the
controller 𝑢𝑗 must be redesigned. Furthermore the addition
of system (Σ𝑀+1) triggers the design of controller 𝑢𝑀+1 and
the redesign of controllers 𝑢𝑗, 𝑗 ∈ 𝑆𝑀+1. And the controller
redesign does not propagate further in the network system.

(2) When subsystem (Σ𝑘), 𝑘 ∈ 𝑀 is removed off from the
existing system, since, for each 𝑖 ∈ 𝑆𝑘, the set𝑁𝑖 gets smaller.
The size of the ellipsoidal parametric uncertainty set cannot
increase and therefore the linear matrix inequality cannot be
violated. It means that, for each 𝑖 ∈ 𝑆𝑘, the controller 𝑢𝑖 does
not have to be redesigned. Further since, for each system (Σ𝑗),𝑗 ∉ {𝑘} ∪ 𝑆𝑘, the set 𝑁𝑗 does not change, the redesign of
controller 𝑢𝑖 is not required.

(3) Generally after combing all above descriptions, one
plug and play robust distributed control algorithm is formu-
lated as follows.

Plug and Play Algorithm. Design of controller 𝑢(𝑡) for system
(1).

Input. 𝐴, 𝐵1, 𝐵2, 𝐶(𝜃), 𝑥(𝑡), 𝑦(𝑡), 𝑢𝜃
Output. 𝑢(𝑡)

(1) Partition the original continuous time linear invariant
system as (8) to obtain𝑀 subsystems

∑
𝑖

, 𝑖 ∈ 𝑀. (45)

(2) Computematrices and other variables such as𝐴 𝑖𝑖,𝐵1𝑖,𝐵2𝑖, 𝐵3𝑖, 𝐶𝑖(𝜃𝑖), 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑢𝜃𝑖 .
(3) Use linear matrix inequality tools from MATLAB

2009 to find one symmetric matrix 𝑋𝑖 such that
inequality (16) holds.

(4) Find one appropriate state feedback controller 𝑢𝑖(𝑡) as
in (43).

(5) Merge the plug and play idea during the above process
to verify all𝑀 inequalities (16).

(6) Construct the original control input as

𝑢 (𝑡) = (𝑢1 (𝑡) 𝑢2 (𝑡) ⋅ ⋅ ⋅ 𝑢𝑀 (𝑡)) . (46)

5. Simulation

In this simulation part, we give one aircraft flutter model
parameter identification example to confirm the efficiency of
our plug and play robust distributed control strategy.

In the simulation example, we use one flutter mathemat-
ical model from [20]. In simulation environment, the input
signal is the excited signal chosen by user, output is measured
from the point set collected by the accelerometer, the number
of sampled points is set 𝑁 = 4096, and sample instant is 1
second. The output and input of the 4096 sampled data are
divided into 4 equal data blocks; each data block contains 1024
sample data. The true model matrices are listed as follows.

𝐴 = [[
[

0 1 0
−0.3 0.4 −0.2
−0.1 0.2 0.4

]]
]
,

𝐵1 = [0.8 0.17 1.09]𝑇 ,
𝐶 = [2 1 0

0 0 0] ,

𝐵2 = [01] ,

𝜃0 = [[
[
0.5
0.5
−0.5

]]
]
,

𝑅 = 𝐼,
𝛾 = 2,

𝜙𝑤 = 1.

(47)

𝑈𝜃 is one guaranteed ellipsoidal parameter uncertain set with
probability 95%. To validate the identification result ofmatrix𝐶, Figure 1 shows the approximation degree between the
true system and the identified system. As those two curves
approximate to each other very closely, the problem of one𝐻∞ normwith respect to one transfer function less than one
given upper bound is equivalent to the problem of designing
one robust state feedback controller. FromTheorem 3, we see
that the above problem is also equivalent to the following
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Figure 1: Bode plots compared between the true system and the
identified system.

feasible problemwith respect to linearmatrix inequality. Find
one symmetric matrix𝑋𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 , 𝜏 ∈ 𝑅, 𝜏 > 0 such that

[[[
[

𝜏𝑅𝑖 𝑋𝑖 𝜏𝑅𝑖𝜃𝑖0𝑋𝑖 −𝑀𝑖 0
𝜏𝜃𝑇𝑖0𝑅𝑖 0 1 + (𝜏𝜃𝑇𝑖0𝑅𝑖𝜃𝑖0 − 1)

]]]
]
> 0,

𝑀𝑖 = 𝐴 𝑖𝑖𝑋𝑖 + 𝑋𝑖𝐴𝑇𝑖𝑖 − 𝛾2 (𝐵1𝑖𝐵𝑇1𝑖 − 𝐵3𝑖𝐵𝑇3𝑖) .
(48)

The above linear matrix inequality can be solved by linear
matrix inequality tools fromMATLAB 2009; then this robust
distributed sate feedback control 𝐾𝑖 = −(𝐵𝑇2𝑖𝐵2𝑖)𝐵𝑇1𝑖 = −𝐵𝑇1𝑖
can achieve the robust stability and performance require-
ment. To reduce the computational complexity, the plug and
play idea is applied in the whole design process.

6. Conclusion

In this short paper, we propose one plug and play robust
distributed state feedback control for one kind of continuous
linear invariant systemswith ellipsoidal parametric uncertain
set. After partitioning the original system into some sub-
systems, we derive one necessary and sufficient condition
under which the robust distributed controller exists by
using the linear matrix inequality tool for each subsystem.
Then we apply the new plug and play idea into the robust
control scheme to propose one method-plug and play robust
distributed control method. But all the derivations are based
on the assumption that the unknown parameter is known
in one ellipsoidal set. So when any knowledge of unknown
parameter in the state space matrix form is not known a
priori, we should apply the input-output data to design one
system identification experiment and obtain its parameter
estimation. Then the next topic is how to apply the system
identification concept into our control strategy.
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