
Electronic Notes in Theoretical Computer Science 48 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume48.html pp. 1 – 26

Probabilistic behaviours of reactive agents

Antonio Brogi 1

Dipartimento di Informatica
Università di Pisa

Pisa, Italy

Abstract

We present a simple logic-based formalisation of the behaviours of agents capable
of reacting to changes occurring in the external environment. Logic programming
is chosen as the specification language of agents, and a quantitative analysis of the
behaviours of reactive agents is described.

1 Introduction

Rationality and reactivity are two capabilities of primary importance in multi-
agent systems. Agents must be able to exhibit a rational behaviour as well
as to promptly and adequately react to changes occurring in the external
environment.

One of the problems is that while developing a reactive agent, the environ-
ment in which the agent will operate is at least partially unknown. Typically,
even if the set of possible observable behaviours of the environment is known,
the precise dynamic behaviour of the environment is not predictable at soft-
ware development time. On the other hand, the availability of a well-founded
description of the possible behaviours of a reactive program is crucial for per-
forming tasks such as verification and analysis before putting the program at
work with the external environment.

In this paper, we will describe a simple logic-based formalisation of the
behaviours of agents that feature a combination of rational and reactive capa-
bilities. We choose logic programming as the specification language of agents.
Logic programming supports a declarative, high-level programming style (from
algorithmic programming to databases to artificial intelligence applications)
via a small number of powerful features: Nondeterminism, unification, and re-
cursion. Moreover, because of their operational interpretation, logic programs
can be viewed as high-level, executable specifications of reactive programs.

1 Email: brogi@di.unipi.it

c©2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Brogi

We first show, following [4], how the possible behaviours of an agent react-
ing to different environments at different times can be modeled by means of
a mapping over sets of Herbrand interpretations. The obtained formal char-
acterisation of the possible behaviours of reactive programs provides a firm
basis for reasoning about them.

For instance, one of the properties of interest in the practice of multi-
agent systems is whether a reactive agent may be able to possibly derive
certain conclusions depending on the evolution of the external environment.
The dual property is even more important for many applications, especially for
critical ones. Namely the agent behaviour should satisfy certain mandatory
requirements independently of the way in which the external environment
will evolve. The notions of possible beliefs and invariant of a program were
introduced in [4] to formally characterise such properties, and different ways
of combining rationality and reactivity were compared one another on that
basis.

The aim of this paper is to introduce quantitative aspects in the analysis
of the possible behaviours of reactive agents. We start from the observation
that, while the evolution of the external environment is not known a priori,
some environment perceptions are indeed more probable than others. The
above observation suggests that taking into account the probabilities associ-
ated with environment perceptions paves the way for a probabilistic — rather
than possibilistic — analysis of the behaviours of reactive agents.

We show how the formal setting introduced in [4] can be smoothly extended
to model probabilistic behaviours of agents. We then introduce the notions of
probabilistic beliefs and probabilistic invariant that can be exploited to perform
effective, resource bounded analyses of the probabilistic behaviours of reactive
agents.

2 Background

We will use standard notions and terminology of logic programming [3]. Since
we will focus on bottom-up computations of definite logic programs, which are
formally defined via the so-called immediate consequence operator T (P), we
recall here the definition of that operator.

Definition 2.1 Given a logic program P and a Herbrand interpretation I,
the immediate consequence operator T (P) is the mapping defined as follows:

T (P)(I) = {A | ∃B : A ← B ∈ ground(P) ∧ B ⊆ I}

where B is a (possibly empty) set of atoms, and where ground(P) denotes the
set of ground instances of clauses of program P . ✷

The set T (P)(I) denotes the set of conclusions that a program P is able
to derive, in a single computation step, from a set of premises I which are
assumed to hold. The powers of T (P) are defined in the standard way:

2

Brogi

T 0(P)(I)= I

T n+1(P)(I)=T (P) (T n(P)(I))

T ω(P)(I)=
⋃

i∈ω

T i(P)(I)

T (P) is a continuous mapping from (Herbrand) interpretations to (Herbrand)
interpretations and the power set P(B) of the Herbrand base B is a complete
lattice under set inclusion. The immediate consequence operator has therefore
a least fixpoint which coincides with the union of the finite powers of T (P)
applied to the bottom element ∅, namely: lfp(T (P)) = T ω(P)(∅).

3 Modeling reactive programs

3.1 Environment representation

Agents have a partial representation of the external environment and limited
capabilities of interacting with it. An agent typically represents the external
environment in terms of its individual perceptions of the environment. The
type of such perceptions of course depends on the sensing capabilities owned
by the agent.

We will focus on the way in which the behaviour of an agent may be influ-
enced by its perceptions of the external environment, rather than on the way in
which the agent will get such perceptions. For instance, we will abstract from
the way in which a software agent accesses some piece of information available
in the external environment (e.g., by receiving a message, by downloading a
file, or by getting data from physical sensors).

At each moment, the external environment is hence represented by the
perceptions of the agent. When agents are specified by logic programs, en-
vironment perceptions can be naturally represented as Herbrand interpreta-
tions. Moreover, while an agent is performing its computation, the external
environment may arbitrarily and independently evolve. We therefore define
an environment representation as follows.

Definition 3.1 An environment representation is a (possibly infinite) family

E = {E1, E2, E3, . . .}

of perceptions, where each perception Ei is a Herbrand interpretation. ✷

Intuitively speaking, a Herbrand interpretation Ei represents the percep-
tion of the external environment that the agent may have at a given moment.
Logically speaking, Ei represents a set of formulae that a program P may
assume to be true when it performs a computation step by reacting to the
current environment perceived as Ei.

The assumption that the environment may arbitrarily change during the
program computation is mirrored by the flat structure of an environment

3

Brogi

representation, which is a set of possibly non-related interpretations. (Namely
there may exist pairs of environment perceptions which are not comparable
one another under set-theoretic inclusion.)

3.2 Program behaviours

As shown in [4], the behaviour of a reactive program can be formally defined
by means of a continuous mapping Tϕ over sets of interpretations, whose least
fixpoint characterises the set of all possible behaviours of a program reacting
to different environments at different times.

The formal definition of the mapping Tϕ is given by extending the standard
immediate consequence operator T (P) in two steps:

(1) First to take into account the external environment, and

(2) then to consider sets of interpretations.

Let us first consider how environment perceptions can be taken into account
in the formalisation of the bottom-up behaviour of a program. At each com-
putation step, a program may react to the environment, that is, to one of
the environment perceptions in the environment representation E . We corre-
spondingly introduce the set of extended immediate consequences ϕ(P)(I, E)
of a program P , starting from a set of atoms I assumed to be true and reacting
to an environment perception E. Namely, for each program P , the mapping
ϕ(P) given a pair of interpretations yields a single interpretation:

ϕ(P) : P(B) × P(B)→ P(B).

The mapping ϕ(P) defines the way in which a program P takes into account
an environment perception when performing a deduction step. Different ways
of defining ϕ(P) are presented and compared in [4]. We will introduce here
the simplest, and perhaps most natural, definition of ϕ(P).

Definition 3.2 Let P be a program. For each Herbrand interpretation I and
each environment perception E, we put:

ϕ(P)(I, E) = T (P)(I ∪ E).

✷

Namely the set ϕ(P)(I, E) is the set of consequences that P may draw in
one deduction step by assuming the set of formulae (I ∪ E) to be true.

Example 3.3 Consider for instance a walking robot that controls its walking
speed on the base of its perception of the weather. Suppose that the robot
can move at two different speeds (slow or fast), and that it is able to perceive
three weather conditions (sun, rain and snow). A natural specification of the
speed control is to move slowly when it rains, to move fast when it is sunny,
and not to move when it is snows. The speed control of such a robot can then
be described by the following program P :

4

Brogi

Slow <- Still, Sun

Slow <- Still, Rain

Still <- Still, Snow

Fast <- Slow, Sun

Slow <- Slow, Rain

Still <- Slow, Snow

Fast <- Fast, Sun

Slow <- Fast, Rain

Still <- Fast, Snow

where the set of environment perceptions is E = { {Sun},{Rain},{Snow} }.
If the robot is still then the effect of the environment perception {Rain}

is:
ϕ(P)({Still}, {Rain}) = {Slow}.

If we now consider the situation in which the robot is walking slowly and the
environment perception is {Sun} we have:

ϕ(P)({Slow}, {Sun}) = {Fast}.

✷

The second extension to the immediate consequence operator consists of
moving from interpretations to sets of interpretations. Indeed we want to
model all possible computations of a program that may react to different en-
vironment perceptions at different steps. To this end, we introduce an operator
Uϕ over sets of Herbrand interpretations whose intuitive meaning is to collect
the set of all possible (one-step) reactive deductions of a program starting
from a set of possible interpretations and from a set of possible environment
perceptions.

Definition 3.4 Given a program P , a set of Herbrand interpretations I, and
an environment representation E , the mapping Uϕ is defined as follows:

Uϕ(P, E)(I) = { J | ∃E ∈ E , I ∈ I : J = ϕ(P)(I, E) }.

✷

Intuitively speaking, the set of interpretations Uϕ(P, E)(I) denotes the
set of all possible one-step “ϕ-evolutions” of P starting from the set I of
hypotheses and reacting to one of the environment perceptions in E .

Notice that the definition of Uϕ is parametric w.r.t. the object mapping
ϕ over Herbrand interpretations. If we unfold the above definition of Uϕ by
using the formulation of ϕ given in Definition 3.2, we obtain:

Uϕ(P, E)(I) = { J | ∃E ∈ E , I ∈ I : J = T (P)(I ∪ E) }.

5

Brogi

Example 3.5 Consider again the simple program P and the environment rep-
resentation E = { {Sun},{Rain},{Snow} } of example 3.3. We have that:

Uϕ(P, E)({{Still}}) = {{Still}, {Slow}}
and

Uϕ(P, E)({{Still}, {Slow}}) = {{Still}, {Slow}, {Fast}}. ✷

An inflationary version Tϕ of the Uϕ operator was introduced in [4] in order to
obtain a fixpoint characterisation of the set of all possible reactive behaviours
of a program. Namely:

Tϕ(P, E)(I) = I ∪ Uϕ(P, E)(I)

The operator Tϕ(P, E) is defined in [4] as a mapping over sets of inter-
pretations, whose domain D is the power set of the power set of B without
least element 2 . As shown in [4], (D,⊆) is a cpo without bottom element, the
mapping Tϕ(P, E) is continuous on (D,⊆), for each mapping ϕ, and therefore
Tϕ(P, E) has a least fixpoint.

The powers of (Uϕ and) Tϕ are defined in the standard way:

T 0
ϕ (P, E)(I)= I

T n+1
ϕ (P, E)(I)= Tϕ(P, E) (T n

ϕ (P, E)(I))
T ω

ϕ (P, E)(I)=
⋃

i∈ω

T i
ϕ(P, E)(I)

Moreover, as shown in [4], the least fixpoint of Tϕ(P, E) can be computed by
repeatedly applying Tϕ(P, E) to some initial element of the domainD. Namely,
for each P , E and I:

⋃

i∈ω

T i
ϕ(P, E)(I) = min{J | J = Tϕ(P, E)(J) ∧ I ⊆ J }.

That is, for each initial set I0 of interpretations, the least fixpoint of Tϕ(P, E)
greater than or equal to I0 can be computed by repeatedly applying Tϕ(P, E)
starting from the initial set of interpretations I0.

As illustrated in [4], the information contained in the least fixpoint of
Tϕ(P, E)(I) can be analysed by viewing the least fixpoint as a directed graph
whose nodes are the interpretations in the least fixpoint and where labelled
edges denote relations between interpretations. More precisely, the graph
contains a directed edge labelled E from node I to node J if and only if
J = ϕ(P)(I, E). Namely an edge from I to J indicates that program P
may derive the set J of consequences by means of a ϕ step starting from

2 The least element of P(P(B)) (viz., the empty set of interpretations) is not included
in the domain since it is not a sensible argument for the Tϕ operator. Indeed, intuitively
speaking, the situation “nothing is assumed to be true in the environment” corresponds to
the singleton set {∅} containing only the empty interpretation, rather than to the empty
set {} of interpretations.

6

Brogi

I and reacting to the environment perception E. For instance, the graph
representation of the least fixpoint of Tϕ(P, E)({Still}) for program P of
example 3.3 is illustrated in figure 1.

Still

✗
✖

✔
✕

✤
✣

✜
✢

Snow✛✘
❄

Sun
Rain

✲
✛
Snow

✤
✣

✜
✢Slow

Rain✛✘
❄

Sun
✲

✛
Rain

✤
✣

✜
✢Fast

Sun✛✘
❄

✚ ✙✻

Snow

Fig. 1. Possible behaviours of the walking robot of example 3.3

4 Probabilistic behaviours of reactive agents

4.1 Motivating example

Consider an agent gambling at a roulette table. Suppose that the strategy
of the agent simply consists of gambling one dollar on the red colour at each
turn. Since colour bets are paid 1:1, the agent will either win or loose one
dollar for each bet.

The behaviour of such an agent is specified by the following program P :

Holds(S(S(x))) <- Holds(S(x)), Red

Holds(x) <- Holds(S(x)), Black

Holds(Zero) <- Holds(Zero)

where the set of possible environment perceptions is E = { {Red},{Black} }.
Suppose that the initial budget of the agent is 100$. After the first round

the agent will have either 99$ or 101$, depending on the result of wheel re-
volvement. After the second round the agent will have 98$, 100$, or 102$, and
so on and so forth. The possible behaviours of the agent are illustrated by the
graph of Figure 2 denoting the least fixpoint of Tϕ(P, E)({{Holds(100)}}).

... H(98)

✗
✖

✔
✕
Red

✲
✛
Black

H(99)

✗
✖

✔
✕
Red

✲
✛
Black

H(100)

✗
✖

✔
✕

✛
✚

✘
✙
Red

✲
✛
Black

H(101)

✗
✖

✔
✕
Red

✲
✛
Black

H(102)

✗
✖

✔
✕...

Fig. 2. Possible behaviours of the roulette player

This example highlights that while the mapping Tϕ supports the analysis of
the possible behaviours of a reactive agent, it does not give any information
on the probabilistic behaviours of the agent.

In order to perform a probabilistic analysis of the behaviours of P , we can
make some assumptions on the probabilities of the environment perceptions.

7

Brogi

Formally, this corresponds to introducing a probability distribution δ on E ,
that is, a total mapping δ from E to [0,1] such that

∑
E∈E δ(E) = 1.

The obvious values of δ for this example 3 are

δ({Red}) = .5 and δ({Black}) = .5.

We observe that, according to the above distribution δ, after the first round
the agent will have 99$ with probability .5 and 101$ with probability .5. After
the second round, the agent will have 98$ with probability .25, 102$ with
probability .25, and the initial amount of 100$ with probability .5, and so on
and so forth, as illustrated by the following table:

round . . . 96$ 97$ 98$ 99$ 100$ 101$ 102$ 103$ 104$. . .

0 1

1 .5 .5

2 .25 .5 .25

3 .125 .375 .375 .125

4 .0625 .25 .375 .25 .0625

The example suggests that taking onto account the probabilities induced by
the environment perceptions may pave the way for a probabilistic analysis of
agent behaviours.

4.2 From interpretations to probabilistic interpretations

We now show how the setting introduced in Section 3 can be smoothly ex-
tended in order to account for a probabilistic (rather than possibilistic) anal-
ysis of the behaviours of a reactive agent.

Intuitively speaking, we will associate probabilities to interpretations and
we will consider mappings over (sets of) pairs:

〈interpretation, associated-probability〉.

As a first step, we introduce the notion of probabilistic interpretation. A prob-
abilistic interpretation is simply a Herbrand interpretation with a probability
associated with it.

Definition 4.1 A probabilistic interpretation is a pair 〈I, p〉 where I ⊆ B and
p ∈ (0, 1]. ✷

3 For the sake of simplicity, we do not consider here the presence of “zero” on the wheel.
Modern wheels contain two “zero” so that the probability of a red number is 16

38 rather than
16
36 , but this is not relevant in the scope of our discussion.

8

Brogi

In the previous section, we have informally discussed the idea of associating
a probability distribution with the set of environment perceptions of an agent.
Following Definition 4.1, a probabilistic environment representation can be
now formally defined as a set of probabilistic interpretations. We will consider
sets of probabilistic interpretations such that the probabilities associated with
the interpretations form a probability distribution, as stated by the following
definition.

Definition 4.2 A set Sπ of probabilistic interpretations is complete if and
only if

∑
〈I,p〉∈Sπ

p = 1. ✷

Definition 4.3 A probabilistic environment representation

Eπ = {〈E1, p1〉, 〈E2, p2〉, 〈E3, p3〉, . . .}

is a complete set of probabilistic interpretations. ✷

For instance the probabilistic environment representation for the example
discussed in section 4.1 is: Eπ = {〈{Red}, .5〉, 〈{Black}, .5〉}.

In Section 3 we introduced the mapping ϕ(P) to model the way in which
a program P reacts to a program perception E given a set of hypotheses I.
Formally, the mapping ϕ(P) given a pair of interpretations returns a single
interpretation:

ϕ(P) : P(B)× P(B)→ P(B).
Namely ϕ(P)(I, E) is the set of immediate consequences derived by program
P starting from a set I of atoms assumed to be true and reacting to the
environment perception E.

The mapping ϕ can be naturally extended to probabilistic interpretations:

ϕπ(P) : (P(B)× (0, 1]) × (P(B)× (0, 1]) → (P(B)× (0, 1])

as follows.

Definition 4.4 Let P be a program. For each pair of probabilistic interpre-
tations 〈I, p〉 and 〈E, q〉:

ϕπ(P)(〈I, p〉, 〈E, q〉) = 〈ϕ(P)(I, E) , p × q〉.

✷

Namely, given two probabilistic interpretations 〈I, p〉 and 〈E, q〉, the map-
ping ϕπ(P) returns the probabilistic interpretation consisting of the interpre-
tation ϕ(P)(I, E) with associated probability (p×q). For instance, considering
program P of Section 4.1:

ϕπ(P)(〈{Holds(100)}, 1〉, 〈{Black}, .5〉)= 〈{Holds(99)}, .5〉
ϕπ(P)(〈{Holds(99)}, .5〉, 〈{Red}, .5〉)= 〈{Holds(100)}, .25〉

ϕπ(P)(〈{Holds(99)}, .5〉, 〈{Black}, .5〉)= 〈{Holds(98)}, .25〉
9

Brogi

The reason why the probabilities of I and E are multiplied in order to de-
termine the probability associated with the interpretation ϕ(P)(I, E) will be
better understood after introducing the collecting mapping Vϕπ . Intuitively
speaking, the reason is that given two complete sets of probabilistic interpreta-
tions Iπ and Eπ, the result of applying ϕπ(P) to each pair in (Iπ×Eπ) should re-
turn a complete set Jπ of probabilistic interpretations, namely

∑
〈J,p〉∈Jπ

p = 1.

Typically an agent will start its computation from a complete set of prob-
abilistic interpretations that consists of a single interpretation with associ-
ated probability 1. For instance, in the case of the roulette playing agent
of Section 4.1, the initial situation in which the agent starts playing with a
budget of 100$ corresponds to the set of probabilistic interpretations: Iπ =
{〈{Holds(100)}, 1〉}.

It is worth noting that the initial set of interpretations may indeed contain
more than just one probabilistic interpretation. For instance, determining
the amount of the initial budget to bet may be the result of some other
reactive computation of the gambling agent. A probabilistic analysis of such
a computation may indicate for instance that the initial budget of the agent
will be either 100$ or 200$ with the same probability. Such a situation can
be represented by considering Iπ = {〈{Holds(100)}, .5〉, 〈{Holds(200)}, .5〉}
as the initial set of probabilistic interpretations.

4.3 Probabilistic behaviours

We now introduce an operator Vϕπ overs sets of probabilistic interpretations
in order to collect the set of all possible (one-step) reactive deductions of a
program P given a set of probabilistic hypotheses and a set of probabilistic
environment perceptions. Formally the operator Vϕπ maps pairs of sets of
probabilistic interpretations into sets of probabilistic interpretations.

Consider again, for instance, program P of section 4.1 together with the
probabilistic environment representation Eπ = {〈{Red}, .5〉, 〈{Black}, .5〉}. In-
tuitively speaking, the set Vϕπ(P, Eπ)(Iπ) will contain the probabilistic in-
terpretations obtained by applying ϕπ(P) to the probabilistic interpretation
〈{Holds(100)}, 1〉 and to the two environment perceptions in Eπ. Namely:

Vϕπ(P, Eπ)(Iπ) = {〈{Holds(99)}, .5〉, 〈{Holds(101)}, .5〉}.

It is important to note that the mapping ϕπ(P) is not injective, that is, it
may well happen that:

ϕπ(P)(〈I1, p1〉, 〈E1, q1〉) = ϕπ(P)(〈I2, p2〉, 〈E2, q2〉)

for two different pairs of probabilistic interpretations. For this reason, a direct
set-theoretic definition of Vϕπ(P, Eπ)(Iπ) as:

{〈J, r〉 | ∃〈E, q〉 ∈ Eπ, 〈I, p〉 ∈ Iπ : 〈J, r〉 = ϕπ(P)(〈I, p〉, 〈E, q〉)}
10

Brogi

would not properly collect the results of applying ϕπ(P) to all the elements
in (Iπ × Eπ). For instance, the above definition would imply that:

Vϕπ(P, Eπ)({〈{Holds(99)}, .5〉, 〈{Holds(101)}, .5〉})
=

{〈{Holds(98)}, .25〉, 〈{Holds(100)}, .25〉〈{Holds(102)}, .25〉}
by incorrectly ignoring that the same probabilistic interpretation

〈{Holds(100)}, .25〉

is produced twice by two different applications of ϕπ, viz., by

ϕπ(P)(〈{Holds(99)}, .5〉, 〈{Red}, .5〉)

and by

ϕπ(P)(〈{Holds(101)}, .5〉, 〈{Black}, .5〉)).

We therefore define the operator Vϕπ in two steps.

(i) We first define a multi-set Mϕπ(P, Eπ)(Iπ) containing all the probabilis-
tic interpretations obtained by applying the ϕπ operator to all pairs of
probabilistic interpretations in (Iπ × Eπ).

(ii) We then define the Vϕπ operator in terms of the multi-setMϕπ(P, Eπ)(Iπ).
Intuitively speaking, the set Vϕπ(P, Eπ)(Iπ) is obtained by transforming
the multi-set Mϕπ(P, Eπ)(Iπ) into a set where all the probabilities asso-
ciated with the same interpretation are summed.

Definition 4.5 Given a program P and two sets Iπ and Eπ of probabilistic
interpretations:

Mϕπ(P, Eπ)(Iπ) = {| 〈J, r〉 | ∃〈E, q〉 ∈ Eπ, 〈I, p〉 ∈ Iπ :
〈J, r〉 = ϕπ(P)(〈I, p〉, 〈E, q〉) |}

Vϕπ(P, Eπ)(Iπ) = {〈N, sN〉 | sN =
∑

{r | 〈J, r〉 ∈ Mϕπ(P, Eπ)(Iπ) ∧ J = N}
∧
sN > 0 }.

✷

Consider for instance again the gambling agent of Section 4.1. We now
have that:

Mϕπ(P, Eπ)({〈{Holds(99)}, .5〉, 〈{Holds(101)}, .5〉}) =
{| 〈{Holds(98)}, .25〉, 〈{Holds(100)}, .25〉,

〈{Holds(100)}, .25〉, 〈{Holds(102)}, .25〉 |}
11

Brogi

and:

Vϕπ(P, Eπ)({〈{Holds(99)}, .5〉, 〈{Holds(101)}, .5〉}) =
{ 〈{Holds(98)}, .25〉, 〈{Holds(100)}, .5〉, 〈{Holds(102)}, .25〉 }.

The powers of the Vϕπ operator are defined as usual:

V0
ϕπ
(P, Eπ)(Iπ)= Iπ

Vn+1
ϕπ

(P, Eπ)(I)π =Vϕπ(P, Eπ) (Vn
ϕπ
(P, Eπ)(Iπ))

4.4 Examples

Example 4.6 Consider again the gambling agent P described in Section 4.1:

Holds(S(S(x))) <- Holds(S(x)), Red

Holds(x) <- Holds(S(x)), Black

Holds(Zero) <- Holds(Zero)

together with the probabilistic environment description:

Eπ = {〈{Red}, .5〉, 〈{Black}, .5〉}

and the initial set of probabilistic interpretations:

Iπ = {〈{Holds(100)}, 1〉}.

Given the initial set of probabilistic interpretations Iπ and the probabilistic
environment description Eπ, the operator Vϕπ(P, Eπ)(Iπ) will determine the
probabilistic behaviours of the gambling agent under the specified hypotheses,
as illustrated by Table 1 showing the powers of Vϕπ(P, Eπ)(Iπ).

Table 1

n Vn
ϕπ

(P, Eπ)(Iπ)

0 { 〈 { Holds(100) } , 1 〉 }
1 { 〈 { Holds(99) } , .5 〉 , 〈 { Holds(101) } , .5 〉 }
2 { 〈 { Holds(98) } , .25 〉 , 〈 { Holds(100) } , .5 〉 , 〈 { Holds(102) } , .25 〉 }
3 { 〈 { Holds(97) } , .125 〉 , 〈 { Holds(99) } , .375 〉 ,

〈 { Holds(101) } , .375 〉 , 〈 { Holds(103) } , .125 〉 }
...

✷

Example 4.7 Consider again the walking robot described in Example 3.3.
The robot used the following program P :

(1) Slow <- Still, Sun

(2) Slow <- Still, Rain

12

Brogi

(3) Still <- Still, Snow

(4) Fast <- Slow, Sun

(5) Slow <- Slow, Rain

(6) Still <- Slow, Snow

(7) Fast <- Fast, Sun

(8) Slow <- Fast, Rain

(9) Still <- Fast, Snow

to control its walking speed on the base of its perceptions of the weather,
where the set of environment perception is E = { {Sun},{Rain},{Snow} }.

In order to further analyse the behaviour of the agent, we may make some
further assumptions on the probabilities of the environment perceptions. For
instance, we may assume that the robot will operate in an environment where
snow is a quite rare event, while sun and rain alternate one another with sun
slightly prevailing over rain. The assumption that in each moment the weather
will be sunny with .5 probability, rainy with .4 probability and snowing with
.1 probability is formalised by the probabilistic environment description:

Eπ = {〈{Sun}, .5〉, 〈{Rain}, .4〉, 〈{Snow}, .1〉}

while the assumption that the robot is initially still is modelled by the initial
set of probabilistic interpretations:

Iπ = {〈{Still}, 1〉}.

Given the initial set of probabilistic interpretations Iπ and the probabilistic
environment description Eπ, the operator Vϕπ(P, Eπ)(Iπ) will determine the
probabilistic behaviours of our walking robot under the specified hypotheses,
as illustrated by Table 2 showing the powers of Vϕπ(P, Eπ)(Iπ). Table 2 shows
that for the given probabilistic environment description, at any step n ≥ 2 the
robot will be walking slow with probability .45, walking fast with probability
.45, and still with probability .1.

Table 2

n Vn
ϕπ
(P, Eπ)(Iπ)

0 { 〈 { Still } , 1 〉 }
1 { 〈 { Still } , .1 〉 , 〈 { Slow } , .9 〉 }
2 { 〈 { Still } , .1 〉 , 〈 { Slow } , .45 〉 , 〈 { Fast } , .45 〉 }
3 { 〈 { Still } , .1 〉 , 〈 { Slow } , .45 〉 , 〈 { Fast } , .45 〉 }
...

13

Brogi

The formal characterisation provided by the Vϕπ operator is particularly
useful to reason on different probabilistic behaviours of reactive agents. Sup-
pose for instance that the robot designers want to evaluate whether improving
the stability of the robot may effectively lead to having the robot walk faster,
given the environment in which it will operate. Simply stated, the question of
the engineers is something like: Is it worth the effort of improving the stability
the robot ? Will it really walk faster in that environment ?

At the software level, re-programming the speed control policy may simply
amount to modifying clauses (5), (8) and (9) of the previous program as
follows:

(1) Slow <- Still, Sun

(2) Slow <- Still, Rain

(3) Still <- Still, Snow

(4) Fast <- Slow, Sun

(5’) Fast <- Slow, Rain

(6) Still <- Slow, Snow

(7) Fast <- Fast, Sun

(8’) Fast <- Fast, Rain

(9’) Slow <- Fast, Snow

The new possibilistic behaviours of the agent are synthesised in the graph of
Figure 3. Such graph does not however provide an answer to the question of
the robot engineers.

Given the initial set of probabilistic interpretations Iπ and the probabilistic
environment description Eπ, the operator Vϕπ(P, Eπ)(Iπ) can be used to de-
termine the probabilistic behaviours of the walking robot under the specified
hypotheses, as illustrated by Table 3 showing the powers of Vϕπ(P, Eπ)(Iπ).
Table 3 shows that because of the new speed control, the probabilities with
which the robot will be walking slow, fast, or be still, will vary at each step.
More precisely, the table shows that the larger the number of steps the higher
is the probability that the robot will be walking fast.

Still

✗
✖

✔
✕

✤
✣

✜
✢

Snow✛✘
❄

Sun
Rain

✲
✛
Snow

✤
✣

✜
✢Slow

Sun
Rain

✲
✛
Snow

✤
✣

✜
✢Fast

Sun
Rain

✛✘
❄

Fig. 3. New possible behaviours of the walking robot

✷

14

Brogi

Table 3

n Vn
ϕπ

(P, Eπ)(Iπ)

0 { 〈 { Still } , 1 〉 }
1 { 〈 { Still } , .1 〉 , 〈 { Slow } , .9 〉 }
2 { 〈 { Still } , .1 〉 , 〈 { Slow } , .09 〉 , 〈 { Fast } , .81 〉 }
3 { 〈 { Still } , .019 〉 , 〈 { Slow } , .171 〉 , 〈 { Fast } , .810 〉 }
4 { 〈 { Still } , .019 〉 , 〈 { Slow } , .0981 〉 , 〈 { Fast } , .8829 〉 }
5 { 〈 { Still } , .01171 〉 , 〈 { Slow } , .10539 〉 , 〈 { Fast } , .8829 〉 }
6 { 〈 { Still } , .01171 〉 , 〈 { Slow } , .098829 〉 , 〈 { Fast } , .889461 〉 }
7 { 〈 { Still } , .0110539 〉 , 〈 { Slow } , .0994851 〉 , 〈 { Fast } , .889461 〉 }
8 { 〈 { Still } , .0110539 〉 , 〈 { Slow } , .09889461 〉 , 〈 { Fast } , .89005149 〉 }
...

5 Probabilistic analysis of reactive agents

Before discussing the probabilistic analysis of the behaviour of reactive agents,
let us present some properties of the Vϕπ operator introduced in Section 4.3.

5.1 Properties

We first prove that if Iπ and Eπ are two complete sets of probabilistic in-
terpretations, then Vϕπ(P, Eπ)(Iπ) is also a complete set of probabilistic in-
terpretations, namely, the probabilities associated with the interpretations in
Vϕπ(P, Eπ)(Iπ) form a probability distribution.

Proposition 5.1 For each program P , for each complete sets of probabilistic
interpretations Eπ and Iπ:

Vϕπ(P, Eπ)(Iπ) is a complete set of probabilistic interpretations.

Proof. We have to show that:

∑
{p | 〈I, p〉 ∈ Vϕπ(P, Eπ)(Iπ)} = 1.

By definition of Mϕπ we have that:

Mϕπ(P, Eπ)(Iπ) = {| 〈J, r〉 | ∃〈E, q〉 ∈ Eπ, 〈I, p〉 ∈ Iπ :
〈J, r〉 = ϕπ(P)(〈I, p〉, 〈E, q〉) |}

Since Eπ and Iπ are both complete sets of probabilistic interpretations by
hypothesis, we have that:

∑
{p | 〈I, p〉 ∈ Iπ} = 1 and

∑
{q | 〈E, q〉 ∈ Eπ} = 1

15

Brogi

therefore:
∑

{| r | ∃〈E, q〉 ∈ Eπ, 〈I, p〉 ∈ Iπ : r = p × q |} = 1

and hence: ∑
{p | 〈I, p〉 ∈ Mϕπ(P, Eπ)(Iπ)} = 1.

Since for each P , Eπ and Jπ:

∑
{p | 〈I, p〉 ∈ Mϕπ(P, Eπ)(Jπ)} =

∑
{p | 〈I, p〉 ∈ Vϕπ(P, Eπ)(Jπ)}

we have that: ∑
{p | 〈I, p〉 ∈ Vϕπ(P, Eπ)(Iπ)} = 1.

✷

The immediate corollary of the above proposition is that Vn
ϕπ
(P, Eπ)(Iπ)

is a complete set of probabilistic interpretations for each value of n, when-
ever the environment representation Eπ and the initial Iπ are complete sets of
probabilistic interpretations.

Corollary 5.2 For each program P , for each complete sets of probabilistic
interpretations Eπ and Iπ, and for each n:

Vn
ϕπ
(P, Eπ)(Iπ) is a complete set of probabilistic interpretations.

Proof. The proof is by induction on n.

• (Base case) For n = 0 the assertion holds trivially by definition of the
powers of Vϕπ , since V0

ϕπ
(P, Eπ)(Iπ) = Iπ and since Iπ is a complete set of

probabilistic interpretations by hypothesis.

• (Inductive case) Suppose that Vn
ϕπ
(P, Eπ)(Iπ) is a complete set of prob-

abilistic interpretations. Then Vn+1
ϕπ

(P, Eπ)(Iπ) is also a complete set of
probabilistic interpretations by Proposition 5.1 since:

Vn+1
ϕπ

(P, Eπ)(Iπ) = Vϕπ(P, Eπ) (Vn
ϕπ
(P, Eπ)(Iπ)).

✷

It is now worth formally establishing the existing tight correspondence be-
tween the interpretations computed by the non-probabilistic operator Uϕ in-
troduced in Section 3.2 and the probabilistic interpretations computed by the
probabilistic operator Vϕ introduced in Section 4.3.

Informally, the following Proposition 5.3 states that if an Herbrand inter-
pretation I is obtained by repeatedly applying Vϕπ to an initial set of prob-
abilistic interpretations Iπ, then the same interpretation I can be obtained
by applying the same number of times Uϕ to the set of Herbrand interpreta-
tions contained in Iπ. To simplify notation, we will denote by I�π the set of
Herbrand interpretations contained in a set Iπ of probabilistic interpretations,
that is: I�π = {I | 〈I, p〉 ∈ Iπ}.

16

Brogi

Conversely, Proposition 5.4 establishes that any Herbrand interpretation
obtained by repeatedly applying Uϕ to an initial set of interpretations I is
also obtained by applying the same number of times Vϕπ to any initial set of
probabilistic interpretations Iπ such that I�π = I.
Proposition 5.3 For each program P , for each sets of probabilistic interpre-
tations Eπ and Iπ, and for each n:

〈I, p〉 ∈ Vn
ϕπ
(P, Eπ)(Iπ) =⇒ I ∈ Un

ϕ(P, E �π)(I�π)

Proof. The proof is by induction on n:

• (Base case) The base case (n = 0) trivially holds by definition of the powers
of Vϕπ and Uϕ:

〈I, p〉 ∈ V0
ϕπ
(P, Eπ)(Iπ)

⇔ { by definition of powers of Vϕπ }
〈I, p〉 ∈ Iπ

⇒ { by definition of I�π }
I ∈ I�π

⇔ { by definition of powers of Uϕ }
I ∈ U0

ϕ(P, E �π)(I �π).
• (Inductive case)

〈I, p〉 ∈ Vn+1
ϕπ

(P, Eπ)(Iπ)
⇔ { by definition of powers of Vϕπ }

〈I, p〉 ∈ Vϕπ(P, Eπ) (Vn
ϕπ
(P, Eπ)(Iπ))

⇒ { by definition of Vϕπ }
∃〈E, q〉 ∈ Eπ, 〈J, r〉 ∈ Vn

ϕπ
(P, Eπ)(Iπ), s : 〈I, s〉 = ϕπ(P)(〈J, r〉, 〈E, q〉)

⇒ { by definition of ϕπ }
∃〈E, q〉 ∈ Eπ, 〈J, r〉 ∈ Vn

ϕπ
(P, Eπ)(Iπ) : I = ϕ(P)(J,E)

⇒ { by definition of E�π and by inductive hypothesis }
∃E ∈ E�π, J ∈ Un

ϕ(P, E�π)(I�π) : I = ϕ(P)(J,E)
⇒ { by definition of Uϕ }

I ∈ Uϕ(P, E �π)(Un
ϕ(P, E �π)(I�π))

⇔ { by definition of powers of Uϕ }
I ∈ Un+1

ϕ (P, E �π)(I �π)
✷

Proposition 5.4 For each program P , let E and I be two sets of interpreta-
tions and let Eπ and Iπ be two sets of probabilistic interpretations such that
E �π = E and I�π = I. Then for each n:

I ∈ Un
ϕ(P, E)(I) =⇒ ∃p : 〈I, p〉 ∈ Vn

ϕπ
(P, Eπ)(Iπ)

Proof. The proof is by induction on n:

• (Base case) The base case (n = 0) trivially holds by definition of the powers
of Vϕπ and Uϕ:

17

Brogi

I ∈ U0
ϕ(P, E)(I)

⇔ { by definition of powers of Uϕ }
I ∈ I

⇒ { since I�π = I }
∃p : 〈I, p〉 ∈ Iπ

⇔ { by definition of powers of Vϕπ }
∃p : 〈I, p〉 ∈ V0

ϕπ
(P, Eπ)(Iπ)

• (Inductive case)

I ∈ Un+1
ϕ (P, E)(I)

⇔ { by definition of powers of Uϕ }
I ∈ Uϕ(P, E) (Un

ϕ(P, E)(I))
⇒ { by definition of Uϕ }

∃E ∈ E , J ∈ Un
ϕ(P, E)(I) : I = ϕ(P)(J,E)

⇒ { since E�π = E and by inductive hypothesis }
∃〈E, q〉 ∈ Eπ, 〈J, r〉 ∈ Vn

ϕπ
(P, Eπ)(Iπ) : I = ϕ(P)(J,E)

⇒ { by definition of ϕπ }
∃〈E, q〉 ∈ Eπ, 〈J, r〉 ∈ Vn

ϕπ
(P, Eπ)(Iπ), p : 〈I, p〉 = ϕπ(P)(〈J, r〉, 〈E, q〉)

⇒ { by definition of Vϕπ }
∃p : 〈I, p〉 ∈ Vϕπ(P, Eπ) (Vn

ϕπ
(P, Eπ)(Iπ))

⇔ { by definition of powers of Vϕπ }
∃p : 〈I, p〉 ∈ Vn+1

ϕπ
(P, Eπ)(Iπ)

✷

5.2 Probabilistic beliefs

The availability of a formal characterisation of the probabilistic behaviours of
reactive programs provides a firm ground for reasoning about them.

One of the properties of interest in the practice of multi-agent systems is
which are the conclusions that the agent may draw by reacting to the external
environment, the evolution of the latter being a priori unknown. The notion
of possible beliefs was introduced in [4] to formally characterise the set of
conclusions that a program P may possibly draw, starting with an initial set
of interpretations I and reacting to a set of environment perceptions E . An
effective, resource bounded characterisation of the possible beliefs of a program
after n steps of computation can be formalised as follows.

Definition 5.5 Let P be a program, let I and E be two sets of interpretations,
and let n > 0. We put:

PB(P, E , I, n) = {A | I ∈ Un
ϕ(P, E)(I) ∧ A ∈ I}.

✷

Namely PB(P, E , I, n) denotes the set of conclusions that program P may
possibly derive after n steps, starting with an initial set of interpretations I

18

Brogi

and reacting to a set of environment perceptions E .
For instance, for the walking robot described in Example 3.3, we have that

PB(P, E , I, n) = {Still, Slow, Fast} for each n ≥ 2. Notice that possible be-
liefs are defined in terms of the possibilistic collecting operator Uϕ, which does
not take into account the probabilities that may be associated with environ-
ment perceptions. For instance, while in Example 4.7 we have shown that a
revised control speed program for the robot does exhibit different probabilistic
behaviours, the two programs have the same set of possible beliefs.

We therefore introduce the notion of probabilistic beliefs of a program P that
starts with an initial set of probabilistic interpretations Iπ and reacts to a set of
probabilistic perceptions Eπ. Probabilistic beliefs associate each possible belief
with a corresponding probability as formalised by the following definition.

Definition 5.6 Let P be a program, let Iπ and Eπ be two sets of probabilistic
interpretations, and let n > 0. We put:

ΠB(P, Eπ, Iπ, n) = {(A, p) | p =
∑

{q | 〈I, q〉 ∈ Vn
ϕπ
(P, Eπ)(Iπ) ∧ A ∈ I}

∧
p > 0 }.

✷

Namely ΠB(P, Eπ, Iπ, n) denotes the set of atoms that program P may
derive in n steps starting from Iπ and reacting to Eπ. The probability associ-
ated with each atom A is the sum of the probabilities of all the probabilistic
interpretations in which A occur.

For instance, in the case of the walking robot described in Example 3.3,
the set of probabilistic beliefs after 10 steps is:

ΠB(P, Eπ, Iπ, 10) = {(Still, .1), (Slow, .45), (Fast, .45)}.
Notice that, as expected, the notion of probabilistic beliefs is able to distin-
guish possibilistic behaviours that are probabilistically different. For instance,
the revised control speed program described in 4.7 does have a different set of
probabilistic beliefs:

ΠB(Q, Eπ, Iπ, 10) = { (Still, .010994851),
(Slow, .0989005149),
(Fast, .8901046341)}.

The notion of probabilistic beliefs extends the notion of possible beliefs by
associating a probability to each possible belief. The relation between the two
notions is formally stated by the following corollary.

Corollary 5.7 For each program P , let E and I be two sets of interpretations
and let Eπ and Iπ be two sets of probabilistic interpretations such that E�π = E
and I�π = I. Then for each n:

{A | (A, p) ∈ ΠB(P, Eπ, Iπ, n)} = PB(P, E , I, n).

19

Brogi

Proof. The corollary descends from Propositions 5.3 and 5.4.

B ∈ {A | (A, p) ∈ ΠB(P, Eπ, Iπ, n)}
⇔

∃p : (B, p) ∈ ΠB(P, Eπ, Iπ, n)
⇔ { by definition of probabilistic beliefs }

∃q, I : 〈I, q〉 ∈ Vn
ϕπ
(P, Eπ)(Iπ) ∧ B ∈ I

⇔ { by Propositions 5.3 and 5.4 }
∃I : I ∈ Un

ϕ(P, E)(I) ∧ B ∈ I
⇔ { by definition of possible beliefs }

B ∈ PB(P, E , I, n)

✷

Other useful notions can be defined in terms of the probabilistic beliefs. For
instance, when analysing the probabilistic behaviours of a reactive agent, one
is often more interested in determining the “most probable” beliefs of the
agents rather than in examining the full set of probabilistic beliefs.

More precisely, we are typically interested in determining the probabilistic
beliefs whose associated probability is above a given belief threshold t. The
following corresponding notion of likely beliefs is defined as a natural refine-
ment of the notion of probabilistic beliefs.

Definition 5.8 Let P be a program, let Iπ and Eπ be two sets of probabilistic
interpretations, and let n > 0. We put:

LB(P, Eπ, Iπ, n, t) = {A | (A, p) ∈ ΠB(P, Eπ, Iπ, n) ∧ p ≥ t}
✷

It is easy to observe that the likely beliefs are a subset of the probabilistic
beliefs of an agent since for a generic threshold t:

LB(P, Eπ, Iπ, n, t) ⊆ {A | (A, p) ∈ ΠB(P, Eπ, Iπ, n)} = PB(P, E , I, n)

while for t = 0:

LB(P, Eπ, Iπ, n,0) = {A | (A, p) ∈ ΠB(P, Eπ, Iπ, n)} = PB(P, E , I, n).

It is worth observing that the notion of likely beliefs gives a handy repre-
sentation of a subset of the probabilistic beliefs of practical use. Consider for
instance again the problem of comparing the probabilistic behaviours of the
walking robot when varying its speed control program. If the robot engineers
consider .8 as their belief threshold, then they obtain:

LB(P, Eπ, Iπ, 10, .8) = {}
for the first control speed program of Example 3.3, and:

LB(P, Eπ, Iπ, 10, .8) = {Fast}
20

Brogi

for the revised control speed program described of Example 4.7.

A further notion of practical utility is a specialisation of the notion of likely
beliefs. Simply stated, when performing a probabilistic analysis of the agent
behaviours, we are interested in determining whether the programs will have
some definite beliefs.

Definition 5.9 Let P be a program, let Iπ and Eπ be two sets of probabilistic
interpretations, and let n > 0. We put:

B(P, Eπ, Iπ, n) = LB(P, Eπ, Iπ, n,1).

✷

We will see in the following section that the beliefs of a program are the
basis to define the important notion of probabilistic invariant.

5.3 Probabilistic invariant

The invariant of a conventional program defines the properties that hold at
each stage of the program computation. Analogously, the invariant of a reac-
tive program defines the largest set of conclusions that the program will be
able to draw at any time in any environment. An effective, resource bounded
characterisation of the invariant of a program after n steps of computation
can be formalised as follows.

Definition 5.10 Let P be a program, let I and E be two sets of interpreta-
tions, and let n > 0. We put:

Inv(P, E , I, n) = {A | ∀i ∈ [1, n] : (I ∈ U i
ϕ(P, E)(I) =⇒ A ∈ I)}.

✷

Namely an atom A belongs to the invariant Inv(P, E , I, n) if A belongs
to all the interpretations computed by Uϕ during all the first n computation
steps. The notion of invariant can be reformulated in a probabilistic setting
as follows.

Definition 5.11 Let P be a program, let Iπ and Eπ be two sets of probabilis-
tic interpretations, and let n > 0. We put:

Inv(P, Eπ, Iπ, n) = {A | ∀i ∈ [1, n] : (〈I, p〉 ∈ V i
ϕπ
(P, Eπ)(Iπ) =⇒ A ∈ I)}.

✷

It is worth observing that the notion of invariant can be equivalently for-
mulated in terms of the beliefs of a program (see Definition 5.9). Namely, for
each sets Eπ and Iπ of probabilistic interpretations, and for each n:

Inv(P, Eπ, Iπ, n) =
⋂

i∈[1,n]

B(P, Eπ, Iπ, i) =
⋂

i∈[1,n]

LB(P, Eπ, Iπ, n,1).

21

Brogi

It is important to observe that two definitions of invariant (Definitions 5.10
and 5.11) coincide, as stated by the following proposition.

Proposition 5.12 For each program P , let E and I be two sets of interpre-
tations and let Eπ and Iπ be two sets of probabilistic interpretations such that
E �π = E and I�π = I. Then for each n:

Inv(P, Eπ, Iπ, n) = Inv(P, E , I, n).

Proof.

A ∈ Inv(P, Eπ, Iπ, n)
⇔ { by Definition 5.11 }

∀i ∈ [1, n] : (〈I, p〉 ∈ V i
ϕπ
(P, Eπ)(Iπ) =⇒ A ∈ I)}

⇔ { by Propositions 5.3 and 5.4 }
∀i ∈ [1, n] : (I ∈ U i

ϕ(P, E)(I) =⇒ A ∈ I)}
⇔ { by Definition 5.10 }

A ∈ Inv(P, E , I, n).

✷

The above proposition implicitly suggests that notion of invariant of Defi-
nition 5.11 is not really probabilistic.

Example 5.13 Consider again the walking robot discussed in Examples 3.3
and 3.5. Suppose that the robot designers have discovered that their robot
does not resist for a long time under the snow. The question of the engineers is
now: Will the robot survive in the environment where it is supposed to operate?
Or should we rather improve the robot resistance to ice to be reasonably certain
that it will not fall KO?

The new possible behaviours of the robot are specified by the following
program P :

Slow <- Still, Sun Fast <- Slow, Sun

Slow <- Still, Rain Fast <- Slow, Rain

Freezing <- Still, Snow Still <- Slow, Snow

OK <- Still, Sun OK <- Slow, Sun

OK <- Still, Rain OK <- Slow, Rain

OK <- Still, Snow OK <- Slow, Snow

Fast <- Fast, Sun Still <- Freezing, Sun

Fast <- Fast, Rain Freezing <- Freezing, Rain

Slow <- Fast, Snow KO <- Freezing, Snow

OK <- Fast, Sun OK <- Freezing, Sun

OK <- Fast, Rain OK <- Freezing, Rain

OK <- Fast, Snow KO <- KO

According to the above specification, answering the engineers question reduces
to checking that the program invariant contains the atom OK.

22

Brogi

Let us consider the same probabilistic environment description employed
in Examples 3.3 and 3.5:

Eπ = {〈{Sun}, .5〉, 〈{Rain}, .4〉, 〈{Snow}, .1〉}.

and the initial assumption that the robot is initially still and ok:

Iπ = {〈{Still, OK}, 1〉}.

It is easy to observe that the program has an empty invariant Inv(P, Eπ, Iπ, n)
for each n > 1. Indeed, the robot may possibly reach the KO state if there is a
sequence of snow perceptions. On the other hand, probabilistically speaking,
if the probability that such an event will occur is low enough, we may consider
OK a “probabilistic” invariant of the robot. ✷

Following the above example, we introduce the notion of probabilistic in-
variant which relates the condition of invariance to a belief threshold. Infor-
mally speaking, an atom belongs to the probabilistic invariant of a program
if it belongs to the likely beliefs of the program for all the first n computation
steps.

Definition 5.14 For each program P , let Eπ and Iπ be two sets of proba-
bilistic interpretations. Then for each n:

Π-Inv(P, Eπ, Iπ, n, t) =
⋂

i∈[1,n]

LB(P, Eπ, Iπ, n, t).

✷

It is easy to observe that the notion of probabilistic invariant generalises
the notion of invariant of Definition 5.11, as:

Inv(P, Eπ, Iπ, n) = Π-Inv(P, Eπ, Iπ, n,1)

Example 5.15 Consider again the question of the robot engineers discussed
in Example 5.13. We observe that while the (non-probabilistic) invariant of
the program is empty for any n > 1, the notion of probabilistic invariant
supports a real probabilistic analysis of the robot behaviours. For instance,
if the robot engineers choose .95 as their belief threshold for the probabilistic
invariant, then they obtain:

Π-Inv(P, Eπ, Iπ, 100, .95) = {OK}.

✷

6 Related work

The idea of modeling different types of reactive computations as variants of
standard logic programming bottom-up computations is, to the best of our

23

Brogi

knowledge, original. Nevertheless, our work relates to a number of other
approaches proposed in the literature.

Our representation of all possible computations bears strong similarities
with the possible worlds semantics of modal logics [9]. The notion of invariant
defines the set of (atomic) formulae which are “necessarily” true (i.e., true in
each possible world), while the set of possible beliefs defines the set of (atomic)
formulae which are “possibly” true (i.e., true in at least one possible world).
In spite of these similarities, our approach obviously differs from modal logics,
which address other issues such as temporal reasoning or introspection. On
the other hand, our semantics based on logic programming is simpler than the
semantics of modal logics, and it accounts for an effective implementation as
it is a proper generalisation of the standard semantics used in deductive data
bases applications [17].

Several efforts have been devoted to investigate the role of computational
logic in multi-agent systems (see [14] for a quite recent road map). The IM-
PACT system [16] is one of the best known examples of multi-agent system
relying on computational logic. Agent beliefs are represented by agent pro-
grams, in the style of logic programming, while integrity constraints and action
bases are used to describe the actions that individual agents can perform. A
number of interesting applications of IMPACT have been illustrated, includ-
ing its recent extension to deal with temporal reasoning [8]. Several other
efforts have focussed on the use of computational logic to represent incom-
plete information in multi-agent systems. The use of abduction to represent
incomplete communication environments [15], and the use of updates to rep-
resent dynamically evolving knowledge [2,12] are two promising approaches
that have been recently proposed. The agent-based architecture presented in
[11] aims at reconciling rationality and reactivity, and it is probably the work
most related to ours. In [11] agents are logic programs which continuously
perform an “observe-think-act” cycle, and their behaviour is defined via a
proof procedure which exploits iff-definitions and integrity constraints.

A considerable amount of work has been devoted in the logic program-
ming community to model open programs and their composition (see [5] for
a survey). While these works share with ours the adoption of the logic pro-
gramming paradigm as specification language, they focus on the composition
of static programs. In contrast, we focus on the composition of a program
with an external dynamic environment, and analyse its reactive, incremental
computations.

Abductive logic programming [10] is another approach to modeling in-
complete knowledge. In this setting, agents may abduce external hypotheses
provided that they satisfy existing integrity constraints. While we focus on
bottom-up semantics, abductive logic programming is defined via proof proce-
dures which combine backward reasoning with integrity constraint checking.
A promising direction for further developments is to employ abduction to
express forms of interaction among agents, as indicated in [6,7].

24

Brogi

Finally, a large body of research has been devoted in the last two decades
to the study of concurrency. The main focus of these activities is to model
process interactions abstracting from internal computations steps. In contrast
our focus is on the interplay between interaction and computation. It is worth
mentioning that [13] explicitly introduces a notion of external environment
which resembles ours, even if in a quite different context. Also the semantics
of interaction presented in [1] employs an explicit representation of the envi-
ronment. That semantics is formulated in categorical terms and it is based on
linear logic and game semantics.

7 Concluding remarks

We have presented a simple logic-based formalization of the behaviours of
agents capable of reacting to changes occurring in the external environment.
In particular we have focussed on modeling the probabilistic behaviours of
agents reacting to environment perceptions with an associated probability
distribution. We have shown how the availability of a formal characterisation
supports effective, resource bounded, quantitative analyses of the probabilistic
behaviours of reactive agents, as illustrated by the notions of probabilistic
beliefs and probabilistic invariants discussed in Section 5.

Our formalisation does not however account for several aspects of multi-
agent systems. We have not considered, for instance, the way in which an agent
may affect the behaviour of the environment. Indeed, a natural extension of
our setting is to include the “act” part of the “observe-think-act” cycle [11]
by employing an intensional representation of the environment. This may be
done by representing the environment as a set of transformations Ti(I) over
interpretations, rather than as a set of interpretations, and by enabling agents
to affect the interpretation I from which the environment evolves. Another
important extension is the introduction of negation in our setting. Indeed
the ability to deal with incomplete information is another important aspect
in multi-agent systems. The use of updates to represent dynamically evolving
knowledge described in [2] seems a promising approach in this direction. These
extensions are scope for future work.

References

[1] Abramsky, S., Semantics of Interaction: an Introduction to Game Semantics,
in: P. Dybjer and A. Pitts, editors, Proceedings of the CLiCS 96 Summer School
(1997), pp. 1–31.

[2] Alferes, J., J. Leite, L. Pereira, H. Przymusinska and T. Przymusinski, Dynamic
updates of non-monotonic knowledge bases, Journal of Logic Programming
45(1-3) (2000), pp. 43–70.

25

Brogi

[3] Apt, K. R., Logic programming, in: J. van Leeuwen, editor, Handbook of
Theoretical Computer Science (1990), pp. 493–574, vol. B.

[4] Brogi, A., S. Contiero and F. Turini, On the interplay between reactivity and
rationality in multi-agent systems, Technical report, Department of Computer
Science, University of Pisa (2001).

[5] Bugliesi, M., E. Lamma and P. Mello, Modularity in Logic Programming,
Journal of Logic Programming 19-20 (1992), pp. 443–502.

[6] Ciampolini, A., E. Lamma, P. Mello and P. Torroni, Expressing collaborative
and competitive coordination among abductive logic agents, in: F. Sadri and
K. Satoh, editors, Proceedings of the CL-2000 Workshop on Computational
Logic in Multi-Agent Systems (CLIMA’00), 2000, pp. 35–43.

[7] Dell’Acqua, P., F. Sadri and F. Toni, Combining introspection and
communication with rationality and reactivity in agents, in: J. Dix, L. F.
del Cerro and U. Furbach, editors, Logics in Artificial Intelligence, European
Workshop, JELIA ’98, LNCS 1489 (1998), pp. 17–32.

[8] Dix, J., S. Kraus and V. Subrahmanian, Temporal Agent Reasoning, Artificial
Intelligence 127 (2001), pp. 87–135.

[9] Hughes, G. and M. Cresswell, “A New Introduction to Modal Logic,”
RoutLedge, 1996.

[10] Kakas, A., R. Kowalski and F. Toni, Abductive logic programming, Journal of
Logic and Computation 2(6) (1992), pp. 719–770.

[11] Kowalski, R. and F. Sadri, Towards a Unified Agent Architecture that Combines
Rationality and Reactivity, in: C. Zaniolo and D. Pedreschi, editors, Logic in
Databases (1996), pp. 137–150.

[12] Leite, J. A., J. J. Alferes and L. M. Pereira, Multi-dimensional dynamic logic
programming, in: F. Sadri and K. Satoh, editors, Proceedings of the CL-2000
Workshop on Computational Logic in Multi-Agent Systems (CLIMA’00), 2000,
pp. 17–26.

[13] Letichevsky, A. and D. Gilbert, A general theory of action languages,
Cybernetics and System Analysis 1 (1998), pp. 16–37.

[14] Sadri, F. and F. Toni, Computational logic and multi-agent systems: a roadmap
(1999).
URL http://www.compulog.org

[15] Satoh, K., K. Inoue, K. Iwanuma and C. Sakama, Speculative computation by
abduction under incomplete communication environments, in: Proceedings of the
Fourth International Conference on Multi-Agent Systems, 2000, pp. 263–270.

[16] Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. K. F. Ozcan and R. Ross,
“Heterogeneous agent systems,” MIT Press, 2000.

[17] Zaniolo, C., S. Ceri, C. Faloustos, R. Snodgrass, V. Subrahmanian and R. Zicari,
“Advanced Database Systems,” Morgan Kaufmann, 1997.

26

