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3.1	� Introduction

The trend toward Industry 4.0 intends to populate traditional shop 
floors with digitalized systems that are able to share their process 
parameters, their operative status and express their availability for col-
laboration with other machines or workers. In other words, this new 
industrial philosophy foresees each instance of the value chain of a 
product as a smart one, that is, endowed with decision-making capabil-
ities and the means of communication for valuable information sharing 
between instances (Kagermann et al. 2013). In this sense, the situational 
awareness of the manufacturing environment greatly relies on connec-
tivity solutions, like IoT or Internet of Services (IoS) (Gilchrist 2016).

3
Implementation of Industrial Internet 
of Things and Cyber-Physical Systems 
in SMEs for Distributed and Service-

Oriented Control

Rafael A. Rojas and Manuel A. Ruiz Garcia

© The Author(s) 2020 
D. T. Matt et al. (eds.), Industry 4.0 for SMEs, 
https://doi.org/10.1007/978-3-030-25425-4_3

R. A. Rojas (*) · M. A. Ruiz Garcia 
Faculty of Science and Technology, Free University of Bozen-Bolzano, 
Bolzano, Italy
e-mail: rafael.rojas@unibz.it

M. A. Ruiz Garcia 
e-mail: ManuelAlejandro.RuizGarcia@unibz.it

https://doi.org/10.1007/978-3-030-25425-4_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25425-4_3&domain=pdf


74        R. A. Rojas and M. A. Ruiz Garcia

Although comparable connectivity solutions are not new, thanks to 
the qualitative change in the processing capacity of modern embedded 
systems (ES) and the introduction of CPS (Lee 2008) a new kind of 
networked control system for factory automation is now possible. When 
integrated in a connected manufacturing environment, CPS replace the 
traditional automation pyramid and, by combining IoT and automa-
tion systems, merge two domains that had been traditionally been sep-
arate in industrial systems (Monostori et al. 2016): the IT domain and 
the operation technology (OT) domain. The former, related to the pro-
cessing of data to obtain valuable information. The latter, related to the 
support of physical value creation in manufacturing processes. This inte-
gration could be achieved through the digital integration of traditional 
software systems as enterprise resource systems (ERP) and manufactur-
ing execution systems (MES) with CPS. Following this idea, CPS will 
become the building blocks of the smart factory, the central CPPS of 
Industry 4.0.

The major challenges of achieving digital integration are related to 
the natural software heterogeneity in industrial systems. The effective-
ness of modern enterprises depends on hundreds if not thousands of 
custom-built digital applications that can be acquired from a third party 
belong to a legacy system or a combination thereof. In fact, program-
ming business applications is a challenging task and creating a single 
application capable of running a complete business is next to impossible 
(Hohpe and Woolf 2004). Although ERP systems are the most popu-
lar integrations points, they only provide a fraction of the functionali-
ties required in an enterprise. Regardless, heterogeneity of components 
in modern industrial systems is a necessary or even favorable condition 
(Lin and Miller 2016). For example, acquiring components produced 
by different vendors may exploit the benefits of each distributor. Also, 
the continuous evolution of technology introduces new components 
that need to be integrated with legacy systems. Moreover, different 
norms and standards may require specific solutions that are not scalable 
or convenient for adoption in every application.

This chapter is devoted to the integration between OT and IT, 
in terms of the commutation network infrastructure necessary to 
define an IoT industrial solution. In particular, we present the design  
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tools of a manufacturing service bus (MSB) to overcome many of the 
aforementioned integration issues, that is, the software infrastructure 
defining a homogeneous information channel among disparate, possibly 
event-driven, platforms.

3.2	� Fundamentals of Connectivity

3.2.1	� The OSI Model

The open systems interconnection reference model (OSI model) defines 
a seven-layer framework to describe the information flow between 
digital systems (Zimmermann 1980). It was developed to introduce a 
mechanisms abstraction to transfer information between a pair of dig-
ital systems. This model allows the commutation logic to be decoupled 
from the actual implementation, which is subject to the particularities 
of each application.

Figure 3.1 shows how the information flow between a CPS and other 
system travels through the OSI layers to reach both ends. Each block 
represents a digital system. At the bottom of each block, it is possible 

Fig. 3.1  The OSI model
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to observe the physical layer, or layer 1, which describes the underly-
ing mechanical, physical, optical, or electrical platform of the commu-
nication channel. On top of it, the data link layer or layer 2, provides 
the means to link two directly connected nodes, to access the physical 
communication medium and check possible errors induced by it. Next, 
the network layer, or layer 3, resolves the complex paths that may exist 
between the origin and destination nodes, thanks to specified target 
addresses. Layer 4 or the transport layer, sets up an end-to-end connec-
tion providing a means of transferring data sequences from a source to a 
destination host regardless of the routing paths. Layers 5 and 6 are often 
subject to criticism and are not of interest in this chapter. However, they 
are often integrated inside the application layer or layer 7, which is of 
special interest as represents the interface between the software applica-
tions running on the digital system and the communication system.

For this reason, the application layer encloses the major challenges of 
seamless integration between heterogeneous digital systems. On the one 
hand, this is because implementations of layers 1–4 are rapidly converg-
ing to ethernet-based TCP/IP technologies. On the other, it is because 
each digital system provides its own abstract representations of common 
sources of information and data therein. For example, consider a hybrid 
manufacturing station where a collaborative manipulator is integrated 
with a 3D camera to keep track of the human operator’s activities. The 
manipulator receives data directly from the 3D camera to monitor the 
pose of the operator, so to collaborate with him in avoiding collisions. 
Both systems are attached with a direct communication channel based 
on USB or ethernet. As these digital systems are produced by different 
manufacturers, they offer different software abstractions of the informa-
tion of common interest, i.e., the pose of the operator. Such data may 
be defined, for example, in different units or data structures inside each 
system. Although some standards may be implemented in the commu-
nication channel made available by the manufacturer of the 3D camera, 
there is a limit in the level of detail that a standard can offer. Moreover, 
the software inside the robotic application may be designed to represent 
the position of the operator in a way convenient to the programmer 
or follow the company’s internal standards. Therefore, the data of the 
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3D camera shared through the communication channel cannot be used 
without the necessary representation transformation.

3.2.2	� CPS Architecture

Heterogeneity is a fundamental characteristic of CPS. In fact, they 
are composed of three fundamental layers (Sztipanovits et al. 2012) 
that provide a division of their heterogeneous components. First, the 
physical layer refers to the material components and their physical 
interactions. The platform layer refers to the hardware electronics sup-
porting the digital systems comprising the communication infrastruc-
ture. Finally, the software layer comprises the operating system and the 
different digital processes which actually control the CPS and provide 
means to implement intelligent or complex tasks. The relation between 
these layers and the OSI model is represented in Fig. 3.2.

Fig. 3.2  Relation between the layered architecture of CPS and the OSI model
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CPS are part of the common trend of pervasive computing, where 
distributed computing systems represent a dominant paradigm 
(Wooldridge and Jennings 1995). This concept has been tackled by the 
idea that intelligent behaviors “emerge” from the interaction of many 
simple entities. Together, the concept of CPS and “emergent” smart 
behaviors resonate with the idea of CPPS: a body of autonomous enti-
ties that smartly interact to achieve global objectives. Two main para-
digms have been proposed to enable smart behaviors of autonomous 
entities in production systems: multi-agent systems (MAS) and holonic 
manufacturing systems (HMS). Agents and holons can be defined as 
self- and ambient-aware entities that can adapt to ambient variations, 
exhibit goal-oriented behaviors and interact with their peers.

MAS were proposed in the field of artificial intelligence (AI) to char-
acterize such distributed computing systems. An agent may be defined 
as a system that is situated in some environment, capable of exerting 
autonomous actions on such an environment to meet its design objec-
tives (Wooldridge and Jennings 1995). For leveraging of such charac-
teristics, authors in Vogel-Heuser et al. (2015), Ji et al. (2016) and 
Monostori et al. (2016) propose the MAS technology as the main 
enabler of smart collective behaviors in CPPS. Beyond the fact that 
agents do not necessarily have a physical part, we desire to underline 
some important features which CPS share with agents in MAS (Weiss 
1999): (i) are self-aware and ambient-aware, (ii) react in a timely way to 
ambient variations, (iii) exhibit goal-oriented behaviors, and (iv) inter-
act with peers. On the other hand, HMS are constituted by autono-
mous entities that interact through a variety of hierarchic or egalitarian 
relations to achieve similar objectives of CPPS. In contrast to MAS, 
rooted in AI methods to achieve smart emergent behaviors, HMS is a 
conceptual paradigm motivated by the need to optimize manufacturing 
systems.

It is worth noticing that both paradigms share the common vision of 
manufacturing systems defined in terms of autonomous and coopera-
tive units. As a consequence, the integration of a heterogeneous digital 
system is, in turn, an enabler of smart behaviors in CPPS. Therefore, 
as depicted in Fig. 3.2, the software layer integration represents a key 
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milestone to enable the “agent behavior” of the CPS regardless of the 
underlying data heterogeneity contained inside the CPPS.

3.2.3	� The Concept of Interoperability

In our context, integration implies a set of steps allowing a body of dis-
parate systems to be treated as a whole (Bellman and Landauer 2000). 
As such, this conglomerate unicum of entities can be understood, mon-
itored, reasoned about, configured or controlled without requiring 
explicit knowledge of its enclosed systems. As remarked upon in Gössler 
and Sifakis (2005), achieving integration requires that the system meets 
the following conditions: (i) compositionality, that the behavior of the 
system is predictable from the behavior of its components, (ii) compos-
ability, that the attributes of each component do not depend on other 
components nor on their interactions. Among all concerns that must 
be addressed to integrate heterogeneous systems, in this chapter, we are 
only interested in those related to the information sharing between soft-
ware layers of different CPS. Under this delimitation, by integration of 
CPPS, we refer to the necessary steps to create a coherent and seamless 
information exchange between CPS software layers (Vernadat 2007). In 
other words, we limit our analysis to the interoperability aspects of the 
integration.

Interoperable systems provide understood interfaces for message 
exchange and functionality sharing. Therefore, three levels of interop-
erability can be identified: technical, syntactic, and semantic. Technical 
interoperability represents the capacity to exchange a raw sequence of 
bites. Syntactic interoperability is associated with data formats and 
structures, i.e., the symbols represented by such sequences of bits. 
Finally, semantic interoperability is the capacity to exchange meaning 
between systems. As a consequence, semantic interoperability neces-
sarily depends on syntactic interoperability, which in turn, depends on 
technical interoperability. Unlike the wide concept of integration, inter-
operability is related to the coherence and uniformization of data and 
is a prerequisite to integrability itself. In fact, integration must assure 
composability, compositionality, and flexibility (Lin and Miller 2016).
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3.2.4	� Loosely Coupled Systems and SOA

Achieving loose coupling is to reduce the assumptions two software 
applications make about each other when they exchange information. 
The more assumptions they make about each other, the less tolerant is 
the connectivity solution to changes in the system. Common assump-
tions that lead to a tightly coupled system are (i) about the platform 
technology (internal bit representations), (ii) location (hard-coded 
addresses), (iii) time (availability), and (iv) data formats.

Integration of CPPS becomes familiar with a long history of effort 
to integrate disparate digital platforms that begins when computers and 
software applications become pervasive in office and business (Chappell 
2004). In these early days, it was noted that a large number of small 
distributed software procedures allow for flexibility and reuse. Those 
approaches achieved simple remote communications by packaging a 
remote data exchange into the same semantics as a local method call  
(a traditional function of programming languages). This strategy 
resulted in the notion of a remote procedure call (RPC). Common 
implementations of RPC are CORBA, Microsoft DCOM, .NET 
Remoting, Java RMI, XML-RPC and SOAP. This marked the evolution 
from point-to-point integration solutions to the so-called service-ori-
ented architectures (SOA) (Chen et al. 2008). Service is a common 
name for a functionality that is executed in distributed systems and 
SOA is an approach to encapsulate functional components in services. 
However, one of the main challenges to implementing a SOA is that 
remote communication invalidates many of the assumptions that a local 
method call is based on. To achieve a well-designed SOA requires man-
agement, a centralized service directory and effective documentation.

In parallel, communication solutions in industrial automation sys-
tems also began by using point-to-point solutions that were expensive 
and bulky (Felser 2002). In the two “worlds,” business/office and indus-
trial automation, the following metaphor appears as the ideal solution 
to achieve seamless connectivity: a single cable or bus of communica-
tion where a message can transit and every communication transaction 
may appear as a point-to-point exchange of data.
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In the business/office realm, the term ESB was introduced to describe 
the software infrastructure capable of emulating such a bus and, in the 
field of industrial automation, the term “fieldbus” was coined. Unlike 
ESB, fieldbuses were originally developed for ES with reduced resources 
designed to exchange small amounts of data with stringent timing 
requirements. With the introduction of CPS factory shop floor, the 
quality of the exchanged information becomes more similar to office 
systems. Instead of exchange positions of servos, a CPS may receive the 
complete model of a product to be assembled.

3.2.5	� The Publish and Subscribe Pattern

“Publish” and “Subscribe” is a king of messaging pattern designed to 
achieve a network of loosely coupled nodes. To reduce the number of 
assumptions made about peers, messages are sent through specialized 
channels often called topics. The middleware infrastructure hides the 
details of complex message routing between nodes and permits access to 
a channel using a semantic identifier instead of complex addresses such 
as IP number and port. To describe the type of messages that a channel 
conveys and which channels are available in the systems, it is possible 
to implement centralized systems to retrieve the desired information. 
Thanks to this middleware, it is possible to send messages only assum-
ing that the receiver is listening at a specific channel. Nodes which send 
messages through a channel are called publishers of that channel. On 
the other hand, nodes which listen to a channel are called subscribers 
of that channel. Generally, channels have only one direction, but sev-
eral implementations are possible. Publishers do not program messages 
to be sent directly to specific subscribers, but instead characterize pub-
lished messages into classes using the available channels without making 
any assumptions about the subscribers’ routing requirements. Similarly, 
subscribers express interest in one or more classes or channels and only 
receive messages that are of interest, without knowledge of which pub-
lishers, if any, there are.

Often publish-subscribe systems are constructed around a cen-
tral entity called a broker that is responsive to managing channels 
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and its publishers and subscriber. Brokers contain the list of the avail-
able channels and the IP addresses of every node in the publish-sub-
scribe network. Each node performs client-server style operations with 
the broker to subscribe to channels or create new channels to publish 
data. Publish-subscribe is a sibling of the message queue paradigm, 
and is typically one part of a larger message-oriented middleware sys-
tem. As publisher can “publish” information without regard for sub-
scribers and a subscriber can “subscribe” to information without regard 
for publishers; the result is a loosely coupled network where each node 
can be replaced independently of one another. This king of messaging 
patterns is well suited to exchanging data updates between compo-
nents and allows the communication paths to be optimized based on 
their requirements. It provides scalability for an evolving number of 
data sources and contributes to IIoT reliability, maintenance, and resil-
ience by the decoupling of publishing and subscribing components in 
both location (location transparency) and time (asynchronous delivery). 
This decreases the likelihood of fault-propagation and simplifies incre-
mental updating and evolution. The concept of channels allows flexi-
bility in the interaction between nodes allowing periodic (time-driven) 
or responsive (event-driven) behaviors depending on the needs of the 
user. Asynchronous data transfers can be implemented in different pub-
lish-subscribe solutions making the IIoT more robust to component 
failures and unexpected delays.

3.2.6	� Service Discovery, Zero Configuration,  
and Plug-and-Play/Work Networks

IIoT requires a flexible method for service composition, such that differ-
ent functionalities can be dynamically integrated at run-time. Therefore, 
allowing dynamic networks to address services, without affecting the end 
users, represents a desirable quality. In this regard, the numerical-based 
addressing mechanisms used by IIoT platforms have two principal draw-
backs. First, they are intrinsically not human-friendly. Second, IIoT net-
works require dynamic address assignment on hardware variations or 
software migrations. To overcome such limitations, a stable name can be 
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associated with each service through a uniform resource identifier (URI), 
a string of characters with a predefined set of syntax rules that unam-
biguously identifies a particular resource. A URI does not refer to a par-
ticular piece of hardware or software, but a logical service with which 
any end user can communicate using a specified protocol. In the past, 
human-meaningful names (URI) were bound to computer-meaning-
ful network addresses by manual configuration of the network. Today, 
they are several technologies to automate this procedure allowing each 
network entity to be interrogated about its services and protocols. As a 
result, any device or application can share its virtual representation or 
manifest (Monostori et al. 2016). In the context of desktop computers, 
the ability to automatically add devices to a network without having to 
manually register its services and configuration has been called zero con-
figuration networking (Steinberg and Cheshire 2005). Zero configura-
tion networking is based on the following three elements:

•	 Automatic IP address selection for networked devices (without 
DHCP server).

•	 Translation between names and IP addresses without a DNS server 
(Multicast DNS).

•	 Automatic location of network services through DNS service discov-
ery (which eliminates the need for a directory server).

On the other hand, in the context of manufacturing, the term plug-and-
work appears with the capability of a production system to automati-
cally identify a new or modified component and to correctly integrate 
it into the running production process without manual efforts and 
changes within the design or implementation of the remaining pro-
duction system (Schleipen et al. 2015). Schleipen et al. (2015) identify 
the following requirements for the application of the plug-and-work 
technology:

•	 Component description: the ability to get a complete description of an 
entity in the system.

•	 Component selection: the ability to compare all entities capabilities 
and choose the one which is able to perform some task.
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•	 Component access: the ability to communicate with the entity.
•	 Component control: the ability to provide a control structure to the 

entity.

Under the perspective of IIoT, we recognize both concepts of zero  
configuration networks and plug-and-work as different names for a 
method of achieving dynamic CPPS composition. This composition 
is characterized by a loose coupling between the SOA and messaging 
model (OSI layers 4–7) and low-level network implementation (OSI 
layers 1–3). In general, the zero configuration infrastructure should be 
agnostic to application protocol design and advertise any kind of appli-
cation protocol. At the lowest level, zero configuration networks or 
plug-and-work IIoT may be achieved through the implementation of 
the following technologies:

•	 mDNS: Multicasting DNS protocol resolves host names to addresses 
within small networks that do not include a local name server. It uses 
IP multicast user datagram protocol (UDP) packets.

•	 UPnP: Universal plug-and-play is a set of networking protocols 
on the top the internet protocol (IP), leveraging on HTTP to pro-
vide device/service description, actions, data transfer, and eventing. 
Device search requests and advertisements are supported by run-
ning HTTP on top of UDP (port 1900) using multicast (known as 
HTTPMU).

However, it is worth noticing that application-layer protocols are  
subject to constant evolution and changes.

3.2.7	� Ethernet-Based Connectivity Technologies for SME

IT system integration costs may be a factor able to outweigh all other 
technical considerations (Wagner et al. 2015). Such costs include 
materials, software licenses, hardware installation, and other techni-
cal labor. Although there are some efforts of providers to adapt their 
offerings to the needs of small- and medium-sized enterprises (SMEs),  
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usually their primary customers are large organizations able to afford such 
costs (Cruz-Cunha 2009). However, in the case of SMEs, the deployment 
of IIoT requires considering several trade-offs. Among others, we high-
light the trade-offs between outsourcing and in-house software develop-
ment and between open-source software (OSS) and proprietary software 
tools. OSS is a viable alternative in terms of costs and independence to 
vendor-locked applications (Olson et al. 2018). In fact, OSS does not 
require vendor-specialized consultants and tools, and allows the use of 
in-house available hardware and software rather than proprietary ones, 
subject to maintenance contracts. According to Weber (2004), OSS 
enhance software reliability and quality through independent peer review 
and rapid evolution of source code. Following these ideas, together with 
Lin and Miller (2016) and Gilchrist (2016), we suggest that OSS and 
open standards are also key enablers of IIoT in SME. To support this 
statement, we observe that SMEs have a relatively small amount of digital 
systems and processes to be integrated, thus they may be able to afford 
to develop in-house software applications. Moreover, thanks to the source 
code availability, OSS gives SMEs the possibility of developing highly 
customized and lean solutions based on their know-how. As a last remark, 
we emphasize that a growing amount of companies are providing support 
to open source IT solutions (Olson et al. 2018).

The following publish-subscribe and SOA messaging protocols, 
implemented on top of the TCP/IP protocol, are useful OSS for IoT 
applications:

•	 Java message service (JMS), part of the Java EE, defines a generic and 
standard application programming interface (API) for the implementa-
tion of message-oriented middlewares. It does not provide any concrete 
implementation of a messaging engine.

•	 The advanced message queuing protocol (AMQP) is an open standard 
application-layer protocol for messaging and publish-subscribe messaging. 
AMQP is often used with RabbitMQ, a free and complete AMQP bro-
ker implementation and API for Java, C# and Erlang.

•	 RabbitMQ is written in Erlang and it is available in Ubuntu through 
the rabbitmq-server package. It offers a flexible broker implementation 
based on open standards.
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•	 Message queue telemetry transport (MQTT) is an ISO standard (ISO/
IEC PRF 20922). It is broker-based and designed for networks with 
limited resources.

•	 Extensible messaging and presence protocol (XMPP) is a communica-
tion protocol for message-oriented middleware based on XML (extensible 
markup language).

3.3	� The Integration Drivers

The challenges of CPPS integration span far across operational and 
technical issues. In fact, beyond classical interoperability between dig-
ital systems, IIoT also implies the integration between organizational 
units and IT systems. Such an integration may require a significant shift 
in corporate politics and defining clear separations between inherent 
modules is not an easy task. In Lin et al. (2015) a set of different view-
points are given to achieve such a modularity. Following this idea, we 
distinguish between organizational and technical drivers for the IIoT 
integration effort. On the one hand, organization drivers refer to those 
required for OT, i.e., to create physical value for a global market. On 
the other, technical drivers are those localized at the digital platforms, 
specifically related to the available or required digital systems.

3.3.1	� Organizational Drivers

To define the necessary information flows inside a CPPS, it is also nec-
essary to map business/organization processes into data requirements 
(see Fig. 3.3). The business vision, values, practices, key objectives, 
and capabilities are fundamental inputs to clearly define such system 
requirements. As a consequence, it is of fundamental regard to identify 
the OT activities, their inherent tasks and the roles of each comprising 
party on the accomplishment of such activities. Either tasks dependen-
cies, constraints, and workflows need to be mapped into data require-
ments and data flows.
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In Lin et al. (2015), the concept of domains is introduced, to sim-
plify the functional separation between building blocks of business and 
organization processes. Each functional domain lies on a specific gran-
ularity and time scale, and can be hierarchically organized from high-
level intelligence, to low-level control. The control domain directly 
deals with low-level OT. The operations domain contains the func-
tional elements enabling operability of the hardware on the control 
domain (monitoring, register, track, deploy, and retrieve assets). The 
information domain provides the collection of data from all domains 
to high-level analysis. The application domain applies and defines 
coarse-grained logic, rules, and models for workflows. In other words, 
it provides a high-level abstraction of functionalities that could lie in a 
specific domain or be distributed among many of them.

3.3.2	� Technical Drivers

The implementation viewpoint of Lin et al. (2015) is concerned with 
the technical representation of the IIoT. This representation takes 
into account the technologies and system components required to 

Fig. 3.3  The drivers of the integration
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implement all activities and functions prescribed by the usage and func-
tional viewpoints. Such viewpoints address all technical issues associated 
with the future use of the system, how to enable those usages through 
specific functions and how these functions interact. It might also be 
observed that the development of integration solutions is constrained to 
the limited or almost nonexistent level of customization that participat-
ing applications may have. In most cases, applications belong to exter-
nal providers or legacy systems and cannot be changed or upgraded. 
This often leaves the integration developers in a situation where they 
need to make up for deficiencies or idiosyncrasies inside the partici-
pating applications. Often, it would be easier to implement part of the 
solution inside the application endpoints, but for political or technical 
reasons that option may not be available.

3.4	� Connectivity Architecture

3.4.1	� Ethernet-Based Automation System

In the last decade, the ethernet has become increasingly popular and 
pervasive inside the mid-level of the automation pyramid (Sauter 2014). 
Ethernet implements the OSI layers 1 and 2 and it is generally deployed 
with the complete IP protocol stack (OSI layers 3 and 4). Such a com-
bination of ethernet and IP provides important building blocks to 
achieve technical interoperability between disparate digital systems. In 
fact, the ethernet is becoming the de facto standard in office, enterprise 
or business systems and modern CPS. However, the ethernet—as it is 
known in office or business environments—could not meet the require-
ments of industrial automation, since it lacks determinism and it has 
not been designed for real-time applications. Although the introduc-
tion of switched ethernet, megabit and gigabit ethernet has notably 
mitigated such problems, some practical realization of ethernet-based 
networks in industrial environments still needs special care. The IEC 
61784-2 standard introduces terms like “industrial ethernet” or “real-
time ethernet” to define a set of ethernet-based technologies able to 
meet strict industrial and technological requirements.
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To address the requirements of industrial level ethernet systems, we 
follow Kim et al. (2014) by differentiating the types of data transmitted 
in an IIoT system into configuration data and process data. Configuration 
data defines the set of parameters required to configure the system, 
including remote management and operations work-flow. Process data 
identifies the process states, thus, depending on the process nature, this 
type of data may be periodic (when it is constantly generated) or ape-
riodic (when it is generated sporadically). To illustrate those types of 
data we can consider a classical robotic pick and place operation, where 
objects are moved from one place to another and sensors detect the 
availability of those objects to be placed. Both the measured positions 
of the joints and the commands to move them are periodic process data. 
They are generated constantly and describe part of the current state of 
the process. Also, the information generated by sensors falls into the cat-
egory of process data. On the other hand, the program controlling the 
robot during the task execution belongs to a set of configuration data.

Each type of data flow has its own qualitative requirements, update 
rates, and tolerated latency times. In particular, we can distinguish 
between the following latency categories:

1.	Human-control systems, where humans are involved in the system 
observation and the characteristic times are of the order of 100 ms.

2.	Process control systems, which relate to computer numerical control 
(CNC) and programmable logic controller (PLC) systems and the 
characteristic times are of the order of 10 ms.

3.	Motion control system, where the timing requirements are less than 
1 ms. Motion control latency requirements are also called real-time.

Human and process control systems may be designed using slightly cus-
tomized ethernet-based technologies. Among others, technologies like 
Profinet, TCnet, and Powerlink are able to meet process control require-
ments. Real-time networking solutions (of the order of 1 ms) are too 
restrictive to provide the level of flexibility that IIoT requires. In fact, 
CPS internal control mechanism needs to be endowed with enough 
levels of autonomy to avoid streaming control data flows through the  
network (goal-oriented control).



90        R. A. Rojas and M. A. Ruiz Garcia

3.4.2	� A Layered Design for Manufacturing Service Bus

Although it has pertinence in describing a communication system, the 
OSI Model is inadequate for representing the features of an IIoT system 
in a convenient way. As we have noticed before, the OSI model consists 
of many layers that, in general, are defined by dominant communica-
tion technologies, as ethernet and derivates. Following Lin et al. (2015), 
we aggregate the functionalities of the OSI layers into two separate lay-
ers. The OSI layers 1 (physical) through 4 (transport) are collected in 
the communication transport layer, to allow the basis for technical inter-
operability to be addressed along with the ability to reach endpoints 
along structured networks. On top of the communication transport 
layer, we define the connectivity framework layer. Such a layer spans the 
functionalities of the OSI layers 5 (session) through 7 (application) and 
provides the software infrastructure where middlewares are placed. The 
syntactic interoperability channel (with common and unambiguous 
data formats) and the ability to create messages without considering the 
particular endpoint implementations are placed inside this layer. The 
connectivity framework layer also provides the service discovery func-
tionalities, the resources access handling, the high-level data exchange 
patterns (peer-to-peer, client-server, publish-subscribe, etc.), the means 
of security and the interoperability model in different programming 
languages.

Such subdivision of the connectivity functionalities is of particular 
benefit for ethernet-based IIoT systems. This comes from the fact that 
such a subdivision reduces the degrees of freedom of the OSI model 
and decouples two realms addressing different functional duties inside 
any ethernet-based systems. We call the collection of the functional 
components, given by the combination of these two layers, the MSB. 
This term was coined as an equivalent to enterprise service bus (ESB) 
(Monostori et al. 2016) in manufacturing systems. However, an MSB 
is differentiated from an ESB in terms of the quality and complexity of 
the operation that it can perform over the transit of data it handles. The 
MSB provides an interface between the low-level fieldbus devices, the 
CPS, and the business systems, generally based on an ESB and relying 
on the ISA-95 standard.
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This solution allows the IT landscape of the factory floor to be inte-
grated with enterprise-level IT systems. Similar solutions have been 
addressed by several authors. In MESA (2008), the concepts of SOA 
are widely explained from the perspective of manufacturing systems and 
an architecture for MSB is presented. The European Innovation Project 
SOCRADES (De Souza et al. 2008) presents an MSB system based on 
web services. The European Innovation project IMC-AESOP (Colombo 
et al. 2014) proposes an integration approach for CPPS based on cloud 
technologies. Minguez et al. (2010) explored the concept of MSB from 
a general perspective. Other proposals may be found in Zhang et al. 
(2018).

3.4.3	� Physical and Logical Network Topologies  
of the MSB

To achieve coordination and orchestration of a distributed body of 
CPS, it is mandatory to have a correct structure and organization of 
the communication functions. For this reason, we address the physical 
topology issue of the communication hardware through the introduc-
tion of a three-tier architecture, sketched in Fig. 3.4.

This architecture collects all nodes of the CPPS’s network into three 
tiers in accordance with its functionalities and requirements. Such 
tiers are hierarchically structured and each one contains qualitatively 
different holons or agents. At the lowest tier, almost every agent has a 
physical part, i.e., a CPS that enables the creation of physical value in 
implementing OT. At the upper tiers, most of the agent has only a dig-
ital part implementing IT for data processing, and retrieving valuable 
information for high-level decision-making. At the lowest level, we have 
the edge tier, which implements most of the control-related systems 
necessary to implement the OT directly in the physical world. In this 
tier, a proximity network connects sensors, actuators, CPS, and other 
elements in a bunch of heterogeneous communication technologies 
which are connected to the same baseline. Such a baseline, also called a 
backbone network, should be based on ethernet and represents the gate-
way between the shop floor and the office/enterprise networks.
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The platform tier implements functional capabilities to enable oper-
ability of the hardware and collects information from all instances of 
the CPPS, providing high-level analysis and intelligence about the 
overall system. It implements most of the information and operational 
domains and is composed by digital systems which lie somewhere 
between desktop computers and customized industrial computers.

The enterprise tier implements most of the business domain func-
tionalities, data analytics and high-level decision-making and is com-
pletely composed by desktop-type computers. In our model, the last 
two tiers are connected to the edge tier through the so-called access 
network, which, contrary to the proximity network, does not have the 
same constraints that can be found on the factory floor and connects 
qualitatively different systems.

It is worth noticing that this architecture not only splits functional 
components in accordance with the necessary technologies for com-
munication. Indeed, it also splits the decisional task into different lev-
els. At the enterprise tier, strategic and high-level decisions, which are 

Fig. 3.4  The three-tier architecture
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characteristic of the business functional domain, are taken. At the plat-
form tier, the granularity becomes thinner, and more technical aspects 
are considered to introduce commands into the system. The three-tier 
architecture proposes a specific kind of network for each tier suitable 
for the type of digital system lying on the tier. Every actor in a CPPS is 
represented by a node in some tier and, at the same time, a holon with a 
digital part associated with such a node.

3.5	� Case Study

3.5.1	� The Smart Mini Factory

The Smart Mini Factory laboratory of the Free University of Bozen-
Bolzano, founded in 2012 and focused on the research area Industrial 
Engineering and Automation (IEA), aims to reflect the principles 
of lean and agile production on a small and realistic scale. Inside the 
Laboratory, three main activities take place: applied research, focused 
on industry-driven use cases; teaching activities, as part of the bachelor’s 
and master’s program for industrial and mechanical engineering; sem-
inars for industry on all aspects of Industry 4.0, to facilitate the trans-
fer of knowledge from research to industry. To support and boost these 
activities, the Laboratory is equipped with different robotic platforms 
and devices:

•	 Adept Cobra i600: four axis manipulator with a SCARA base and 
one additional wrist joint.

•	 Adept Quattro s660H: four arm delta robot designed for industrial 
high-speed applications like packaging.

•	 Adept FlexBowl: rotary feeder for a wide range of loose parts.
•	 Two Basler scout giga-ethernet camera.
•	 Robotiq 85 and 140 adaptive grippers controlled via modbus RTU 

using RS-485.
•	 ABB IRB 120: compact anthropomorphic robot able to handle pay-

load of up to 3 kg with a reach of 580 mm.
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•	 KUKA KMR iiwa: combines the strengths of the sensitive LBR iiwa 
lightweight robot with those of the KMR mobile and autonomous 
platform.

•	 Universal Robot UR3: 6-rotating-joint anthropomorphic manipula-
tor suitable for light assembly and high precision tasks.

•	 Universal Robot UR10: 6-rotating-joint anthropomorphic manipula-
tor suitable for heavier-weight process tasks.

•	 Ulixes Der Assistent A600: manufacturing assistant system for 
manual assembly station based on a projector and a visual tracking 
system.

Since all robots and devices are equipped with an ethernet interface, a 
proximity network connecting them through a single ethernet baseline 
has been defined. This network defines the support of the communica-
tion transport layer of our MSB (see also Fig. 3.5).

Fig. 3.5  Sketch of the mini-factory network (Reproduced with permission from 
Smart Mini Factory Lab, unibz)
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3.5.2	� Design of the Manufacturing Service Bus

Following the layered design guidelines defined in Sect. 3.4.2, we 
decouple this task in the design of two separate layers: the connectiv-
ity framework and transport framework. For the transport network, we 
choose switched ethernet IP with TCP or UDP protocols at the OSI 
layer 4. On the other hand, for the connectivity framework layer, we 
implement the robot operating system (ROS) communication systems. 
Our MSB should provide the following features common for ESB 
(Menge 2007):

1.	Invocation: each software layer will be able to call on the services 
available in other platforms.

2.	Mediation: capacity to translate between different data formats (syn-
tactic interoperability).

3.	Adapters: API wrappers to make each system resource available to the 
network.

4.	Management: a logging system for control of process, auditing, etc.
5.	Asynchronous Messaging: ability to send and receive messages without 

the need for explicit coordination with the peer.

The invocation and asynchronous messaging features represent the 
interface between the MSB and the agent application of the CPS. Such 
an implementation on the native programming language of the CPS is 
called the MSB API, and should also be available to other end users of 
the CPS’s software layer. To understand the extent to which the MSB 
may be implemented on the CPS’s software layer, it is necessary to 
introduce the concepts of protocol data unit (PDU) and service access 
point (SAP) defined in the OSI model. A PDU is a sequence of bits 
where information is represented using a set of rules to be mutually 
intelligible by two peer layers. The interface that a lower layer provides 
to its upper layer for data encapsulation/decapsulation is called SAP.

Each CPS has a vendor-specific software layer that should provide a 
particular SAP to the programmer. Such an SAP determines the PDU 
with maximum flexibility available in a CPS. Such PDU should grab 
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all the requirements for the abstraction of the CPS as a virtual identity 
that can be addressed from the connectivity framework. To provide a 
connectivity interface, the CPS manufacturer has to implement an SAP 
on the top of a standard OSI layer (as TCP/IP connectivity) or on the 
top of a custom protocol. If the PDU is sufficiently flexible, it would be 
possible to implement the MSB at the CPS as it may be implemented 
on a desktop computer. If not, it will be necessary to implement and 
interface between the CPS and the network.

3.5.3	� Connectivity Framework Gateways

Normally, ES have a limited software layer for providing a communi-
cation interface directly implemented on the OSI layer 7. That means 
that commands and configuration functions are directly sent through 
the communication interface. In such cases, it is not possible to imple-
ment an MSB API. On the other hand, several CPS do not provide an 
SAP with such flexibility to allow an MSB API or it is not convenient. 
To solve this issue, it is necessary to add the required computational 
features using the concepts of a connectivity framework gateway and 
administration shield (Adolphs et al. 2015; Ye and Hong 2019).

Unlike a communication transport gateway, a connectivity frame-
work gateway does not convey PDU into wrappers built into other lay-
ers as MODBUS over TCP do. Such gateways provide the architectural 
construct to incorporate connectivity technologies into a device by con-
veying the semantic meaning of data through different representations. 
On the other hand, an administration shield gives an object the means 
to be considered a CPS. Such an administration shield may be imple-
mented using different single board computers available on the market.

3.5.4	� The ROS Protocol

The robot operating system is the result of a communized effort to cope 
with the challenges and characteristics of developing distributed robotic 
platforms. It is open-source software (OSS) with a strong community 
of developers and widely available documentation. In spite of this, its 
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name, ROS, is not an operating system but a meta-operative system 
(O’Kane 2014), in the sense that it is a software platform providing 
an API and a series of tools for developing and handling a distributed 
peer-to-peer network of processes called nodes. Nodes are processes at 
the software layer of a CPS as the agent application. ROS provides two 
elements of interest for this work: a multi-platform API for developing 
networking applications and a semantic interoperability protocol. The 
ROS communication system constitutes a connectivity framework layer 
to the top of the ethernet TCP/IP protocol which provides services, a 
publish and subscribe protocol and actions. In this chapter, we will only 
consider publish-subscribe messaging systems and services. The chan-
nels of the ROS publish-subscribe systems are called topics and each 
topic defines the specific data type that it conveys.

Our MSB is a middleware for IIoT where process data is con-
veyed using messages in a publish-subscribe pattern and configuration 
data is conveyed using services. The specific data representations are 
taken from the ROS specification. The ROS network relies on a mas-
ter which acts as the broker in publish-subscribe systems. The master 
is also a node that provides node registration and lookup for services 
and topics to the other nodes. The ROS master is basically an XML-
RPC server maintaining a list of topics and services with their corre-
sponding linked nodes: publishers and subscribers in the case of topics; 
providers and clients in the case of services. As a rule, ROS only allows 
one node to provide one single service. The master node is also respon-
sible for providing a centralized data storage mechanism available to 
all other nodes of the network. Peer-to-peer data connections between 
nodes are also negotiated through XML-RPC. Such data connections 
can be established through TCP/IP or UDP, depending on the particu-
lar applicative context. Inside the ROS implementation, publishers act 
as servers and subscribers as clients. When a node registers a publisher 
to a desired topic, it sends the XML-RPC call with the URL of its own 
XML-RPC server together with the target topic name. After the call is 
received, the ROS master pushes the node’s URL inside the publisher’s 
list for the given topic and returns a binary status code (failure or suc-
cess). In the case of success, the publisher node automatically allocates 
a port to the top of the OSI layer 4 (UDP or TCP) and waits, listening 
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for incoming connections. When a node registers a topic subscriber, it 
sends the XML-RPC call with the name of the topic and the underlying 
message type. In response to this call, the ROS master returns a list of 
all XML-RPC servers already registered as publishers to the given topic. 
To connect to a specific publisher, the subscriber must interrogate the 
publisher node through its XML-RPC interface. The publisher replies 
to this call with the URL of the allocated port and the communication 
protocols (UDP or TCP). At this point, the subscriber allocates a socket 
on top of the OSI layer 4 and, as a client, initiates the connection with 
the publisher. Services are implemented in ROS in a simple client-server 
architecture. Service providers are registered through the ROS mas-
ter’s XML-RPC call specifying its own URI. To access a service, a node 
interrogates the ROS master using an XML-RPC call where the name 
of the service is specified. As an answer, the master communicates to the 
service requester the URI of the service provider. At this point, the cli-
ent initiates a TCP/IP based connection to retrieve the service.

3.6	� Conclusions

We presented a framework for the implementation of an ethernet-based 
IIoT for CPPS in SME. The framework is rooted in the concepts of 
CPS connectivity and actor aggregation inside a common MSB as a 
layer for syntactic interoperability of the production system. The main 
concern was how to enable interoperability between software layers of 
different CPS. Thanks to the decomposition of the integration effort 
into drivers and layers, it was possible to restrain the MSB implemen-
tation inside the software layer of the CPS. In the particular case of 
the Smart Mini Factory laboratory, these features where implemented 
through a wired ethernet network with a broker-based publish-subscribe 
system of services.

In spite of its effectiveness, this model has some limitations with 
respect to industrial-scale IIoT systems. For example, the limited num-
ber of devices used in this study does not reflect the characteristic of 
an IIoT system which has thousands of devices. Such a characteris-
tic requires a more detailed analysis of the transport framework and a 
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larger effort in system integration. On the other hand, thanks to our 
mild time-delay constraints we could avoid the design of a near real-
time channel for data streaming. However, as we are focused on SMEs 
such a small number of CPS may represent an accurate model. One 
fundamental limitation of designing an MSB on top of the ROS proto-
col is given by the need of a master node to route services discovery and 
resource sharing between nodes. In terms of reliability and resilience, a 
failure comprising the master node (either in terms of hardware or soft-
ware) could imply the entire network collapses. Therefore, in indus-
trial environments, a distributed and redundant approach to network 
resources management and sharing should be preferred. Also, in con-
trast to broadcast approaches, multicast-based service discovery allows 
one single data packet to be delivered simultaneously to a group of 
nodes. Moreover, when wireless networking comes into play, specialized 
IP mobility solutions are required to handle changes to clients and pos-
sibly host locations. Finally, we underline that we did not address our 
IIoT system from a security perspective (Rehman and Gruhn 2018). 
Security is a transversal issue in modern IT systems. In regard to CPS, 
IT-based aggressions may also become physical, implying a coupling 
between safety and security. Such an important concern requires a dedi-
cated analysis, which is out of the scope of this chapter.

This work presents the first steps for building an IIoT system at the 
Smart Mini Factory Laboratory. The findings of our research should not 
only serve as a basis for a further scientific development of CPPS, but 
also give practitioners an overview of which enabler should be consid-
ered in the implementation of Industry 4.0 and especially CPPS in the 
smart factory of the future.
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