
73

3.1	� Introduction

The trend toward Industry 4.0 intends to populate traditional shop
floors with digitalized systems that are able to share their process
parameters, their operative status and express their availability for col-
laboration with other machines or workers. In other words, this new
industrial philosophy foresees each instance of the value chain of a
product as a smart one, that is, endowed with decision-making capabil-
ities and the means of communication for valuable information sharing
between instances (Kagermann et al. 2013). In this sense, the situational
awareness of the manufacturing environment greatly relies on connec-
tivity solutions, like IoT or Internet of Services (IoS) (Gilchrist 2016).

3
Implementation of Industrial Internet
of Things and Cyber-Physical Systems
in SMEs for Distributed and Service-

Oriented Control

Rafael A. Rojas and Manuel A. Ruiz Garcia

© The Author(s) 2020
D. T. Matt et al. (eds.), Industry 4.0 for SMEs,
https://doi.org/10.1007/978-3-030-25425-4_3

R. A. Rojas (*) · M. A. Ruiz Garcia 
Faculty of Science and Technology, Free University of Bozen-Bolzano,
Bolzano, Italy
e-mail: rafael.rojas@unibz.it

M. A. Ruiz Garcia
e-mail: ManuelAlejandro.RuizGarcia@unibz.it

https://doi.org/10.1007/978-3-030-25425-4_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25425-4_3&domain=pdf

74     R. A. Rojas and M. A. Ruiz Garcia

Although comparable connectivity solutions are not new, thanks to
the qualitative change in the processing capacity of modern embedded
systems (ES) and the introduction of CPS (Lee 2008) a new kind of
networked control system for factory automation is now possible. When
integrated in a connected manufacturing environment, CPS replace the
traditional automation pyramid and, by combining IoT and automa-
tion systems, merge two domains that had been traditionally been sep-
arate in industrial systems (Monostori et al. 2016): the IT domain and
the operation technology (OT) domain. The former, related to the pro-
cessing of data to obtain valuable information. The latter, related to the
support of physical value creation in manufacturing processes. This inte-
gration could be achieved through the digital integration of traditional
software systems as enterprise resource systems (ERP) and manufactur-
ing execution systems (MES) with CPS. Following this idea, CPS will
become the building blocks of the smart factory, the central CPPS of
Industry 4.0.

The major challenges of achieving digital integration are related to
the natural software heterogeneity in industrial systems. The effective-
ness of modern enterprises depends on hundreds if not thousands of
custom-built digital applications that can be acquired from a third party
belong to a legacy system or a combination thereof. In fact, program-
ming business applications is a challenging task and creating a single
application capable of running a complete business is next to impossible
(Hohpe and Woolf 2004). Although ERP systems are the most popu-
lar integrations points, they only provide a fraction of the functionali-
ties required in an enterprise. Regardless, heterogeneity of components
in modern industrial systems is a necessary or even favorable condition
(Lin and Miller 2016). For example, acquiring components produced
by different vendors may exploit the benefits of each distributor. Also,
the continuous evolution of technology introduces new components
that need to be integrated with legacy systems. Moreover, different
norms and standards may require specific solutions that are not scalable
or convenient for adoption in every application.

This chapter is devoted to the integration between OT and IT,
in terms of the commutation network infrastructure necessary to
define an IoT industrial solution. In particular, we present the design

3  Implementation of Industrial Internet of Things …     75

tools of a manufacturing service bus (MSB) to overcome many of the
aforementioned integration issues, that is, the software infrastructure
defining a homogeneous information channel among disparate, possibly
event-driven, platforms.

3.2	� Fundamentals of Connectivity

3.2.1	� The OSI Model

The open systems interconnection reference model (OSI model) defines
a seven-layer framework to describe the information flow between
digital systems (Zimmermann 1980). It was developed to introduce a
mechanisms abstraction to transfer information between a pair of dig-
ital systems. This model allows the commutation logic to be decoupled
from the actual implementation, which is subject to the particularities
of each application.

Figure 3.1 shows how the information flow between a CPS and other
system travels through the OSI layers to reach both ends. Each block
represents a digital system. At the bottom of each block, it is possible

Fig. 3.1  The OSI model

76     R. A. Rojas and M. A. Ruiz Garcia

to observe the physical layer, or layer 1, which describes the underly-
ing mechanical, physical, optical, or electrical platform of the commu-
nication channel. On top of it, the data link layer or layer 2, provides
the means to link two directly connected nodes, to access the physical
communication medium and check possible errors induced by it. Next,
the network layer, or layer 3, resolves the complex paths that may exist
between the origin and destination nodes, thanks to specified target
addresses. Layer 4 or the transport layer, sets up an end-to-end connec-
tion providing a means of transferring data sequences from a source to a
destination host regardless of the routing paths. Layers 5 and 6 are often
subject to criticism and are not of interest in this chapter. However, they
are often integrated inside the application layer or layer 7, which is of
special interest as represents the interface between the software applica-
tions running on the digital system and the communication system.

For this reason, the application layer encloses the major challenges of
seamless integration between heterogeneous digital systems. On the one
hand, this is because implementations of layers 1–4 are rapidly converg-
ing to ethernet-based TCP/IP technologies. On the other, it is because
each digital system provides its own abstract representations of common
sources of information and data therein. For example, consider a hybrid
manufacturing station where a collaborative manipulator is integrated
with a 3D camera to keep track of the human operator’s activities. The
manipulator receives data directly from the 3D camera to monitor the
pose of the operator, so to collaborate with him in avoiding collisions.
Both systems are attached with a direct communication channel based
on USB or ethernet. As these digital systems are produced by different
manufacturers, they offer different software abstractions of the informa-
tion of common interest, i.e., the pose of the operator. Such data may
be defined, for example, in different units or data structures inside each
system. Although some standards may be implemented in the commu-
nication channel made available by the manufacturer of the 3D camera,
there is a limit in the level of detail that a standard can offer. Moreover,
the software inside the robotic application may be designed to represent
the position of the operator in a way convenient to the programmer
or follow the company’s internal standards. Therefore, the data of the

3  Implementation of Industrial Internet of Things …     77

3D camera shared through the communication channel cannot be used
without the necessary representation transformation.

3.2.2	� CPS Architecture

Heterogeneity is a fundamental characteristic of CPS. In fact, they
are composed of three fundamental layers (Sztipanovits et al. 2012)
that provide a division of their heterogeneous components. First, the
physical layer refers to the material components and their physical
interactions. The platform layer refers to the hardware electronics sup-
porting the digital systems comprising the communication infrastruc-
ture. Finally, the software layer comprises the operating system and the
different digital processes which actually control the CPS and provide
means to implement intelligent or complex tasks. The relation between
these layers and the OSI model is represented in Fig. 3.2.

Fig. 3.2  Relation between the layered architecture of CPS and the OSI model

78     R. A. Rojas and M. A. Ruiz Garcia

CPS are part of the common trend of pervasive computing, where
distributed computing systems represent a dominant paradigm
(Wooldridge and Jennings 1995). This concept has been tackled by the
idea that intelligent behaviors “emerge” from the interaction of many
simple entities. Together, the concept of CPS and “emergent” smart
behaviors resonate with the idea of CPPS: a body of autonomous enti-
ties that smartly interact to achieve global objectives. Two main para-
digms have been proposed to enable smart behaviors of autonomous
entities in production systems: multi-agent systems (MAS) and holonic
manufacturing systems (HMS). Agents and holons can be defined as
self- and ambient-aware entities that can adapt to ambient variations,
exhibit goal-oriented behaviors and interact with their peers.

MAS were proposed in the field of artificial intelligence (AI) to char-
acterize such distributed computing systems. An agent may be defined
as a system that is situated in some environment, capable of exerting
autonomous actions on such an environment to meet its design objec-
tives (Wooldridge and Jennings 1995). For leveraging of such charac-
teristics, authors in Vogel-Heuser et al. (2015), Ji et al. (2016) and
Monostori et al. (2016) propose the MAS technology as the main
enabler of smart collective behaviors in CPPS. Beyond the fact that
agents do not necessarily have a physical part, we desire to underline
some important features which CPS share with agents in MAS (Weiss
1999): (i) are self-aware and ambient-aware, (ii) react in a timely way to
ambient variations, (iii) exhibit goal-oriented behaviors, and (iv) inter-
act with peers. On the other hand, HMS are constituted by autono-
mous entities that interact through a variety of hierarchic or egalitarian
relations to achieve similar objectives of CPPS. In contrast to MAS,
rooted in AI methods to achieve smart emergent behaviors, HMS is a
conceptual paradigm motivated by the need to optimize manufacturing
systems.

It is worth noticing that both paradigms share the common vision of
manufacturing systems defined in terms of autonomous and coopera-
tive units. As a consequence, the integration of a heterogeneous digital
system is, in turn, an enabler of smart behaviors in CPPS. Therefore,
as depicted in Fig. 3.2, the software layer integration represents a key

3  Implementation of Industrial Internet of Things …     79

milestone to enable the “agent behavior” of the CPS regardless of the
underlying data heterogeneity contained inside the CPPS.

3.2.3	� The Concept of Interoperability

In our context, integration implies a set of steps allowing a body of dis-
parate systems to be treated as a whole (Bellman and Landauer 2000).
As such, this conglomerate unicum of entities can be understood, mon-
itored, reasoned about, configured or controlled without requiring
explicit knowledge of its enclosed systems. As remarked upon in Gössler
and Sifakis (2005), achieving integration requires that the system meets
the following conditions: (i) compositionality, that the behavior of the
system is predictable from the behavior of its components, (ii) compos-
ability, that the attributes of each component do not depend on other
components nor on their interactions. Among all concerns that must
be addressed to integrate heterogeneous systems, in this chapter, we are
only interested in those related to the information sharing between soft-
ware layers of different CPS. Under this delimitation, by integration of
CPPS, we refer to the necessary steps to create a coherent and seamless
information exchange between CPS software layers (Vernadat 2007). In
other words, we limit our analysis to the interoperability aspects of the
integration.

Interoperable systems provide understood interfaces for message
exchange and functionality sharing. Therefore, three levels of interop-
erability can be identified: technical, syntactic, and semantic. Technical
interoperability represents the capacity to exchange a raw sequence of
bites. Syntactic interoperability is associated with data formats and
structures, i.e., the symbols represented by such sequences of bits.
Finally, semantic interoperability is the capacity to exchange meaning
between systems. As a consequence, semantic interoperability neces-
sarily depends on syntactic interoperability, which in turn, depends on
technical interoperability. Unlike the wide concept of integration, inter-
operability is related to the coherence and uniformization of data and
is a prerequisite to integrability itself. In fact, integration must assure
composability, compositionality, and flexibility (Lin and Miller 2016).

80     R. A. Rojas and M. A. Ruiz Garcia

3.2.4	� Loosely Coupled Systems and SOA

Achieving loose coupling is to reduce the assumptions two software
applications make about each other when they exchange information.
The more assumptions they make about each other, the less tolerant is
the connectivity solution to changes in the system. Common assump-
tions that lead to a tightly coupled system are (i) about the platform
technology (internal bit representations), (ii) location (hard-coded
addresses), (iii) time (availability), and (iv) data formats.

Integration of CPPS becomes familiar with a long history of effort
to integrate disparate digital platforms that begins when computers and
software applications become pervasive in office and business (Chappell
2004). In these early days, it was noted that a large number of small
distributed software procedures allow for flexibility and reuse. Those
approaches achieved simple remote communications by packaging a
remote data exchange into the same semantics as a local method call
(a traditional function of programming languages). This strategy
resulted in the notion of a remote procedure call (RPC). Common
implementations of RPC are CORBA, Microsoft DCOM, .NET
Remoting, Java RMI, XML-RPC and SOAP. This marked the evolution
from point-to-point integration solutions to the so-called service-ori-
ented architectures (SOA) (Chen et al. 2008). Service is a common
name for a functionality that is executed in distributed systems and
SOA is an approach to encapsulate functional components in services.
However, one of the main challenges to implementing a SOA is that
remote communication invalidates many of the assumptions that a local
method call is based on. To achieve a well-designed SOA requires man-
agement, a centralized service directory and effective documentation.

In parallel, communication solutions in industrial automation sys-
tems also began by using point-to-point solutions that were expensive
and bulky (Felser 2002). In the two “worlds,” business/office and indus-
trial automation, the following metaphor appears as the ideal solution
to achieve seamless connectivity: a single cable or bus of communica-
tion where a message can transit and every communication transaction
may appear as a point-to-point exchange of data.

3  Implementation of Industrial Internet of Things …     81

In the business/office realm, the term ESB was introduced to describe
the software infrastructure capable of emulating such a bus and, in the
field of industrial automation, the term “fieldbus” was coined. Unlike
ESB, fieldbuses were originally developed for ES with reduced resources
designed to exchange small amounts of data with stringent timing
requirements. With the introduction of CPS factory shop floor, the
quality of the exchanged information becomes more similar to office
systems. Instead of exchange positions of servos, a CPS may receive the
complete model of a product to be assembled.

3.2.5	� The Publish and Subscribe Pattern

“Publish” and “Subscribe” is a king of messaging pattern designed to
achieve a network of loosely coupled nodes. To reduce the number of
assumptions made about peers, messages are sent through specialized
channels often called topics. The middleware infrastructure hides the
details of complex message routing between nodes and permits access to
a channel using a semantic identifier instead of complex addresses such
as IP number and port. To describe the type of messages that a channel
conveys and which channels are available in the systems, it is possible
to implement centralized systems to retrieve the desired information.
Thanks to this middleware, it is possible to send messages only assum-
ing that the receiver is listening at a specific channel. Nodes which send
messages through a channel are called publishers of that channel. On
the other hand, nodes which listen to a channel are called subscribers
of that channel. Generally, channels have only one direction, but sev-
eral implementations are possible. Publishers do not program messages
to be sent directly to specific subscribers, but instead characterize pub-
lished messages into classes using the available channels without making
any assumptions about the subscribers’ routing requirements. Similarly,
subscribers express interest in one or more classes or channels and only
receive messages that are of interest, without knowledge of which pub-
lishers, if any, there are.

Often publish-subscribe systems are constructed around a cen-
tral entity called a broker that is responsive to managing channels

82     R. A. Rojas and M. A. Ruiz Garcia

and its publishers and subscriber. Brokers contain the list of the avail-
able channels and the IP addresses of every node in the publish-sub-
scribe network. Each node performs client-server style operations with
the broker to subscribe to channels or create new channels to publish
data. Publish-subscribe is a sibling of the message queue paradigm,
and is typically one part of a larger message-oriented middleware sys-
tem. As publisher can “publish” information without regard for sub-
scribers and a subscriber can “subscribe” to information without regard
for publishers; the result is a loosely coupled network where each node
can be replaced independently of one another. This king of messaging
patterns is well suited to exchanging data updates between compo-
nents and allows the communication paths to be optimized based on
their requirements. It provides scalability for an evolving number of
data sources and contributes to IIoT reliability, maintenance, and resil-
ience by the decoupling of publishing and subscribing components in
both location (location transparency) and time (asynchronous delivery).
This decreases the likelihood of fault-propagation and simplifies incre-
mental updating and evolution. The concept of channels allows flexi-
bility in the interaction between nodes allowing periodic (time-driven)
or responsive (event-driven) behaviors depending on the needs of the
user. Asynchronous data transfers can be implemented in different pub-
lish-subscribe solutions making the IIoT more robust to component
failures and unexpected delays.

3.2.6	� Service Discovery, Zero Configuration,
and Plug-and-Play/Work Networks

IIoT requires a flexible method for service composition, such that differ-
ent functionalities can be dynamically integrated at run-time. Therefore,
allowing dynamic networks to address services, without affecting the end
users, represents a desirable quality. In this regard, the numerical-based
addressing mechanisms used by IIoT platforms have two principal draw-
backs. First, they are intrinsically not human-friendly. Second, IIoT net-
works require dynamic address assignment on hardware variations or
software migrations. To overcome such limitations, a stable name can be

3  Implementation of Industrial Internet of Things …     83

associated with each service through a uniform resource identifier (URI),
a string of characters with a predefined set of syntax rules that unam-
biguously identifies a particular resource. A URI does not refer to a par-
ticular piece of hardware or software, but a logical service with which
any end user can communicate using a specified protocol. In the past,
human-meaningful names (URI) were bound to computer-meaning-
ful network addresses by manual configuration of the network. Today,
they are several technologies to automate this procedure allowing each
network entity to be interrogated about its services and protocols. As a
result, any device or application can share its virtual representation or
manifest (Monostori et al. 2016). In the context of desktop computers,
the ability to automatically add devices to a network without having to
manually register its services and configuration has been called zero con-
figuration networking (Steinberg and Cheshire 2005). Zero configura-
tion networking is based on the following three elements:

•	 Automatic IP address selection for networked devices (without
DHCP server).

•	 Translation between names and IP addresses without a DNS server
(Multicast DNS).

•	 Automatic location of network services through DNS service discov-
ery (which eliminates the need for a directory server).

On the other hand, in the context of manufacturing, the term plug-and-
work appears with the capability of a production system to automati-
cally identify a new or modified component and to correctly integrate
it into the running production process without manual efforts and
changes within the design or implementation of the remaining pro-
duction system (Schleipen et al. 2015). Schleipen et al. (2015) identify
the following requirements for the application of the plug-and-work
technology:

•	 Component description: the ability to get a complete description of an
entity in the system.

•	 Component selection: the ability to compare all entities capabilities
and choose the one which is able to perform some task.

84     R. A. Rojas and M. A. Ruiz Garcia

•	 Component access: the ability to communicate with the entity.
•	 Component control: the ability to provide a control structure to the

entity.

Under the perspective of IIoT, we recognize both concepts of zero
configuration networks and plug-and-work as different names for a
method of achieving dynamic CPPS composition. This composition
is characterized by a loose coupling between the SOA and messaging
model (OSI layers 4–7) and low-level network implementation (OSI
layers 1–3). In general, the zero configuration infrastructure should be
agnostic to application protocol design and advertise any kind of appli-
cation protocol. At the lowest level, zero configuration networks or
plug-and-work IIoT may be achieved through the implementation of
the following technologies:

•	 mDNS: Multicasting DNS protocol resolves host names to addresses
within small networks that do not include a local name server. It uses
IP multicast user datagram protocol (UDP) packets.

•	 UPnP: Universal plug-and-play is a set of networking protocols
on the top the internet protocol (IP), leveraging on HTTP to pro-
vide device/service description, actions, data transfer, and eventing.
Device search requests and advertisements are supported by run-
ning HTTP on top of UDP (port 1900) using multicast (known as
HTTPMU).

However, it is worth noticing that application-layer protocols are
subject to constant evolution and changes.

3.2.7	� Ethernet-Based Connectivity Technologies for SME

IT system integration costs may be a factor able to outweigh all other
technical considerations (Wagner et al. 2015). Such costs include
materials, software licenses, hardware installation, and other techni-
cal labor. Although there are some efforts of providers to adapt their
offerings to the needs of small- and medium-sized enterprises (SMEs),

3  Implementation of Industrial Internet of Things …     85

usually their primary customers are large organizations able to afford such
costs (Cruz-Cunha 2009). However, in the case of SMEs, the deployment
of IIoT requires considering several trade-offs. Among others, we high-
light the trade-offs between outsourcing and in-house software develop-
ment and between open-source software (OSS) and proprietary software
tools. OSS is a viable alternative in terms of costs and independence to
vendor-locked applications (Olson et al. 2018). In fact, OSS does not
require vendor-specialized consultants and tools, and allows the use of
in-house available hardware and software rather than proprietary ones,
subject to maintenance contracts. According to Weber (2004), OSS
enhance software reliability and quality through independent peer review
and rapid evolution of source code. Following these ideas, together with
Lin and Miller (2016) and Gilchrist (2016), we suggest that OSS and
open standards are also key enablers of IIoT in SME. To support this
statement, we observe that SMEs have a relatively small amount of digital
systems and processes to be integrated, thus they may be able to afford
to develop in-house software applications. Moreover, thanks to the source
code availability, OSS gives SMEs the possibility of developing highly
customized and lean solutions based on their know-how. As a last remark,
we emphasize that a growing amount of companies are providing support
to open source IT solutions (Olson et al. 2018).

The following publish-subscribe and SOA messaging protocols,
implemented on top of the TCP/IP protocol, are useful OSS for IoT
applications:

•	 Java message service (JMS), part of the Java EE, defines a generic and
standard application programming interface (API) for the implementa-
tion of message-oriented middlewares. It does not provide any concrete
implementation of a messaging engine.

•	 The advanced message queuing protocol (AMQP) is an open standard
application-layer protocol for messaging and publish-subscribe messaging.
AMQP is often used with RabbitMQ, a free and complete AMQP bro-
ker implementation and API for Java, C# and Erlang.

•	 RabbitMQ is written in Erlang and it is available in Ubuntu through
the rabbitmq-server package. It offers a flexible broker implementation
based on open standards.

86     R. A. Rojas and M. A. Ruiz Garcia

•	 Message queue telemetry transport (MQTT) is an ISO standard (ISO/
IEC PRF 20922). It is broker-based and designed for networks with
limited resources.

•	 Extensible messaging and presence protocol (XMPP) is a communica-
tion protocol for message-oriented middleware based on XML (extensible
markup language).

3.3	� The Integration Drivers

The challenges of CPPS integration span far across operational and
technical issues. In fact, beyond classical interoperability between dig-
ital systems, IIoT also implies the integration between organizational
units and IT systems. Such an integration may require a significant shift
in corporate politics and defining clear separations between inherent
modules is not an easy task. In Lin et al. (2015) a set of different view-
points are given to achieve such a modularity. Following this idea, we
distinguish between organizational and technical drivers for the IIoT
integration effort. On the one hand, organization drivers refer to those
required for OT, i.e., to create physical value for a global market. On
the other, technical drivers are those localized at the digital platforms,
specifically related to the available or required digital systems.

3.3.1	� Organizational Drivers

To define the necessary information flows inside a CPPS, it is also nec-
essary to map business/organization processes into data requirements
(see Fig. 3.3). The business vision, values, practices, key objectives,
and capabilities are fundamental inputs to clearly define such system
requirements. As a consequence, it is of fundamental regard to identify
the OT activities, their inherent tasks and the roles of each comprising
party on the accomplishment of such activities. Either tasks dependen-
cies, constraints, and workflows need to be mapped into data require-
ments and data flows.

3  Implementation of Industrial Internet of Things …     87

In Lin et al. (2015), the concept of domains is introduced, to sim-
plify the functional separation between building blocks of business and
organization processes. Each functional domain lies on a specific gran-
ularity and time scale, and can be hierarchically organized from high-
level intelligence, to low-level control. The control domain directly
deals with low-level OT. The operations domain contains the func-
tional elements enabling operability of the hardware on the control
domain (monitoring, register, track, deploy, and retrieve assets). The
information domain provides the collection of data from all domains
to high-level analysis. The application domain applies and defines
coarse-grained logic, rules, and models for workflows. In other words,
it provides a high-level abstraction of functionalities that could lie in a
specific domain or be distributed among many of them.

3.3.2	� Technical Drivers

The implementation viewpoint of Lin et al. (2015) is concerned with
the technical representation of the IIoT. This representation takes
into account the technologies and system components required to

Fig. 3.3  The drivers of the integration

88     R. A. Rojas and M. A. Ruiz Garcia

implement all activities and functions prescribed by the usage and func-
tional viewpoints. Such viewpoints address all technical issues associated
with the future use of the system, how to enable those usages through
specific functions and how these functions interact. It might also be
observed that the development of integration solutions is constrained to
the limited or almost nonexistent level of customization that participat-
ing applications may have. In most cases, applications belong to exter-
nal providers or legacy systems and cannot be changed or upgraded.
This often leaves the integration developers in a situation where they
need to make up for deficiencies or idiosyncrasies inside the partici-
pating applications. Often, it would be easier to implement part of the
solution inside the application endpoints, but for political or technical
reasons that option may not be available.

3.4	� Connectivity Architecture

3.4.1	� Ethernet-Based Automation System

In the last decade, the ethernet has become increasingly popular and
pervasive inside the mid-level of the automation pyramid (Sauter 2014).
Ethernet implements the OSI layers 1 and 2 and it is generally deployed
with the complete IP protocol stack (OSI layers 3 and 4). Such a com-
bination of ethernet and IP provides important building blocks to
achieve technical interoperability between disparate digital systems. In
fact, the ethernet is becoming the de facto standard in office, enterprise
or business systems and modern CPS. However, the ethernet—as it is
known in office or business environments—could not meet the require-
ments of industrial automation, since it lacks determinism and it has
not been designed for real-time applications. Although the introduc-
tion of switched ethernet, megabit and gigabit ethernet has notably
mitigated such problems, some practical realization of ethernet-based
networks in industrial environments still needs special care. The IEC
61784-2 standard introduces terms like “industrial ethernet” or “real-
time ethernet” to define a set of ethernet-based technologies able to
meet strict industrial and technological requirements.

3  Implementation of Industrial Internet of Things …     89

To address the requirements of industrial level ethernet systems, we
follow Kim et al. (2014) by differentiating the types of data transmitted
in an IIoT system into configuration data and process data. Configuration
data defines the set of parameters required to configure the system,
including remote management and operations work-flow. Process data
identifies the process states, thus, depending on the process nature, this
type of data may be periodic (when it is constantly generated) or ape-
riodic (when it is generated sporadically). To illustrate those types of
data we can consider a classical robotic pick and place operation, where
objects are moved from one place to another and sensors detect the
availability of those objects to be placed. Both the measured positions
of the joints and the commands to move them are periodic process data.
They are generated constantly and describe part of the current state of
the process. Also, the information generated by sensors falls into the cat-
egory of process data. On the other hand, the program controlling the
robot during the task execution belongs to a set of configuration data.

Each type of data flow has its own qualitative requirements, update
rates, and tolerated latency times. In particular, we can distinguish
between the following latency categories:

1.	Human-control systems, where humans are involved in the system
observation and the characteristic times are of the order of 100 ms.

2.	Process control systems, which relate to computer numerical control
(CNC) and programmable logic controller (PLC) systems and the
characteristic times are of the order of 10 ms.

3.	Motion control system, where the timing requirements are less than
1 ms. Motion control latency requirements are also called real-time.

Human and process control systems may be designed using slightly cus-
tomized ethernet-based technologies. Among others, technologies like
Profinet, TCnet, and Powerlink are able to meet process control require-
ments. Real-time networking solutions (of the order of 1 ms) are too
restrictive to provide the level of flexibility that IIoT requires. In fact,
CPS internal control mechanism needs to be endowed with enough
levels of autonomy to avoid streaming control data flows through the
network (goal-oriented control).

90     R. A. Rojas and M. A. Ruiz Garcia

3.4.2	� A Layered Design for Manufacturing Service Bus

Although it has pertinence in describing a communication system, the
OSI Model is inadequate for representing the features of an IIoT system
in a convenient way. As we have noticed before, the OSI model consists
of many layers that, in general, are defined by dominant communica-
tion technologies, as ethernet and derivates. Following Lin et al. (2015),
we aggregate the functionalities of the OSI layers into two separate lay-
ers. The OSI layers 1 (physical) through 4 (transport) are collected in
the communication transport layer, to allow the basis for technical inter-
operability to be addressed along with the ability to reach endpoints
along structured networks. On top of the communication transport
layer, we define the connectivity framework layer. Such a layer spans the
functionalities of the OSI layers 5 (session) through 7 (application) and
provides the software infrastructure where middlewares are placed. The
syntactic interoperability channel (with common and unambiguous
data formats) and the ability to create messages without considering the
particular endpoint implementations are placed inside this layer. The
connectivity framework layer also provides the service discovery func-
tionalities, the resources access handling, the high-level data exchange
patterns (peer-to-peer, client-server, publish-subscribe, etc.), the means
of security and the interoperability model in different programming
languages.

Such subdivision of the connectivity functionalities is of particular
benefit for ethernet-based IIoT systems. This comes from the fact that
such a subdivision reduces the degrees of freedom of the OSI model
and decouples two realms addressing different functional duties inside
any ethernet-based systems. We call the collection of the functional
components, given by the combination of these two layers, the MSB.
This term was coined as an equivalent to enterprise service bus (ESB)
(Monostori et al. 2016) in manufacturing systems. However, an MSB
is differentiated from an ESB in terms of the quality and complexity of
the operation that it can perform over the transit of data it handles. The
MSB provides an interface between the low-level fieldbus devices, the
CPS, and the business systems, generally based on an ESB and relying
on the ISA-95 standard.

3  Implementation of Industrial Internet of Things …     91

This solution allows the IT landscape of the factory floor to be inte-
grated with enterprise-level IT systems. Similar solutions have been
addressed by several authors. In MESA (2008), the concepts of SOA
are widely explained from the perspective of manufacturing systems and
an architecture for MSB is presented. The European Innovation Project
SOCRADES (De Souza et al. 2008) presents an MSB system based on
web services. The European Innovation project IMC-AESOP (Colombo
et al. 2014) proposes an integration approach for CPPS based on cloud
technologies. Minguez et al. (2010) explored the concept of MSB from
a general perspective. Other proposals may be found in Zhang et al.
(2018).

3.4.3	� Physical and Logical Network Topologies
of the MSB

To achieve coordination and orchestration of a distributed body of
CPS, it is mandatory to have a correct structure and organization of
the communication functions. For this reason, we address the physical
topology issue of the communication hardware through the introduc-
tion of a three-tier architecture, sketched in Fig. 3.4.

This architecture collects all nodes of the CPPS’s network into three
tiers in accordance with its functionalities and requirements. Such
tiers are hierarchically structured and each one contains qualitatively
different holons or agents. At the lowest tier, almost every agent has a
physical part, i.e., a CPS that enables the creation of physical value in
implementing OT. At the upper tiers, most of the agent has only a dig-
ital part implementing IT for data processing, and retrieving valuable
information for high-level decision-making. At the lowest level, we have
the edge tier, which implements most of the control-related systems
necessary to implement the OT directly in the physical world. In this
tier, a proximity network connects sensors, actuators, CPS, and other
elements in a bunch of heterogeneous communication technologies
which are connected to the same baseline. Such a baseline, also called a
backbone network, should be based on ethernet and represents the gate-
way between the shop floor and the office/enterprise networks.

92     R. A. Rojas and M. A. Ruiz Garcia

The platform tier implements functional capabilities to enable oper-
ability of the hardware and collects information from all instances of
the CPPS, providing high-level analysis and intelligence about the
overall system. It implements most of the information and operational
domains and is composed by digital systems which lie somewhere
between desktop computers and customized industrial computers.

The enterprise tier implements most of the business domain func-
tionalities, data analytics and high-level decision-making and is com-
pletely composed by desktop-type computers. In our model, the last
two tiers are connected to the edge tier through the so-called access
network, which, contrary to the proximity network, does not have the
same constraints that can be found on the factory floor and connects
qualitatively different systems.

It is worth noticing that this architecture not only splits functional
components in accordance with the necessary technologies for com-
munication. Indeed, it also splits the decisional task into different lev-
els. At the enterprise tier, strategic and high-level decisions, which are

Fig. 3.4  The three-tier architecture

3  Implementation of Industrial Internet of Things …     93

characteristic of the business functional domain, are taken. At the plat-
form tier, the granularity becomes thinner, and more technical aspects
are considered to introduce commands into the system. The three-tier
architecture proposes a specific kind of network for each tier suitable
for the type of digital system lying on the tier. Every actor in a CPPS is
represented by a node in some tier and, at the same time, a holon with a
digital part associated with such a node.

3.5	� Case Study

3.5.1	� The Smart Mini Factory

The Smart Mini Factory laboratory of the Free University of Bozen-
Bolzano, founded in 2012 and focused on the research area Industrial
Engineering and Automation (IEA), aims to reflect the principles
of lean and agile production on a small and realistic scale. Inside the
Laboratory, three main activities take place: applied research, focused
on industry-driven use cases; teaching activities, as part of the bachelor’s
and master’s program for industrial and mechanical engineering; sem-
inars for industry on all aspects of Industry 4.0, to facilitate the trans-
fer of knowledge from research to industry. To support and boost these
activities, the Laboratory is equipped with different robotic platforms
and devices:

•	 Adept Cobra i600: four axis manipulator with a SCARA base and
one additional wrist joint.

•	 Adept Quattro s660H: four arm delta robot designed for industrial
high-speed applications like packaging.

•	 Adept FlexBowl: rotary feeder for a wide range of loose parts.
•	 Two Basler scout giga-ethernet camera.
•	 Robotiq 85 and 140 adaptive grippers controlled via modbus RTU

using RS-485.
•	 ABB IRB 120: compact anthropomorphic robot able to handle pay-

load of up to 3 kg with a reach of 580 mm.

94     R. A. Rojas and M. A. Ruiz Garcia

•	 KUKA KMR iiwa: combines the strengths of the sensitive LBR iiwa
lightweight robot with those of the KMR mobile and autonomous
platform.

•	 Universal Robot UR3: 6-rotating-joint anthropomorphic manipula-
tor suitable for light assembly and high precision tasks.

•	 Universal Robot UR10: 6-rotating-joint anthropomorphic manipula-
tor suitable for heavier-weight process tasks.

•	 Ulixes Der Assistent A600: manufacturing assistant system for
manual assembly station based on a projector and a visual tracking
system.

Since all robots and devices are equipped with an ethernet interface, a
proximity network connecting them through a single ethernet baseline
has been defined. This network defines the support of the communica-
tion transport layer of our MSB (see also Fig. 3.5).

Fig. 3.5  Sketch of the mini-factory network (Reproduced with permission from
Smart Mini Factory Lab, unibz)

3  Implementation of Industrial Internet of Things …     95

3.5.2	� Design of the Manufacturing Service Bus

Following the layered design guidelines defined in Sect. 3.4.2, we
decouple this task in the design of two separate layers: the connectiv-
ity framework and transport framework. For the transport network, we
choose switched ethernet IP with TCP or UDP protocols at the OSI
layer 4. On the other hand, for the connectivity framework layer, we
implement the robot operating system (ROS) communication systems.
Our MSB should provide the following features common for ESB
(Menge 2007):

1.	Invocation: each software layer will be able to call on the services
available in other platforms.

2.	Mediation: capacity to translate between different data formats (syn-
tactic interoperability).

3.	Adapters: API wrappers to make each system resource available to the
network.

4.	Management: a logging system for control of process, auditing, etc.
5.	Asynchronous Messaging: ability to send and receive messages without

the need for explicit coordination with the peer.

The invocation and asynchronous messaging features represent the
interface between the MSB and the agent application of the CPS. Such
an implementation on the native programming language of the CPS is
called the MSB API, and should also be available to other end users of
the CPS’s software layer. To understand the extent to which the MSB
may be implemented on the CPS’s software layer, it is necessary to
introduce the concepts of protocol data unit (PDU) and service access
point (SAP) defined in the OSI model. A PDU is a sequence of bits
where information is represented using a set of rules to be mutually
intelligible by two peer layers. The interface that a lower layer provides
to its upper layer for data encapsulation/decapsulation is called SAP.

Each CPS has a vendor-specific software layer that should provide a
particular SAP to the programmer. Such an SAP determines the PDU
with maximum flexibility available in a CPS. Such PDU should grab

96     R. A. Rojas and M. A. Ruiz Garcia

all the requirements for the abstraction of the CPS as a virtual identity
that can be addressed from the connectivity framework. To provide a
connectivity interface, the CPS manufacturer has to implement an SAP
on the top of a standard OSI layer (as TCP/IP connectivity) or on the
top of a custom protocol. If the PDU is sufficiently flexible, it would be
possible to implement the MSB at the CPS as it may be implemented
on a desktop computer. If not, it will be necessary to implement and
interface between the CPS and the network.

3.5.3	� Connectivity Framework Gateways

Normally, ES have a limited software layer for providing a communi-
cation interface directly implemented on the OSI layer 7. That means
that commands and configuration functions are directly sent through
the communication interface. In such cases, it is not possible to imple-
ment an MSB API. On the other hand, several CPS do not provide an
SAP with such flexibility to allow an MSB API or it is not convenient.
To solve this issue, it is necessary to add the required computational
features using the concepts of a connectivity framework gateway and
administration shield (Adolphs et al. 2015; Ye and Hong 2019).

Unlike a communication transport gateway, a connectivity frame-
work gateway does not convey PDU into wrappers built into other lay-
ers as MODBUS over TCP do. Such gateways provide the architectural
construct to incorporate connectivity technologies into a device by con-
veying the semantic meaning of data through different representations.
On the other hand, an administration shield gives an object the means
to be considered a CPS. Such an administration shield may be imple-
mented using different single board computers available on the market.

3.5.4	� The ROS Protocol

The robot operating system is the result of a communized effort to cope
with the challenges and characteristics of developing distributed robotic
platforms. It is open-source software (OSS) with a strong community
of developers and widely available documentation. In spite of this, its

3  Implementation of Industrial Internet of Things …     97

name, ROS, is not an operating system but a meta-operative system
(O’Kane 2014), in the sense that it is a software platform providing
an API and a series of tools for developing and handling a distributed
peer-to-peer network of processes called nodes. Nodes are processes at
the software layer of a CPS as the agent application. ROS provides two
elements of interest for this work: a multi-platform API for developing
networking applications and a semantic interoperability protocol. The
ROS communication system constitutes a connectivity framework layer
to the top of the ethernet TCP/IP protocol which provides services, a
publish and subscribe protocol and actions. In this chapter, we will only
consider publish-subscribe messaging systems and services. The chan-
nels of the ROS publish-subscribe systems are called topics and each
topic defines the specific data type that it conveys.

Our MSB is a middleware for IIoT where process data is con-
veyed using messages in a publish-subscribe pattern and configuration
data is conveyed using services. The specific data representations are
taken from the ROS specification. The ROS network relies on a mas-
ter which acts as the broker in publish-subscribe systems. The master
is also a node that provides node registration and lookup for services
and topics to the other nodes. The ROS master is basically an XML-
RPC server maintaining a list of topics and services with their corre-
sponding linked nodes: publishers and subscribers in the case of topics;
providers and clients in the case of services. As a rule, ROS only allows
one node to provide one single service. The master node is also respon-
sible for providing a centralized data storage mechanism available to
all other nodes of the network. Peer-to-peer data connections between
nodes are also negotiated through XML-RPC. Such data connections
can be established through TCP/IP or UDP, depending on the particu-
lar applicative context. Inside the ROS implementation, publishers act
as servers and subscribers as clients. When a node registers a publisher
to a desired topic, it sends the XML-RPC call with the URL of its own
XML-RPC server together with the target topic name. After the call is
received, the ROS master pushes the node’s URL inside the publisher’s
list for the given topic and returns a binary status code (failure or suc-
cess). In the case of success, the publisher node automatically allocates
a port to the top of the OSI layer 4 (UDP or TCP) and waits, listening

98     R. A. Rojas and M. A. Ruiz Garcia

for incoming connections. When a node registers a topic subscriber, it
sends the XML-RPC call with the name of the topic and the underlying
message type. In response to this call, the ROS master returns a list of
all XML-RPC servers already registered as publishers to the given topic.
To connect to a specific publisher, the subscriber must interrogate the
publisher node through its XML-RPC interface. The publisher replies
to this call with the URL of the allocated port and the communication
protocols (UDP or TCP). At this point, the subscriber allocates a socket
on top of the OSI layer 4 and, as a client, initiates the connection with
the publisher. Services are implemented in ROS in a simple client-server
architecture. Service providers are registered through the ROS mas-
ter’s XML-RPC call specifying its own URI. To access a service, a node
interrogates the ROS master using an XML-RPC call where the name
of the service is specified. As an answer, the master communicates to the
service requester the URI of the service provider. At this point, the cli-
ent initiates a TCP/IP based connection to retrieve the service.

3.6	� Conclusions

We presented a framework for the implementation of an ethernet-based
IIoT for CPPS in SME. The framework is rooted in the concepts of
CPS connectivity and actor aggregation inside a common MSB as a
layer for syntactic interoperability of the production system. The main
concern was how to enable interoperability between software layers of
different CPS. Thanks to the decomposition of the integration effort
into drivers and layers, it was possible to restrain the MSB implemen-
tation inside the software layer of the CPS. In the particular case of
the Smart Mini Factory laboratory, these features where implemented
through a wired ethernet network with a broker-based publish-subscribe
system of services.

In spite of its effectiveness, this model has some limitations with
respect to industrial-scale IIoT systems. For example, the limited num-
ber of devices used in this study does not reflect the characteristic of
an IIoT system which has thousands of devices. Such a characteris-
tic requires a more detailed analysis of the transport framework and a

3  Implementation of Industrial Internet of Things …     99

larger effort in system integration. On the other hand, thanks to our
mild time-delay constraints we could avoid the design of a near real-
time channel for data streaming. However, as we are focused on SMEs
such a small number of CPS may represent an accurate model. One
fundamental limitation of designing an MSB on top of the ROS proto-
col is given by the need of a master node to route services discovery and
resource sharing between nodes. In terms of reliability and resilience, a
failure comprising the master node (either in terms of hardware or soft-
ware) could imply the entire network collapses. Therefore, in indus-
trial environments, a distributed and redundant approach to network
resources management and sharing should be preferred. Also, in con-
trast to broadcast approaches, multicast-based service discovery allows
one single data packet to be delivered simultaneously to a group of
nodes. Moreover, when wireless networking comes into play, specialized
IP mobility solutions are required to handle changes to clients and pos-
sibly host locations. Finally, we underline that we did not address our
IIoT system from a security perspective (Rehman and Gruhn 2018).
Security is a transversal issue in modern IT systems. In regard to CPS,
IT-based aggressions may also become physical, implying a coupling
between safety and security. Such an important concern requires a dedi-
cated analysis, which is out of the scope of this chapter.

This work presents the first steps for building an IIoT system at the
Smart Mini Factory Laboratory. The findings of our research should not
only serve as a basis for a further scientific development of CPPS, but
also give practitioners an overview of which enabler should be consid-
ered in the implementation of Industry 4.0 and especially CPPS in the
smart factory of the future.

References

Adolphs, P., H. Bedenbender, M. Ehlich, and U. Epple. 2015. Reference
Architecture Model Industrie 4.0 (rami4.0) (Tech. Rep.). VDI/VDE, ZVEI.

Bellman, K.L., and C. Landauer. 2000. Towards an Integration Science.
Journal of Mathematical Analysis and Applications 249 (1): 3–31. https://doi.
org/10.1006/jmaa.2000.6949.

http://dx.doi.org/10.1006/jmaa.2000.6949
http://dx.doi.org/10.1006/jmaa.2000.6949

100     R. A. Rojas and M. A. Ruiz Garcia

Chappell, D. 2004. Enterprise Service Bus. Sebastopol: O’Reilly.
Chen, D., G. Doumeingts, and F. Vernadat. 2008. Architectures for Enterprise

Integration and Interoperability: Past, Present and Future. Computers in
Industry 59 (7): 647–659. https://doi.org/10.1016/j.compind.2007.12.016.

Colombo, A., T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka, R.
Harrison, F. Jammes, and J.L. Lastra. 2014. Industrial Cloud-Based Cyber-
Physical Systems. The IMC-AESOP Approach.

Cruz-Cunha, M.M. 2009. Enterprise Information Systems for Business
Integration in SMEs: Technological, Organizational, and Social Dimensions:
Technological, Organizational, and Social Dimensions. Hershey, PA: IGI
Global. https://doi.org/10.4018/978-1-60566-892-5.

De Souza, L.M.S., P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and D.
Savio. 2008. SOCRADES: A Web Service Based Shop Floor Integration
Infrastructure. In The Internet of Things, ed. C. Floerkemeier, M.
Langheinrich, E. Fleisch, F. Mattern, and S.E. Sarma, 50–67. Berlin and
Heidelberg: Springer. https://doi.org/10.1007/978-3-540-78731-0_4.

Felser, M. 2002. The Fieldbus Standards: History and Structures. Technology
Leadership Day 2002. MICROSWISS Network.

Gilchrist, A. 2016. Industry 4.0: The Industrial Internet of Things. Berkeley, CA:
Apress. https://doi.org/10.1007/978-1-4842-2047-4.

Gössler, G., and J. Sifakis. 2005. Composition for Component-Based
Modeling. Science of Computer Programming 55 (1): 161–183. https://doi.
org/10.1016/j.scico.2004.05.014.

Hohpe, G., and B. Woolf. 2004. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston: Addison-Wesley
Professional.

Ji, X., G. He, J. Xu, and Y. Guo. 2016. Study on the Mode of Intelligent
Chemical Industry Based on Cyber-Physical System and Its
Implementation. Advances in Engineering Software 99: 18–26. https://doi.
org/10.1016/j.advengsoft.2016.04.010.

Kagermann, H., W. Wahlster, and J. Helbig. 2013. Securing the Future of
German Manufacturing Industry: Recommendations for Implementing the
Strategic Initiative Industrie 4.0. acatech, Final Report of the Industrie 4.0
Working Group (Tech. Rep.). Acatech.

Kim, J., J. Lee, J. Kim, and J. Yun. 2014. M2M Service Platforms: Survey,
Issues, and Enabling Technologies. IEEE Communications Surveys and
Tutorials 16 (1): 61–76. https://doi.org/10.1109/surv.2013.100713.00203.

Lee, E.A. 2008. Cyber Physical Systems: Design Challenges. In 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-Time

http://dx.doi.org/10.1016/j.compind.2007.12.016
http://dx.doi.org/10.4018/978-1-60566-892-5
http://dx.doi.org/10.1007/978-3-540-78731-0_4
http://dx.doi.org/10.1007/978-1-4842-2047-4
http://dx.doi.org/10.1016/j.scico.2004.05.014
http://dx.doi.org/10.1016/j.scico.2004.05.014
http://dx.doi.org/10.1016/j.advengsoft.2016.04.010
http://dx.doi.org/10.1016/j.advengsoft.2016.04.010
http://dx.doi.org/10.1109/surv.2013.100713.00203

3  Implementation of Industrial Internet of Things …     101

Distributed Computing (ISORC), 363–369. https://doi.org/10.1109/
isorc.2008.25.

Lin, S.-W., and B. Miller. 2016. Industrial Internet: Towards Interoperability
and Composability (Tech. Rep.). Industrial Internet Consortium.

Lin, S.-W., B. Miller, J. Durand, R. Joshi, and P. Didier. 2015. Industrial
Internet Reference Architecture (Tech. Rep.). Industrial Internet
Consortium.

Menge, F. 2007. Enterprise Service Bus. In Free and Open Source Software
Conference, 2, 1–6.

MESA. 2008. Soa in Manufacturing Guidebook (Tech. Rep.). MESA
International, IBM Corporation and Capgemini.

Minguez, J., F. Ruthardt, P. Riffelmacher, T. Scheibler, and B. Mitschang.
2010. Service-Based Integration in Event-Driven Manufacturing
Environments. In International Conference on Web Information Systems
Engineering, 295–308. https://doi.org/10.1007/978-3-642-24396-7_23.

Monostori, L., B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart,
O. Sauer, G. Schuh, W. Shin, and K. Ueda. 2016. Cyber-Physical Systems in
Manufacturing. CIRP Annals—Manufacturing Technology 65 (2): 621–641.
https://doi.org/10.1016/j.cirp.2016.06.005.

O’Kane, J.M. 2014. A Gentle Introduction to ROS. Coleraine: Jason M
O’Kane.

Olson, D.L., B. Johansson, and R.A. De Carvalho. 2018. Open Source
ERP Business Model Framework. Robotics and Computer-Integrated
Manufacturing 50: 30–36. https://doi.org/10.1016/j.rcim.2015.09.007.

Rehman, S., and V. Gruhn. 2018. An Effective Security Requirement
Engineering Framework for Cyber-Physical Systems. Technologies 6 (3): 65.
https://doi.org/10.3390/technologies6030065.

Sauter, T. 2014. Fieldbus Systems Fundamentals. In Industrial Communication
Technology Handbook, ed. R. Zurawski, 1–48. Boca Raton: CRC Press.

Schleipen, M., A. Lüder, O. Sauer, H. Flatt, and J. Jasperneite. 2015.
Requirements and Concept for Plug-and-Work. at-Automatisierungstechnik
63 (10): 801–820. https://doi.org/10.1515/auto-2015-0015.

Steinberg, D.H., and S. Cheshire. 2005. Zero Configuration Networking: The
Definitive Guide. O’Reilly Media. https://doi.org/10.1515/auto-2015-0015.

Sztipanovits, J., X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V.
Gupta, J. Baras, and S. Wang. 2012. Toward a Science of Cyber-Physical
System Integration. Proceedings of the IEEE 100 (1): 29–44. https://doi.
org/10.1109/JPROC.2011.2161529.

http://dx.doi.org/10.1109/isorc.2008.25
http://dx.doi.org/10.1109/isorc.2008.25
http://dx.doi.org/10.1007/978-3-642-24396-7_23
http://dx.doi.org/10.1016/j.cirp.2016.06.005
http://dx.doi.org/10.1016/j.rcim.2015.09.007
http://dx.doi.org/10.3390/technologies6030065
http://dx.doi.org/10.1515/auto-2015-0015
http://dx.doi.org/10.1515/auto-2015-0015
http://dx.doi.org/10.1109/JPROC.2011.2161529
http://dx.doi.org/10.1109/JPROC.2011.2161529

102     R. A. Rojas and M. A. Ruiz Garcia

Vernadat, F. 2007. Interoperable Enterprise Systems: Principles, Concepts,
and Methods. Annual Reviews in Control 31 (1): 137–145. https://doi.
org/10.1016/j.arcontrol.2007.03.004.

Vogel-Heuser, B., J. Lee, and P. Leitão. 2015. Agents Enabling Cyber-Physical
Production Systems. at-Automatisierungstechnik 63 (10): 777–789. https://
doi.org/10.1515/auto-2014-1153.

Wagner, H., O. Pankratz, W. Mellis, and D. Basten. 2015. Effort of EAI
Projects: A Repertory Grid Investigation of Influencing Factors. Project
Management Journal 46 (5): 62–80. https://doi.org/10.1002/pmj.21523.

Weber, S. 2004. The Success of Open Source. Cambridge: Harvard University
Press.

Weiss, G. 1999. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. Cambridge: MIT Press.

Wooldridge, M., and N.R. Jennings. 1995. Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review 10 (2): 115–152. https://doi.
org/10.1017/S0269888900008122.

Ye, X., and S.H. Hong. 2019. Toward Industry 4.0 Components: Insights
into and Implementation of Asset Administration Shells. IEEE
Industrial Electronics Magazine 13 (1): 13–25. https://doi.org/10.1109/
MIE.2019.2893397.

Zhang, Y., Z. Guo, J. Lv, and Y. Liu. 2018. A Framework for Smart
Production-Logistics Systems Based on CPS and Industrial IoT. IEEE
Transactions on Industrial Informatics 14 (9): 4019–4032. https://doi.
org/10.1109/TII.2018.2845683.

Zimmermann, H. 1980. OSI Reference Model-the ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communications
28 (4): 425–432. https://doi.org/10.1109/TCOM.1980.1094702.

http://dx.doi.org/10.1016/j.arcontrol.2007.03.004
http://dx.doi.org/10.1016/j.arcontrol.2007.03.004
http://dx.doi.org/10.1515/auto-2014-1153
http://dx.doi.org/10.1515/auto-2014-1153
http://dx.doi.org/10.1002/pmj.21523
http://dx.doi.org/10.1017/S0269888900008122
http://dx.doi.org/10.1017/S0269888900008122
http://dx.doi.org/10.1109/MIE.2019.2893397
http://dx.doi.org/10.1109/MIE.2019.2893397
http://dx.doi.org/10.1109/TII.2018.2845683
http://dx.doi.org/10.1109/TII.2018.2845683
http://dx.doi.org/10.1109/TCOM.1980.1094702

3  Implementation of Industrial Internet of Things …     103

Open Access This chapter is licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	3 Implementation of Industrial Internet of Things and Cyber-Physical Systems in SMEs for Distributed and Service-Oriented Control
	3.1	Introduction
	3.2	Fundamentals of Connectivity
	3.2.1	The OSI Model
	3.2.2	CPS Architecture
	3.2.3	The Concept of Interoperability
	3.2.4	Loosely Coupled Systems and SOA
	3.2.5	The Publish and Subscribe Pattern
	3.2.6	Service Discovery, Zero Configuration, and Plug-and-Play/Work Networks
	3.2.7	Ethernet-Based Connectivity Technologies for SME

	3.3	The Integration Drivers
	3.3.1	Organizational Drivers
	3.3.2	Technical Drivers

	3.4	Connectivity Architecture
	3.4.1	Ethernet-Based Automation System
	3.4.2	A Layered Design for Manufacturing Service Bus
	3.4.3	Physical and Logical Network Topologies of the MSB

	3.5	Case Study
	3.5.1	The Smart Mini Factory
	3.5.2	Design of the Manufacturing Service Bus
	3.5.3	Connectivity Framework Gateways
	3.5.4	The ROS Protocol

	3.6	Conclusions
	References

