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SCIENCE

Landslide susceptibility of the Prato–Pistoia–Lucca provinces, Tuscany, Italy
Samuele Segoni, Veronica Tofani, Daniela Lagomarsino and Sandro Moretti

Department of Earth Sciences, University of Firenze, Florence, Italy

ABSTRACT
We mapped landslide susceptibility in the provinces of Lucca, Pistoia and Prato (central Italy), a
3103 km2 territory that approximately corresponds to the portion of Tuscany principally
affected by landslides. We used a methodology based on a treebagger random forest. The
input parameters used for the susceptibility assessment are curvature, flow accumulation,
topographic wetness index, elevation, profile curvature, planar curvature, slope gradient,
aspect, land use and lithology. The map was validated providing satisfactory results (AUC =
0.84). The map classifies the study area into four susceptibility classes that identify areas with
different probabilities of being affected by landslides. The Main Map represents a useful
instrument to assist land planning, development of mitigation measures and landslide risk
management. Moreover, it could be used in further research addressing quantitative hazard
and risk assessment.
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1. Introduction

Landslide susceptibility maps are a graphical represen-
tation of the relative probability of the occurrence of
landslides in a given area, without taking into consider-
ation the probability of occurrence in time (Brabb,
1984; Varnes, 1984).

On this topic, the scientific literature is extensive
and landslide susceptibility maps have been proposed
at different scales and using different methodologies
(Brenning, 2005; Corominas et al., 2014; Fell et al.,
2008; Kanungo, Arora, Sarkar, & Gupta, 2009).

Many studies point out that Italy is very suscep-
tible to landslides: susceptibility maps have been pro-
posed at the national level (Trigila et al., 2013), at
regional scale (Catani, Casagli, Ermini, Righini, &
Menduni, 2005; Leoni et al., 2009; Manzo, Tofani,
Segoni, Battistini, & Catani, 2013; Segoni, Lagomar-
sino, Fanti, Moretti, & Casagli, 2015b) or at the detail
scale (Cervi et al., 2010; Conforti, Pascale, Robustelli,
& Sdao, 2014; Mancini, Ceppi, & Ritrovato, 2010; Tri-
gila, Iadanza, Esposito, & Scarascia-Mugnozza, 2015).
For Tuscany, the analysis of recent databases (Battis-
tini, Segoni, Manzo, Catani, & Casagli, 2013; Lu,
Casagli, Catani, & Tofani, 2012; Lu, Catani, Tofani,
& Casagli, 2014; Rosi et al., 2015; Segoni et al.,
2015a; Tofani, Dapporto, Vannocci, & Casagli, 2006;
Trigila, Iadanza, & Spizzichino, 2010) reveals that
the northwestern sector of the region is the most
affected by landslides, however, a landslide suscepti-
bility map has never been developed for this portion
of Tuscany (which roughly corresponds to the pro-
vinces of Lucca, Prato and Pistoia).

The main purpose of this work is to fill this gap and
to present a landslide susceptibility Main Map that
could be used for land use planning and as a base for
further developments of research related to landslide
hazards.

2. Study area

The study area is located in Tuscany (central Italy), and
covers 3103 km2 (Figure 1(a)). It is dominated by the
Apennines fold and thrust mountain belt, which
reaches elevations of up to 2000 m. From a geological
perspective, the study area is characterized by two
different lithological and morphological settings. The
eastern sector is dominated by the flysches of the
Macigno formation. Here, slope gradients vary from
0° on the alluvial plains to 55°. The western sector is
predominantly comprised of carbonaceous rocks,
forming mountainsides that have slope gradients stee-
per than 60°. In the study area, the bedrock is covered
by colluvial soil, which typically reaches a maximum
thickness of 5 m.

From a meteorological perspective, the study area is
one of the wettest sectors of Tuscany, characterized by
a main seasonal peak in autumn and by a dry summer.
During the wet season, prolonged rainfalls take place
over large sectors of the region. In the summer, convec-
tion thunderstorms produce localized rainfall of short
duration and higher intensity. The spatial distribution
of precipitation is markedly influenced by the topogra-
phy: the plains are characterized by a mean annual pre-
cipitation of around 1100 mm/year, while in the
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mountains this values rises up to 2000 mm/year, with
occasional annual peaks of 3000 mm.

As a result of the high rainfall rates, the steepness of
the slopes and the layered bedrock, landslides perva-
sively affect the test area: according to the Inventario
dei Fenomeni Franosi Italiani (IFFI) database, 5436
landslides are present. Their dimensions range from
102 to 106 m2 and they are almost entirely categorized
as rotational/translational slides or as complex move-
ments. As the complex movements are primarily
rotational and translational movements evolving into
flows, in our susceptibility assessment, we did not
make distinctions and we analyzed all landslides

together, since the triggering mechanism is very
similar.

The population is mainly concentrated in the val-
leys, but relevant human settlements and infrastructure
are present in the mountainous areas as well and are
exposed to landslide hazards (Battistini et al., 2013;
Mercogliano et al., 2013; Rosi et al., 2015; Segoni,
Rossi, Rosi, Catani, & Casagli, 2014)

3. Methods

To map landslide susceptibility, we used the ‘Random
forest’, a machine-learning algorithm for nonparametric

Figure 1. (a) DEM of the study area and (b) main lithological units of the study area.
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multivariate classification (Breiman, 2001). Although
this methodology can be considered relatively new, it
has been used in landslide studies through different
applications (Brenning, 2005; Catani, Lagomarsino,
Segoni, & Tofani, 2013; Pourghasemi & Kerle, 2016;
Segoni et al., 2015b; Trigila et al., 2015; Vorpahl, Else-
nbeer, Märker, & Schröder, 2012; Youssef, Pourgha-
semi, Pourtaghi, & Al-Katheeri, 2015).

Among its advantages, the random forest technique
allows the employment of both categorical and numeri-
cal variables, it accounts for interactions and nonlinea-
rities between variables, it allows exploration of a large
number of explanatory variables (as it intrinsically
emphasizes only those variables of high explanatory
power), and no assumption is required about the distri-
bution of the data. Further details on the adopted meth-
odology and on its application to landslide susceptibility
mapping can be found in Catani et al. (2013).

To train and validate the susceptibility model, we used
data from IFFI, the Italian national inventory of land-
slides at 1:10,000 scale (Trigila et al., 2010). In the IFFI
inventory, each landslide is reported as a single polygon,
without distinctions between depletion and deposition
zones. For this reason, in the study area, where the
majority of the mapped phenomena are slow moving
landslides, for the modeling we have used the total land-
slide area: assuming that the transport zone has a limited
length, the deposition zone is relatively near to the
depletion zone and consequently they have similar geo-
logical and geomorphological conditions.

One of the main features of Treebagger algorithm is
the possibility of feeding it with a large number of
input parameters, regardless of their correlations and
mutual influences, because a forward selection of input
parameters discards uninfluential or pejorative predic-
tors and gives a proper weight to each parameter (Catani
et al., 2013). We therefore fed the machine-learning
algorithm with a large number of input parameters: cur-
vature, flow accumulation, topographic wetness index,
elevation, profile curvature, planar curvature, slope gra-
dient, aspect, land use and lithology. Morphometric
attributes were derived from a digital elevation model
(DEM) with 10 m pixel size. Land use was derived
from a 1:50,000 scale map, which in the study area
was reclassified into nine classes: urban areas, crops,
grasslands, heterogenic rural areas, forests (broad-
leaved), forests (conifers), shrubs, bare rocks and
humid areas. Lithology was derived from a lithological
map at 1:100,000 scale, which was reclassified into six
classes: conglomerates and weakly cemented limestones;
compact clays; massive rocks; layered rocks (pelithic
layers prevailing); layered rocks (massive layers prevail-
ing) and cohesive and granular soils (Figure 1(b)).

Although the structural setting is a well-known fac-
tor controlling slides and earthflows, it was not possible
to directly take it into account in our analysis. This was
due to the absence of information sources with a

sufficient degree of homogeneity over the whole
study area that could provide structural setting
elements to be translated into categorical or numerical
variables for the landslide susceptibility assessment.
However, it is widely known that the morphology of
the Apennine slopes is controlled by slope-scale geo-
logical structures and variations in stratigraphy
(Pinto et al., 2016); therefore, we can consider that
the structural setting of the area is indirectly and
implicitly taken into account by the large number of
morphometric parameters used in the analysis.

To obtain the input variables for the susceptibility
model, the grid for each morphometric or thematic
attribute was resampled to a 100 m pixel size and
split into two variables: one considering the average
value encountered in the 100 × 100 m cell (mean
value for numerical attributes and prevailing class for
categorical values), the other considering its variability
inside the 100 × 100 m cell (standard deviation for
numerical attributes and number of classes for categ-
orical values). Several studies have noted that morpho-
metric attributes based on derivatives of elevation
landslides are more susceptible to peak values rather
than mean values (Catani et al., 2013; Segoni et al.,
2015b); for slope gradient and for all kinds of curvature
we included an additional resampling criterion based
on the maximum value. Consequently, the total num-
ber of input parameters used is 23.

Concerning the response variable of the binary
classification problem at hand (landslide/no landslide),
we used the landslide inventory map to derive a grid
(with characteristics identical to the grids of the other
input parameters) that accounts for the presence of
one or more landslides in each of the 100 × 100 m
cells of the grid.

To map landslide susceptibility, we randomly
sampled the study area to select 10% of the pixels for
training and 10% for testing. Such percentages have
been proved to be a good compromise between quality
of the results and speed of the calculations (Catani
et al., 2013).

The automated procedure of forward selection of
input parameters identified the optimal configuration
of the susceptibility model encompassing all 23 vari-
ables. According to the testing procedure, the variables
with the higher predictive power were standard devi-
ation of elevation, mean profile curvature, standard
deviation of flow accumulation, mean flow accumu-
lation and mean elevation. Some variables have a
very low predictive power (e.g. variability of land
cover, variability of aspect), but, still, their use
increased the overall predictive power of the model.

The final output of the methodology is a raster with
a 100 × 100 m cell size, where each pixel has a percen-
tage value expressing the probability of landslide
potential. According to our analysis, the susceptibility
values range from 0% to 91%.
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Toease the interpretationof the results, the percentage
values were reclassified into four susceptibility classes
(Table 1). The criterion used to define the four classes
is based on the approach proposed by Catani et al.
(2005), in which the cumulative density function of the
Treebagger output values within mapped landslides
(cdfL) was compared to the total cumulative density
function (cdfT). According to this approach, a sudden
increase in the cdfL curve that is not accompanied by a
similar rise in the cdfT curve represents a threshold out-
put value that couldbe set as a limit between susceptibility
classes. The identification of such thresholds can bemade
easier plotting the difference between the derivatives of
the two cdf functions and identifying the main peaks or
the sharpest fluctuations of the plot. Further details can
be found in Catani et al. (2005).

To get an independent validation, for the pixels not
sampled for training or testing of the susceptibility
model, the estimated membership class probability
was compared with the true class (landslide or no land-
slide) and receiver–operator curves (ROC curves) were
drawn. The area under the ROC curve (AUC) is one of
the most widely used a metrics to assess the overall
quality of a model.

4. Conclusions

In this work, we present a landslide susceptibility Main
Map of the provinces of Lucca, Prato and Pistoia,
which corresponds to the portion of Tuscany (central
Italy) more commonly affected by landslides. The sus-
ceptibility map has been validated using the software
ClaReT and a ROC curve was automatically produced.
The AUC (area under ROC curve) value of 0.84 and a
visual comparison (Figure 2) revealed a good agree-
ment of the final result with observations.

The Main Map shows that the provinces Prato, Pis-
toia and Lucca are widely susceptible to landslides; if
we exclude the flat valley floors, low and moderate sus-
ceptibility areas can be identified in wide portions of
the territory. Highly susceptible areas characterize the
northwestern sector (high Serchio valley), some moun-
tainsides in the central sector of the area and most of
the hillsides close to the main valley floor. According
to the map, landslides threaten railways and main
roads and most of the towns located in hilly or moun-
tainous territory.

The Main Map can be used to identify the areas that
are most likely to be affected by landslides in the future,
thus representing a useful aid to assist land planning,
landslide risk management and the development of
mitigation strategies. Moreover, the map could be
exploited in future research in two ways: (i) to develop
a complete hazard map which, in turn, could be used in
a quantitative risk assessment and (ii) following the
approach of Segoni et al. (2015b), it could be combined
with the regional landslide early warning system based

Table 1. Classes used to draw the susceptibility map of the
Lucca, Prato and Pistoia provinces.
Susceptibility class Susceptibility values

Null to very low <6%
Low 6%≤ susceptibility < 10%
Moderate 10%≤ susceptibility < 19%
High ≥19%

Figure 2. Detail of the susceptibility map and comparison with the inventory of mapped landslides.
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on rainfall thresholds (Segoni et al., 2014, 2015a) to
improve the effectiveness and the spatial resolution of
the forecasting of landslides.

Software

The landslide susceptibility analysis was carried out
using the software ClaReT, which uses a random forest
implementation based on Matlab (Matworks, version
7.11, treebagger object (RFtb) and methods).

The final output of ClaReT was a table, which was
imported in to Esri ArcGIS10.1© and converted to a
100 m cell size raster editing and display. The suscepti-
bility raster can be obtained upon request by contacting
the corresponding author.
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