
Received April 17, 2013, accepted April 24, 2013, published May 10, 2013.

Digital Object Identifier 10.1109/ACCESS.2013.2260817

Automated Production of Predetermined Digital
Evidence
ANIELLO CASTIGLIONE (Member, IEEE), GIUSEPPE CATTANEO, GIANCARLO DE MAIO, AND
ALFREDO DE SANTIS (Member, IEEE)
Department of Computer Science, University of Salerno, Via Ponte don Melillo, Fisciano I-84084, Italy

Corresponding author: A. Castiglione (castiglione@ieee.org)

ABSTRACT Digital evidence is increasingly used in juridical proceedings. In some recent legal cases, the
verdict has been strongly influenced by the digital evidence proffered by the defense. Digital traces can
be left on computers, phones, digital cameras, and also on remote machines belonging to ISPs, telephone
providers, companies that provide services via Internet such as YouTube, Facebook, Gmail, and so on. This
paper presents a methodology for the automated production of predetermined digital evidence, which can
be leveraged to forge a digital alibi. It is based on the use of an automation, a program meant to simulate
any common user activity. In addition to wanted traces, the automation may produce a number of unwanted
traces, which may be disclosed upon a digital forensic analysis. These include data remanence of suspicious
files, as well as any kind of logs generated by the operating system modules and services. The proposed
methodology describes a process to design, implement, and execute the automation on a target system, and
to properly handle both wanted and unwanted evidence. Many experiments with different combinations
of automation tools and operating systems are conducted. This paper presents an implementation of the
methodology through VBScript on Windows 7. A forensic analysis on the target system is not sufficient to
reveal that the alibi is forged by automation. These considerations emphasize the difference between digital
and traditional evidence. Digital evidence is always circumstantial, and therefore it should be considered
relevant only if supported by stronger evidence collected through traditional investigation techniques. Thus,
a Court verdict should not be based solely on digital evidence.

INDEX TERMS Digital evidence, digital investigation, digital forensics, antiforensics, counter-forensics,
automated alibi, false alibi, digital alibi, false digital alibi.

I. INTRODUCTION
People’s lives are dependingmore andmore on technology. In
addition to the workplace, digital devices are currently used
by most people to manage personal business and to always
be available. The number of Internet users in the world is
more than 2.4 billion, with a penetration of 34.3% of the
population [1]. In this context, crime also takes advantage
from technology. Computer crime, or cybercrime, refers to
any crime that involve a computer and a network, which may
be used in the commission of a crime or may be the target [2].
According to the Norton Cybercrime Report 2012 [3], 2/3 of
online adults in the world have been victim of cybercrime in
their lifetime, with an estimated global cost of $110 billion
annually. Also in the case in which a digital device has not
been directly used for the commission of a crime, it may
be subject to a forensic investigation aimed to collect useful

information about the accused. Such information may be
extracted from digital documents, photos, messages, emails
and so on.
Any probative information stored or transmitted digitally,

which can be used by a party in a judicial dispute in Court, is
referred to as digital evidence [4]. In recent years the use of
digital evidence has increased exponentially. Consequently,
Digital Forensics are becoming more and more concerned
about the admissibility and the probative value of digital
evidence. Digital evidence should be carefully examined by
the Court before being considered reliable, since it is ubiqui-
tous and immaterial. Moreover, it is fundamental to make a
distinction between local and remote digital evidence.
Ubiquitous: Digital evidence is ubiquitous, since it can

be located anywhere in the world. Digital data can be easily
moved from one device to another on the other side of the

216 2169-3536/$31.00
 2013 IEEE VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

world. It may reside on mobile equipment (phones, PDAs,
laptops, GPSes, etc.) and especially on servers that provide
services via Internet. The device under investigation may be
located in a Country different from that where the crime has
been committed, with it being an obstacle for the acquisition
of digital evidence.

Immaterial:Digital evidence is also immaterial, since it is
just a sequence of ones and zeros. It can be easily tampered
with by the owner of the device, since the owner has full
access to any software and hardware component. In the case
in which the evidence is stored on a remote location, it might
be modified or lost over time without any control over it.

Local: A digital evidence is referred to as local in case
the information is stored on a device owned by the accused.
In most cases, the Court can order the seizure of the inquired
device. Such evidence can be extracted from digital docu-
ments, browser history and so on. Local evidence tampering
is simple for an accused having basic technical skills.

Remote: A remote evidence is related to an information
stored on a remote machine. Remote evidence is difficult
to be tampered with by the accused, since it would require
unauthorized access to the remote system or the intervention
of an accomplice. Remote digital evidence can be extracted
from online social networks, emails stored on a server and
so on. With respect to local digital evidence, they may be
considered more reliable since validated, in a sense, by the
company providing the service (Google, Facebook, etc.).
In practice, the company may act as an implicit trusted-third-
party in the trial.

A. DIGITAL ALIBI
Digital devices, and in particular personal computers, can be
involved in a forensic investigation for several reasons. They
may have been used to commit the crime or may have been
the target of a cybercrime. In general, a computer may be
analyzed to track the activity of an individual involved in a
legal case. Digital devices may also contain evidence that can
be used to clear the charged, for example, proving that he
was working at his personal computer while the crime was
committed. In such a case the digital evidence constitutes
an alibi. Alibi is a term deriving from the Latin expression
alius ibi, which means in another place. According to the
USLegal online legal dictionary [5], ‘‘It is an excuse supplied
by a person suspected of or charged with a crime, supposedly
explainingwhy they could not be guilty. [...] An alibi generally
involves a claim that the accused was involved in another
activity at the time of the crime.’’. In this work an alibi based
on digital evidence is referred to as digital alibi. There are
several examples of trials in which digital evidence played a
fundamental role to argue the acquittal of the accused.

Rodney Bradford: An interesting case is that involving
Rodney Bradford, a 19 years old resident of New York,
arrested in October 2009 on suspicion of armed robbery
[6]–[8]. His defense lawyer claimed the innocence of
Mr. Bradford asserting that he was at his father’s house at
the time of the crime. The evidence offered in support of this

thesis was a message posted by the suspected on Facebook
with the timestamp ‘‘October 17 - 11:49 AM’’, exactly one
minute before the robbery. The status update would take place
from the personal computer of his father. The subsequent
investigation confirmed that the connection was established
from an apartment located at more than thirteen miles from
the scene of the crime. Rodney Bradford was released 12 days
after his arrest. This is the first case inwhich a status update on
Facebook has been used as an alibi. Although an accomplice
could have acted on behalf of Rodney Bradford to construct
his alibi, the Court rejected such a possibility, since it would
have implied a level of criminal genius unusual in such a
young individual.
Alberto Stasi: Another example, extremely interesting

in terms of assessing a digital alibi, is the Italian case of
Garlasco [9], [10]. The trial of first instance ended with the
acquittal of Alberto Stasi, the main suspect in the murder
of his girlfriend Chiara Poggi. The defendant proclaimed his
innocence by claiming that he was working at his computer
at the time of the crime. This trial has been characterized
by a close comparison between the results of the analysis
performed on each type of specimen, such as DNA traces
and digital evidence on the PCs of both the victim and
the accused. These findings were complemented by tradi-
tional forensic techniques such as interrogations. However,
the attention of the investigators mainly focused on verifying
if the digital alibi claimed by Stasi was true or false. Since no
overwhelming evidence proving the contrary was found, the
Court accepted the alibi of Stasi and directed his acquittal.
The appeal, concluded in December 2011, confirmed the
innocence of Alberto Stasi [11]. The appeal to the Cassation
Court, opened in April 2012, is currently in progress [12].
Other Cases: Not all claims of digital alibi end up being

accepted by Courts. It is worth mentioning the case involving
Everett Eugene Russell [13], a Texan man accused by his
ex-wife of the violation of a protective order requiring the
ex-husband to stay away from her residence. Part of the evi-
dence supporting the alibi claimed by the defendant consisted
of a disk containing a set of cookies, which would have
proven that Mr. Russell was surfing theWeb at the time of the
crime. It was not sufficient, since the Prosecutors argued
that the cookie files could have been tampered, and the Jury
agreed. Mr. Russell was also convicted by the Texas appeals
Court.
Another example is the case involving Douglas Plude [14],

accused of the murder of his wife Genell. Mr. Plude claimed
that she committed suicide, and the proof would have been
found on her personal computer. The digital forensic analysis
revealed that some online searches were performed from the
PC about Fioricet, the substance ingested by Genell which
hypothetically conducted her to death. However, the majority
concluded that ‘‘Whoever performed the search on Genell’s
computer only examined the first page of various results—
no page with dosing information was ever displayed on the
computer.’’ Also in this case, digital evidence did not provide
the expected alibi to the accused.

VOLUME 1, 2013 217

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

B. FALSE DIGITAL ALIBI
In light of what has been discussed so far, it is worth ques-
tioning whether it is possible to artificially produce a prede-
termined set of digital evidence in order to forge a digital
alibi. While it may be quite easy to identify the owner of
a device, it is not so easy to determine ‘‘who’’ (human) or
‘‘what’’ (software) was acting on the system at a specific time.
It is due to the ubiquitous and immaterial nature of digital
information. Consequently, digital evidence should always be
considered as circumstantial evidence, and should be always
integrated with evidence obtained by means of other forensic
techniques (fingerprints, DNA analysis, interrogations and
so on).

Any attempt of tampering or producing digital information
in order to construct an alibi has been referred to as false
digital alibi [15]. This work shows that an individual may
predispose a common personal computer to perform a prede-
fined sequence of automatic actions at a specific time, which
generate, in turn, a set of digital evidence that can be exploited
in a trial to claim a digital alibi. The traces produced bymeans
of this technique resulted to be indistinguishable, upon a post-
mortem digital forensic analysis, from those produced by a
real user performing the same activities. Besides, no particu-
lar skills are needed to implement the presentedmethodology,
since it makes use of existing and easy-to-use tools. This
result is an advise for Judges, Juries and Attorneys involved in
legal proceedings where reliability of digital evidence could
have an high impact on the verdict. This work also provides
some insights to be followed in order to consider possible fake
evidence.

The remainder of this paper is organized as follows.
In Section II different methods to artificially produce digital
evidence on a computer are examined. In Section III the
automation methodology is presented, while in Section IV
the process aimed to develop and deploy an automation is
discussed. In Section V a number of automation tools are
analyzed and in Section VI a real case study on Windows 7 is
presented. Finally, in Section VII the conclusions are drawn.

II. CREATION OF PREDETERMINED DIGITAL EVIDENCE
In this work the following scenario is supposed. There is
an individual interested in constructing a false digital alibi,
called Alibi Maker (AM), who can leverage his personal
computer, called Target System (TS), in order to accomplish
this task. After the digital alibi is forged, the TS is subject
to a post-mortem analysis performed by a group of Digital
Forensic Analysts (DFA), in charge of extracting any useful
information supporting, or invalidating, the digital alibi. This
paper focuses on the specific case where the TS is a common
personal computer. One of the main objective of this work is
to prove that also a non-skilled individual would be able to
construct a false digital alibi.

Keeping in mind the considerations made in Section I,
it is clear that an AM should aim to produce remote digi-
tal evidence, or even a mix of local and remote evidence.

The main difficulty is that, while timestamps of data stored on
a local device can be easily tampered with, remote informa-
tion cannot be modified once stored on the server (excluding
the case of unauthorized access). The only possibility is that
the actions aimed to produce remote digital evidence are
‘‘really’’ performed during the alibi timeline. There are some
different strategies to accomplish this task.
The trivial solution is to engage an accomplice in charge

of using the TS to produce local and remote digital traces
on behalf of the AM. However, the involvement of another
person could be risky. First, it requires physical contact of
the accomplice with the device and the environment where
it is located (e.g., AM’s home), which may produce biolog-
ical traces (fingerprints, DNA, etc.). Second, the accomplice
could be spotted by other persons, who may witness the fact
during the trial. Third, the accomplice itself could yield to the
pressure and confess his involvement.
Actually, there are two further approaches that allow an

AM to forge reliable digital evidencewithout any accomplice:
Remotization and Automation.
The remotization approach is based on the remote control

of the TS from a different machine. It can be accomplished,
for example, bymeans of a remote control software or a KVM
device. On the contrary, the automation approach is based on
the use of a software able to perform a series of automated
actions on behalf of theAM. Pros and cons of both approaches
are discussed below.

A. REMOTIZATION
There are various ways to remotely control a computer. In
any case, master and slave should be connected by means
of a communication channel in order to send and receive
commands. In this section two possible techniques are con-
sidered, followed by some considerations about risks and
applicability.
A simple solution consists of the use of a remote con-

trol software to pilot the TS from another (presumably far)
computer. Since the presence of a server application allowing
remote administration may be considered suspicious by the
DFA, the AM should avoid installation of this kind of applica-
tion on the TS. To accomplish it, hemight use a portable appli-
cation such as TeamViewer Portable [16], Portable RealVNC
Server [17], GoTo VNC Server Java Applet [18], or even a
backdoor trojan-horse such as ProRat [19], Bandook [20],
etc.. While all the mentioned remote control software is freely
available and easy-to-use, the success of these techniques
strongly depends on the ability of obfuscating the server
process on the TS. As discussed in the remainder of this
article, it might require a deeper knowledge of the underlying
operating system.
An alternative solution is the use of a keyboard, video,

mouse (KVM) switch over IP (IP-KVM). An IP-KVM is a
device that allows the remote connection to the keyboard,
video and mouse ports of the TS. It captures, digitizes and
compresses the video signal of the TS before transmitting it to
a remote controller bymeans of an IP connection. Conversely,

218 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

a console application on the controlling computer captures
mouse and keyboard inputs and sends them to the IP-KVM
device, which, in turn, generates respective mouse and key-
board inputs for the controlled system. The amount of suspi-
cious traces that can be found upon a digital forensic analysis
of the TS is limited, mostly considering that modern IP-KVM
devices [21] do not require any software to be installed both
on the controller and on the target systems. Obviously, the
KVM device is itself evidence that should be destroyed or
obfuscated by the AM in order to divert the investigation.

In both cases, it is worth highlighting that lot of suspicious
traces, such as information about the controller machine,
MAC or IP addresses of the KVM, may be recorded by other
components of the network, such as DHCP, NAT and DNS
servers. An analysis of caches and logs of these systems may
reveal with no doubt an anomalous connection lasting for the
entire alibi timeline. Although the AM has the possibility of
being very far away from the potential alibi location, the main
limitation of the Remotization approach is the necessity of
human intervention.

B. AUTOMATION
A typical anti-forensic activity aimed at constructing a false
digital alibi is the tampering of timing information of files
and resources. It can be accomplished, for example, by modi-
fying the BIOS clock. The main limitation of this approach
is that it can only produce local forged digital evidence,
since it is assumed that the AM cannot modify resources
stored by trusted-third-parties such as Facebook or Google.
The methodology presented in this work shows that an AM
can generate a false digital alibi based on reliable digital
evidence without any human intervention. All the local and
remote evidence may be ‘‘really’’ generated at the required
time by a software running on the TS, which is referred to
as automation. The implementation of an automation does
not require advanced skills, since it can be accomplished by
means of freely available and easy-to-use tools.

Potentially, an automation may be able to simulate any
common user activity, such asWeb navigation, authentication
to protected websites, posting of messages, sending of emails,
as well as creation and modification of local documents, and
even playing with online videogames. The evidence gener-
ated by such actions may provide a person with an airtight
alibi. The presented methodology also includes techniques to
avoid or remove traces which may reveal the execution of the
automation. If all the needed precautions are taken, there is
no way to determine if the evidence found on a computer
has been generated by either a common user activity or an
automated procedure.

III. THE AUTOMATION METHODOLOGY
The remainder of this work focuses on the automation
approach to produce fake digital evidence. The presented
methodology is based on the use of common software tools
and its implementation does not require advanced computer
skills. Some real case studies are subsequently discussed,

showing that a digital forensic analysis on the computer used
to run the automation procedure cannot distinguish between
digital evidence produced by a real user and digital evidence
produced by an automation.
A framework providing methods to reproduce mouse and

keyboard events is referred to as an automation tool. Such
frameworks are typically used to perform systematic and
repetitive actions, like application testing or system con-
figuration. Other possible uses include data analysis, data
munging, data extraction, data transformation and data inte-
gration [22]. Currently, automation tools are available for any
platform.
This paper warns about a possible malicious use of automa-

tion tools. Basic operations provided by these frameworks,
like mouse clicks, movements and keystrokes, could be
exploited to build up more complex actions such as inter-
action with user interfaces and controls (text boxes, but-
tons, etc.). Finally, such actions could be combined in order
to reproduce full user activities such as Web browsing,
email sending, document writing and so on. The constructed
automation may be launched at a given time.
Most automation tools provide powerful implementa-

tion frameworks, easy-to-use graphical interfaces, high-level
scripting environments, and often does not require any pro-
gramming competences nor specific computer skills to con-
struct an effective automation. Because of their growing use-
fulness, many resources like tutorials, online communities,
utilities, downloads and books on automation tools are cur-
rently available on theWeb. Table 1 presents a non-exhaustive
list of activities that can be implemented by means of an
automation tool, which may turn out to be useful to construct
a false digital alibi.

TABLE 1. Example of Activities That May Be Produced by an Automation.

Activity Actions

Web surfing Execution of a Web browser, interaction with windows and
tabs, surfing and switching among different webpages. Use
of authentication data such as username and password to
access protected Web sites, filling of forms, upload and down-
load of files. Such actions can be combined to access online
social networks and popular Web sites like Picasa, Dropbox,
Gmail, Facebook, Twitter, and so on.

Document
writing

Creation and modification of textual document, electronic
sheets and presentations by means of an office application
suite. Customization of file metadata such as access time,
modification time, and filename. Deletion of files and direc-
tories.

Multimedia
processing

Download and visualization of pictures from the Web. Modi-
fication of images with an image editing application. Adjust-
ment of audio controls, reproduction, and/or record of audio
and video files.

Videogame
playing

Execution of, and interaction with, standalone videogames
and browser-based videogames. Access to multiplayer games
and use of the game character to perform basic actions
(acting like a videogame bot [23]).

Controlofoth-
er devices

Sending of AT commands to a modem connected to the PC
in order to make a call over the PSTN network. Activation
of a Bluetooth connection with a mobile phone, access and
modification of data like contacts, SMSs, photos, etc.. Sending
of messages, initialization of voice calls over the telecommu-
nication network.

VOLUME 1, 2013 219

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

A. DIGITAL EVIDENCE OF AN AUTOMATION
An automation is a program which consists of files (compiled
executables, scripts, etc.) and may access resources on the
TS (other files, libraries, peripherals, etc.). It is worth noting
that any accesses to system resources produce a potential
modification of the system state which may be revealed by a
digital forensic analysis. Unfortunately for the AM, not all the
traces left by the automation are suitable to prove his presence
in a given place at a given time. Some of these traces may
reveal the execution of the automation and expose the attempt
of false alibi instead. Substantially, two categories of evidence
can be distinguished: wanted and unwanted evidence.
Wanted Evidence: The termwanted refers to all the traces

suitable to prove the presence of the user at a given place
during the entire timeline of the alibi. The browser history, the
creation time of a document, the access time of an MP3 file,
as well as the timestamp of an email, the time of a post on an
online social network may be exploited as wanted evidence.

Unwanted Evidence: On the other hand, the term
unwanted refers to any information that enables the DFA to
uncover the use of an automation. Data remanence of the
automation on the system storage (automation files or meta-
data), presence of suspicious software (e.g., tools and libraries
used to build the automation) falls into this category. Even
an anomalous user behaviour (e.g., use of applications never
used before, abnormal accesses to files) may be considered
an unwanted evidence.

The construction of an automation should include methods
to detect and handle unwanted evidence. The traces left by
the automation strongly depends on the software environment
where it is executed, with its own operating system, resources
and services. An automation is a piece of software stored
in one or more files and resources, which is executed as
one or more processes on the current operating system.
Of course, the AM has to be logged onto the system to start
the procedure.

These considerations give an abstraction of the possible
unwanted evidence that can be produced by the automation.

Filesystem Traces: The code of an automation may be
contained in a binary executable, in a script file, or even
in multiple files implementing different modules. Moreover,
it may require additional dependencies to be installed on
the system such as dynamic libraries. The recovery of such
elements may lead back with no doubts to the use of an
automation. It is worth highlighting that a filesystem assigns
some metadata to each file stored on the media. It typically
includes file name, size, type (regular file, directory, device,
etc.), owner, creation time, last access time, last modification
time, last metadata change time and so on. Such informa-
tion is typically maintained in filesystem-specific structures
stored on particular disk locations (e.g., the Allocation Table
in FAT, the Master File Table in NTFS, the i-nodes in the
*NIX filesystem). The metadata management algorithm may
vary depending on the filesystem implementation. Gener-
ally, whenever a file is deleted, the respective metadata may

persist on the disk for a long time. Whenever recovered, such
information may reveal useful traces to the DFA.
Execution Traces: In any OSes the process is the basic

execution unit [24]. Whenever a program is executed, dif-
ferent modules of the OS are in charge of creating the
necessary data structures in memory, loading the code from
the executable file and scheduling its execution. Even early
OSes were equipped with kernels able to trace the process
activity and record information such as executable name, pro-
cess creation time, amount of CPU cycles and memory used.
These records are generally referred to as accounting data.
Support for process accounting is provided by most of *NIX
kernels. Whether enabled, such feature may constitute a criti-
cal source of unwanted evidence.More generally, any logging
mechanisms, not necessarily kernel modules, can produce
unwanted evidence. Examples of logging services are the
syslogd [25] on *NIX and the Event Log Service [26] onWin-
dows. Recent OSes often make use of caching mechanisms to
improve system response, which basically consist in record-
ing ready-to-use information about programs and data (e.g.,
the Prefetcher feature [27] on Windows) or libraries (e.g., the
ldconfig service [28] on Linux). In recent OSes, the mem-
ory management subsystem typically implements the Virtual
Memory [24] feature, which allows to swap memory pages to
and from the hard drive in order to free up sufficient physical
memory to meet RAM allocation requirements. In the case in
which memory pages belonging to the automation process are
swapped from the physical memory, unwanted information
might be stored onto the disk unbeknown to the user.
Logon Traces: For auditing and security purposes, logging

services typically record login and logout operations of each
user. Logon traces may include information like local login
time, local logout time and address of the remote host that
performed the operation. Even though containing no infor-
mation related to the automation process, logon traces may be
an important source of information for the DFA and therefore
should be carefully managed by the AM. Traces like system
accesses performed at unusual time, or even login operations
followed by many hours of inactivity may be classified by the
DFA as being part of an anomalous behaviour.
While automating the logout procedure is relatively simple

(e.g., most of theOSes provide facilities to power-off the com-
puter, like the shutdown.exe program on Windows and
the shutdown command on *NIX), automating the user’s
login is more tricky. Some BIOSes provide the Automatic
Power Up functionality, which may be leveraged to schedule
the beginning of the automation procedure. A trivial solution
to directly access the user’s environment is to disable the login
prompt. Alternatively, the automation could be set-up in order
to be launched at boot time with system privileges, so that it
would be able to insert the user’s credentials to access the
system. However, such a solution is not easy to implement.
For sake of simplicity, in this workwe assume that theAMcan
access the system in order to manually launch the automation
procedure, which will sleep until the the beginning of the
activity simulation.

220 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

B. UNWANTED EVIDENCE HANDLING
The handling of unwanted traces is the most delicate part
of the automation methodology, since it might require a
reasonable knowledge of the underlying operational envi-
ronment. The AM should be aware of any OS modules,
services and applications running on the system in order to
identify all possible sources of unwanted evidence [29]–[31].
In general, it is possible to identify some basic principles
in order to accomplish unwanted evidence handling. In the
following, three complementary approaches are documented:
a-priori avoidance, a-posteriori removal and obfuscation.

A-Priori Avoidance: The software environment hosting
the automation may be prepared in order to generate as less
unwanted evidence as possible. Such a-priori avoidance may
require a certain knowledge of the underlying operating sys-
tem, features and services running on the machine. A naive
approach consists of disabling any logging mechanisms and
other services that may record information about files and
processes belonging to the automation. For example, features
like Virtual Memory, Prefetch and Volume Shadow Copy
could be disabled on Windows. Similarly, logging services
such as syslogd can be disabled on Linux. However, the pres-
ence of disabled features that are typically enabled by default
may be considered suspicious by the DFA. Alternatively, the
AM could temporarily disable these services, but also this
solution might produce suspicious traces, such as ‘‘temporal
holes’’ in the system history.

In some cases the AM can avoid unwanted evidence by
exploiting some tricks. For instance, on Windows, it is pos-
sible to launch the automation from the command prompt
in order to avoid logging of the application path in the
Registry. On *NIX systems, the AM can avoid logging of
last executed commands by killing the terminal process. On
both Windows and *NIX systems, enough RAM can avoid
swapping of memory pages of the automation process to the
disk. A system-independent trick to reduce unwanted evi-
dence consists of executing the automation from an external
device (e.g., an USB flash drive), which avoids the presence
of anomalous files on the main filesystem. However, the
AM should wipe or destroy the external memory before the
intervention of the DFA.

A-Posteriori Removal: The a-posteriori removal is an
alternative or a complementary approach to the a-priori avoid-
ance and obfuscation. It is based on the removal of unwanted
traces by means of a secure deletion procedure. According
to the definition given in [32], the secure deletion of an
information is a task that involves the removal of any traces
of this information from the system, as well as any evidence
left by the deletion procedure itself. The core of a secure
deletion procedure is the wiping function, which should guar-
antee complete removal of the selected data from the system.
Typically, the common file deletion procedure provided by
the OS does not meet this requirement. In fact, this opera-
tion is typically implemented by means of the unlink [33]
system call, which only marks the blocks occupied by the

file as free space. This implies that file data may persist on
the disk until it is overwritten. The amount of rewritings
required to completely remove any traces of certain data
from an electromagnetic disk has been a controversial theme
[34]–[36]. However,Wright et al. [37] demonstrated that even
a single low-level overwrite of the disk blocks containing a
certain data is sufficient to guarantee its unrecoverability, as
previously stated in [38].
Obfuscation: It is very difficult for an average user to

both avoid and remove evidence like Windows Registry keys,
system log entries, filesystem metadata and so on. Typi-
cally, such resources are encoded or protected, and cannot
be accessed at system runtime. Modifying this information
may require a certain level of expertise with the underlying
OS. In some cases, the simplest solution for the AM is
to obfuscate the automation traces by making them appear
like produced by common application or system activities.
It can be accomplished by adopting simple shrewdness such
as using common filenames, storing the suspicious files in
system folders, mixing automation files with non-suspicious
padding files (images, videos), etc..
In general, the more the AM is able to avoid unwanted

evidence, the less the probability is to make mistakes in
handling them.However, asmentioned before, theAM should
be careful in disabling system features, since it could be
considered, in turn, a suspicion. The better solution to divert
a forensic analysis is to make all the evidence appear as
‘‘usual’’. An optimal trade-off between system alteration and
unwanted evidence removal can be reached by combining all
three approaches presented before.

The a-posteriori removal technique is meant to remove all
the residual unwanted evidence of an automation. There are
basically two approaches to accomplish this task:manual and
automatic.
Manual Deletion: In case the AM has physical access

to the TS before the DFA intervention, he can manually
delete the unwanted traces produced by the automation. In
particular, he could wipe any files belonging to the automa-
tion, remove any suspicious entries in application logs and
clean-up system records. The AM could use OS-specific tools
to accomplish this task. For example, the shred tool [39]
on *NIX systems and the SDelete software [40] on Win-
dows systems. However, this approach has two disadvantages.
First, some protected resources such as filesystem structures
cannot be accessed at system runtime. Second, the use of
wiping tools may recursively determine the generation of
other unwanted evidence. A better approach is to indirectly
access the system storage, for example, by means of a live
Linux distribution such as the Deft [41] suite. In this way,
the AM can access and modify system protected resources.
Since the entire software environment used to accomplish this
task is maintained in memory, with the due precautions, this
approach produces no unwanted traces on the TS.
Automatic Deletion: The system clean-up procedure

could be part of the automation itself. After producing the

VOLUME 1, 2013 221

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

digital alibi, the script should be able to automatically locate
all the unwanted evidence. It can be accomplished in a static
way (i.e., hardcoding file paths into the automation), or even
in a dynamic manner (i.e., searching for all the occurrences
of a particular string in both allocated and unallocated space
of the hard disk). Finally, a secure deletion module has to be
invoked to complete the work. A secure deletion procedure
should not be limited to the removal of a specific information,
but it should also remove any evidence of its presence from
the system. In other words, it should be also able to perform a
self-deletion. This is not a simple task, since executable files
are typically locked by the operating system loader. This is
done to preserve the read-only property of the text segment
of the executable code.

This issue can be solved by exploiting some characteristics
of the interpreted programming languages [32]. Typically, an
interpreted program does not use native machine code, but
an intermediate language instead (e.g., Java bytecode, Python
script, etc.), which is indirectly executed bymeans of an inter-
preter. Despite the interpreter being a binary executable, and
therefore locked by the loader, most of interpreters does not
apply the lock in scripts in execution. Under such conditions,
the interpreted program can perform self-modification and, as
a consequence, self-deletion.

The main advantage of the manual method for a-posteriori
deletion is its simplicity. It does not require particular skills,
but only a little knowledge of the operational environment.
However, it requires physical access to the TS before its
seizure. On the contrary, the automatic method does not
require a further intervention of the AM. Nevertheless, it
has two disadvantages. First, the automatic clean-up process
runs on the same operational environment of the automation,
which might produce unwanted evidence, in turn. Second, it
requires technical expertise for the implementation of the self-
deletion procedure.

IV. DEVELOPMENT OF AN AUTOMATION
The development of an automation can be divided into five
phases: (1) preparation of the development environment;
(2) implementation of the automation; (3) testing of the
automation procedure; (4) exportation of the automation;
(5) destruction of the development environment. Clearly, the
steps (1) and (5) are strongly related and therefore are dis-
cussed together.

A. PREPARATION AND DESTRUCTION OF THE
ENVIRONMENT
Not only the execution of an automation may produce
unwanted evidence, but also its development process. For
example, traces of software, libraries, files used to implement
the automation may remain on the TS in the form of tempo-
rary data, unlinked blocks on the disk, filesystem metadata,
operating system records, etc.. In general, the development
environment should meet some specific requirements: (1) it
should be totally isolated from the TS, so that no evidence of

the development process is left on the TS; (2) it should be tem-
porary, since it is, in its complexity, an unwanted evidence to
be destroyed; (3) it should be as similar to the TS as possible,
since the automation implemented/tested on this environment
should be exported and executed on the TS without a hitch.
There are many techniques to create a proper development
environment:

• Virtual machine: A virtual machine running the same
OS of the TS can be executed within the TS itself. In
this case the AM can exploit the isolation of the virtual
machine, which guarantees that any actions performed
on the guest system do not affect the host system. The
only issue of this approach regards the destruction of
the development environment, which can be reduced
to the secure deletion of the file(s) storing the virtual
drive.

• LiveOS:A live version of the target systemmay be used
as a development environment. Currently, live versions
of all the most used operating systems are available on
the Web. The main advantage of this approach is that
the AM needs not worry about destroying the develop-
ment environment, since a careful use of the live OS
may prevent any accesses to the disk. However, it has
some disadvantages such as limited resources and data
volatility upon reboots.

• Physically isolated system: The automation can be
implemented/tested on a different computer. In this
case, the AM has complete freedom about system
configuration and automation testing. Clearly, the AM
should get rid of this device after the development is
completed.

B. IMPLEMENTATION OF THE AUTOMATION
The implementation of an automation strongly depends on
the choice of the automation techniques and tools. It may
be accomplished by using easy-to-use frameworks such as
AutoIt [42], or by writing hundreds code lines in a what-
ever scripting language, or even by combining both tech-
niques. Generally, the implementation of an automation
is strictly related to the operational environment. Most of
automation tools and APIs suitable to simulate user inter-
actions are based on screen coordinates. Therefore, dif-
ferent screen resolution or even different position of GUI
elements on the screen may cause a malfunction of the
automation. Since the automation aims to simulate a real
human behaviour, all the automated operations should be
carefully synchronized (e.g., writing into a document only
after it has been loaded). However, different operational
environments may have a different response time to the
same input (e.g., due to different system load), which may
undermine the correct synchronization of the operations. In
order to tackle these issues, the AM has to be able to set-
up a development system which is as similar as possible to
the TS.

222 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

C. TESTING OF THE AUTOMATION PROCEDURE
The testing phase has a twofold objective: (1) verify that the
automation acts correctly, so that it fulfills all and only the
expected operations; (2) identify all the unwanted artifacts
left by the automation. The first task can be accomplished
by executing the automation procedure several times, even in
different system conditions (high CPU or memory load, low
network bandwidth, etc.). The AM should always ensure that
all the wanted evidence are correctly produced (documents
written, browser history updated, email sent, etc.). The second
task is more complex since it includes the identification of
all the resources accessed and modified by the automation
process, after which theAM should be able to discernwhether
such system changes may disclose unwanted information
about the automation procedure. Some specific tools can turn
out to be useful to accomplish this task:

• Process monitoring tools: It is extremely useful to
examine the automation at runtime in order to detect all
changes it makes to the system. It may be accomplished
by means of a process monitoring tool such as Process
Monitor [43] on Windows. Such application allows to
monitor real-time filesystem accesses, Registry changes
and process/thread activities. On *NIX environment,
lsof [44] may reveal useful information about files,
pipes, network sockets and devices accessed by the
automation.

• Digital forensic tools: The AM may simulate the activ-
ity of the DFA by performing a self post-mortem anal-
ysis of the development system. There are many *NIX
forensic distributions freely available on the Web (e.g.,
DEFT [41], CAINE [45], etc.), which contain lots of
professional computer forensics software to accomplish
this task.

D. EXPORTING THE AUTOMATION
Before executing the automation, all the necessary files
should be exported from the development system to the TS.
There are a number of viable strategies, with each one pro-
ducing different kinds of unwanted evidence. A couple of
possible approaches are described below.

• Network Transfer: All the needed files can be sent
to the TS through a shared folder on the LAN, can be
attached to an email, or can be uploaded on a free hosting
server. Subsequently, the automation can be downloaded
on the TS in order to be executed. After the download,
any suspicious file should be securely removed from
the hosting server. This last action could be problematic
as the AM typically does not have full access to the
remote machine. It can be resolved, for example, by
uploading the automation files in an encrypted archive,
which should prevent any recovery attempts.

• External Memory Transfer: In case the automation
is loaded on the TS, all the suspicious files should be
securely deleted after its execution. Alternatively, the
automation could be executed from an external support,

such as a CD-ROM, an USB flash drive or a SecureDig-
ital card (SD card from now on). The execution of the
automation does not require to copy any unwanted files
on the TS. In case the AM cannot physically destroy
the external memory before the DFA intervention, an
automatic secure deletion procedure should be imple-
mented. However, the device can be equipped with a
non-transactional filesystem, like FAT, in order to reduce
the risk of data remanence. Using some implementation
tricks (see Section VI-B), the external storage can be
removed immediately after the launch of the automation,
with it completely avoiding the requirement of a secure
deletion procedure.

E. ADDITIONAL CAUTIONS
Considering that the list of sequenced eubacterial genomes
[46] contains all the bacteria known to have publicly available
complete genome sequences, it is possible to recognize who
have used a computer by analyzing the bacteria left by its
fingertips on the keyboard and mouse [47]. The imprints
left by the bacteria may persist for more than two weeks.
Potentially, this is a new tool for forensic investigations. Of
course, this kind of analysis can be also exploited by the AM
to enforce his digital alibi. If the suspected is the only one to
have used the computer, the defendant can request a forensic
analysis which may confirm that the bacterial traces on the
keyboard and mouse are those of the suspect.
People have their habits and then follow a predictable

pattern. For example, it may be usual for the AM to establish
an Internet connection during the morning, access a mailbox,
browse some websites and work on some documents. For an
airtight alibi, the behaviour of the AM inferred by the DFA
from the TS should be very similar to his typical behaviour.
Here, the possibility to use digital profiling techniques
[48]–[50] could be very useful to the DFA in order to deal
with difficult cases.
The post-mortem analysis of a computer may reveal a

large number of digital evidence due to data remanence
on the storage media. There are some forensic tools, such
as log2timeline [51], which can be used to extract time-
referenced information from a disk at different abstraction
levels (filesystem, application, etc.). Such information may
be used to reconstruct a timeline of the actions performed by
the user. These results could be used, in turn, to extract the
user’s behavioral pattern, i.e., the correlation of the activities
performed by the user over time. It could be accomplished, for
example, by means of machine learning techniques. In order
to avoid anomalies, the AM should always verify that the
traces produced on the system fit with its usual behavior.

V. AUTOMATION TOOLS
An automation tool has been referred to as a framework
that allows the implementation of a program able to simulate
user activities. There are a number of easy-to-use applica-
tions which can be leveraged to accomplish this task. In
general, any programming languages providing support for

VOLUME 1, 2013 223

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

simulation of GUI events are potential automation tools.
Typically, a programming language allows a finer devel-
opment with respect to a ready-to-use application, but it
requires a technical expertise. A series of experiments has
been conducted on different operating environments by using
different automation tools. They turned out to differ in ease
of use, effectiveness, portability and unwanted evidence gen-
eration. In effect, there is no best solution: the choice of
an automation tool strictly depends on the environment, on
the user skills and on the complexity of the alibi to be
constructed.

A. THE SIMPLEST APPROACH: EXISTING SOFTWARE
There is a variety of existing software able to record and reply
user actions, mostly intended for GUI testing. One of the most
used on Windows environments is AutoIt [42]. It provides
both a tool for recording user actions and a fully-fledged
scripting environment to refine the script produced by the
recording tool. An useful characteristic is that an AutoIt script
can be compiled into a standalone executable, which does not
require the presence of the AutoIt interpreter on the TS to be
executed. A valid alternative to AutoIt is AutoHotkey [52],
an open-source utility which basically provides the same
features of AutoIt.

For Linux environments, it is worth mentioning GNU
Xnee [53], which allows to record and replay user events
under the X11 environment [54]. It can be invoked by both
command line and GUI. An alternative is Xautomation, a
suite of command line programs which enables to interact
with most of objects on the screen and to simulate basic
user interactions under the X11 environment. Another valid
choice is xdotool [55], an application providing advanced
features to interact with the X11 environment. In addition to
Xautomation, it allows to search, focus, move among win-
dows and virtual desktops, waiting for loading of application
interfaces and so on. The xdotool-gui application provides an
easy-to-use visual interface to xdotool. A key feature is that
it is implemented by just two files, the xdotool itself and the
libxdo.so.2 library.

The Apple Mac OS also offers a number of automation
tools. An example is Automator [56], which provides an
easy-to-use interface where the user can construct an automa-
tion by drag-and-dropping a series of predefined actions. An
advantage is that Automator comes pre-installed with Mac
OS X, thus not requiring installation of third-party software.
However, it is not suitable to simulate complex user actions
such as Web browsing. In addition, it requires access to
several system resources, with it producing many unwanted
traces.

B. ADVANCED APPROACHES
The use of an existing automation software may turn out to be
restrictive whether advanced simulation features are required.
In these cases, an AMwith some expertise could write a fully
customized automation by using a programming language.
The choice of an interpreted language should be preferred as

it simplifies the implementation of some features like the self-
deletion [32].
VBScript (see Section VI-B) is a scripting language sup-

ported by default on any recent Microsoft OSes. It pro-
vides some basic procedures to simulate user interactions,
such as mouse movements, clicks and keystrokes. The main
advantage of using VBScript to implement an automation
would be that it does not require any third-party resources.
In Mac OS, the AppleScript [57] language provides an

useful framework to build automations. It is supported by
default on Mac OS and does not require external modules
to be installed. AppleScript files can be also compiled into
standalone executables. In substance, it can be compared to
VBScript in characteristics and functionalities.
Advanced programming languages often provide sup-

port for the simulation of user actions. An example is the
Robot [58], [59] package included in the Java runtime envi-
ronment. Although providing a fine-grained control of the
system, building an automation by means of a programming
language requires high expertise in code writing and can
result in long and complex code to be carefully tested.
A hybrid approach would provide the better trade-off

between potentiality and ease of implementation. A hybrid
automation consists of two or more modules, each imple-
menting a specific feature. In this way, the better automation
tool can be chosen to accomplish a particular task. A basic
hybrid automation could be composed by a launcher and a
simulator. The launcher would be a program written in a
certain programming language, in charge of accessing low-
level system features and managing the event timeline. The
simulator would be in charge of simulating user actions and
producing wanted evidence. It could be implemented by
means of a high-level automation tool such as xdotool or
AutoIt.
In the presented experiment the automation is exported

through an SD card, connected to the target system by
means of an USB adapter. As previously stated in IV-D, this
approach allows to avoid suspicious files on the TS, without
the need to adopt a secure deletion technique to clean-up the
system. The only traces that might remain on the system are
information about the USB adapter, such as the Device ID
and the Vendor ID, and the name of the automation script
in (unreferenced) Registry entries. It is assumed that the AM
has access to the SD card before the DFA intervention, so
that its content can be replaced with non-suspicious files or
destroyed.

VI. CASE STUDY: WINDOWS 7
This case study presents an implementation of the automation
methodology. The user activities simulated by the automation
are summarized in Table 2. The automation can be set in order
to start the simulation at a given time, and the overall duration
of the alibi is spread on a timeline lasting about 30 minutes.
Creating an advanced automation for Windows 7 is a deli-

cate task, because of the large amount of unwanted evidence
that should be taken into account. The OS implements lot

224 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

TABLE 2. Alibi Timeline.

Time Activity

t0 Execution of a Web browser.

t1 Access to Facebook.

t2 Posting of a message on Facebook.

t3 Execution of a word processor.

t4 Use of the word processor to write a document.

t5 Use of the browser to access GMail.

t6 Sending of an email.

t7 System shutdown.

of features and services which perform intensive logging
of information about executed programs and accessed data.
Moreover, it is worth noting that Windows 7 uses the NTFS
filesystem [60], which implements conservative policies for
space allocation. In practice, each time a file is modified, the
filesystem allocates new blocks, with it leaving unallocated
blocks on the disk containing previously deleted data. The
filesystem journal could also be a source of data remanence.
All the techniques and tools presented in this section are also
suitable to construct an automation on older Microsoft OS
versions such as Windows XP. Besides, the unwanted traces
to be managed on Windows 7 are a superset of those to be
managed on past versions, due to the increasing number of
features.

A. UNWANTED EVIDENCE IN WINDOWS 7
As discussed in the previous sections, an automation can
leave a number of unwanted traces, such as the presence of
suspicious files on the filesystem. In addition to that, lots
of OS components rely on massive recording of information
about used applications and accessed files. Such character-
istics could determine the presence of unwanted evidence of
the automation being recovered in the post-mortem analysis
by the DFA. In this section, some possible solutions to avoid
as much unwanted traces as possible are discussed. The main
sources of unwanted evidence on Windows 7 are discussed
below.

Prefetch/Superfetch: The Prefetcher module aims to
speed-up the launch of applications executed at system start-
up by pre-loading information into the memory. Portions of
code and data used by these programs are recorded in specific
files stored in a caching location on the filesystem (i.e., the
C:\Windows\Prefetch\ folder). The Superfetch mod-
ule, active by default on Windows 7, enhances this feature by
extending it to any application on the system. Basically, fre-
quency of use of programs and files is monitored and recorded
in a sort of history files stored in the prefetch folder. Lots of
information (such as a list of recently accessed files) can be
extracted from these logs by means of the ReWolf’s tool [61].
The Superfetchmodule aims to pre-load applications and data
accessed more frequently. If an automation is executed on a
Windows 7 system, some traces about its use may be logged
by the Superfetcher. However, unless the automation is exe-
cuted lot of times, no meaningful information about code

and data should be recorded due to the prefetching feature.
Although the Superfetch service can be disabled [62], a better
method to avoid unwanted traces in the logs is obfuscation
(i.e., the use of non-suspicious filenames).
Pagefile:The virtual memory technique allows to the exist-

ing processes of an OS to use an overall amount of memory
that exceeds the available RAM. The OS can move pages
from the virtual address space of a process to the disk in order
to make that memory free for other uses. In the Windows
systems, the swapped pages can be stored in one or more files
(pagefile*.sys) in the root of a partition. On the modern
PCs the use of memory rarely exceed the available RAM as
it is sufficient to address all the common system activities.
Therefore, it is common among Windows users to disable
such feature in order to gain more disk space. Although it is
very unlikely that pages of an automation are swapped onto
the disk (unless some heavy processes are launched during
its execution), disabling the virtual memory could be a better
solution to prevent eventual clues.
Restore Points: System Restore is a component of Win-

dows 7 that periodically backups critical system data (Reg-
istry, system files, local user profile, etc.) in order to allow
roll-back to a previous state of the system in case of mal-
function or failure [63]. The System Restore service can
be manually configured by the user and also automatically
triggered by specific system events.
The creation of restore points can be predicted and thus

avoided. In fact, it typically only occurs when an applica-
tion is installed by means of an installer compliant with the
System Restore, whenWindows Update installs new updates,
or when no other restore points have been created in the last
seven days.
Hibernation: The hibernation technique allows to power-

off a computer without losing its state, which can be resumed
at the next power-on. It is implemented by dumping the con-
tent of the RAM onto the disk. InWindows 7 a memory dump
is saved into the file C:\hiberfile.sys, which can be
straightforwardly converted into a readable format in order to
be analyzed. Typically, the hibernation module is enabled by
default on laptops and can be automatically triggered upon
long time of system inactivity. In order to avoid dump of
information about the automation into the hibernation file, it
is preferable to keep such service disabled.
Registry: The Windows Registry is a database aimed

to store system settings as well as application and user
settings. It contains various kinds of information about
the OS, device drivers, services, user credentials, appli-
cations and so on [64]. The Registry is organized in a
hierarchical structure whose content is stored on multiple
files. Typically, global system settings are stored in the
C:\windows\system32\config folder, while user-
specific information is stored within its home directory (in
NTUSER.DAT and USRCLASS.DAT). Since the integrity of
the Registry is fundamental for the proper functioning of the
system, the OS frequently backups these files. Registry back-
ups can be found on different locations of the filesystem, such

VOLUME 1, 2013 225

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

as in the C:\windows\system32\config\RegBack
folder or within the restore points created by the System
Restore service. In the context of a computer forensic anal-
ysis, the Registry is the larger source of evidence on a
Windows-based system. By analyzing the Registry, it is pos-
sible to reconstruct any ordinary user actions such as hard-
ware plugged-in to the computer, executed software, network
activities and opened documents.

The secure deletion of a Registry key in order to hide some
information is very challenging. The removal of a Registry
key is typically implemented by marking the respective cell
as deallocated, but its content may persist on the disk until
it gets overwritten. It is definitely hard for an AM to avoid
any information about the automation being recorded in the
Registry. For this reason, it could be preferable to adopt a
different strategy such as obfuscation.

An example of system feature making extensive use of the
Registry is the UserAssist feature. It is used since Windows
XP to populate the user’s Start Menuwith the most frequently
used applications. This is accomplished bymaintaining appli-
cation names and relative frequency counters in a specific
Registry key of the user’s hive (within the NTUSER.DAT
file):

Logging of information in the UserAssist key can be
avoided by running the automation from the command
line.

B. IMPLEMENTATION
This section presents the implementation of the VBScript
automation used for this case study. VBScript is a scripting
language developed by Microsoft and modeled on Visual
Basic. The interpreter for standalone scripts is provided by
the Windows Script Host (WSH) environment, installed by
default on Microsoft OSes since Windows 98.

The use of VBScript to implement an automation has a
number of advantages. First of all, no third-party automa-
tion tools are required, since any required resources are
installed by default on Windows 7. The VBScript inter-
preter typically loads the entire script into the memory
before its execution and does not lock the relative file. This
characteristic allows to physically remove the support con-
taining the automation immediately after the procedure is
started. In addition, VBScript can use the Component Object
Model (COM) to interact with the system. In particular,
the Wscript.Shell COM is used. It provides the basic
mechanisms of interaction with the operating system. More
in details, the Run method is used to execute external com-
mands, the AppActivate method to change the focus of a
running application, the Sleep method to pause the script
execution and the SendKeys methods to send keystrokes to
the currently active window. The automation has been coded
into a script named HexToDec.vb, which performs all the

activities summarized in Table 2. The script has been loaded
onto a SD card containing other multimedia files—referred
to as padding files—like videos and images. Once launched,
the WSH interpreter loads the entire automation code into the
memory, so that the SD card can be safely removed from the
TS without interrupting the execution of the automation. In
this scenario the transfer device (i.e., the SD card) can be
physically destroyed before the DFA intervention.

C. EXECUTION
Once the SD card storing the automation is plugged into the
computer, the system automatically mounts the removable
device and assigns a drive letter to it (e.g., E:). The SD
content is accessed by means of the File Explorer and the
script HexToDec.vb is launched with a simple double-
click. The automation delays the execution of the first action
of the alibi to the time t0. The starting time is hardcoded
into the script by means of the Sleep(milliseconds)
method. The automation simulates the use of a Web browser
and some other applications present by default on the system.
The launch of an application is performed by leveraging the
search functionality of the Start Menu. The actions simulated
to accomplish this task have been: (1) the pressure of the
‘‘Windows’’ key in order to open the Start Menu and get the
focus of the Search text box; (2) the typing of the application
name in order to get the application link; (3) the pressure of
the ‘‘Enter’’ key in order to execute the selected application.
The following code excerpt shows the implementation of

this technique. Type is a custom function used to simulate
random delays between each keystroke (see Listing 4). Some
details have been simplified for the sake of clarity.

It is worth noting that this function does not produce
unwanted evidence. In fact, the produced evidence are exactly
those that would be produced whether the application is
executed by the real user. The use of the application can
be confirmed by the analysis of the following Registry key,
which contains the list of the recently executed applications
and from the UserAssist key, as mentioned before:

1) Execution of a Web Browser
One of the main activities of the automation is the use of a
Web browser. Although any Web browser supporting key-
board shortcuts can be used to accomplish this task, in this
case Internet Explorer 8 has been chosen as it is installed by

226 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

default on Windows 7. It is important to note that Internet
Explorer is launched at time t0 and closed at the end of the
timeline. The automation uses the Web browser at times t1
to access the Facebook website, at time t2 to post a message,
at time t5 to access the GMail website and at time t6 to send
an email (see Tab. 2). The browser is left open for the entire
alibi timeline in order to simulate the contemporary use of
different applications. Internet Explorer is launched bymeans
of the VBScript function defined in Listing 1. In order to
avoid failures, it is crucial that the following precautions are
taken:

• The Internet connection must be functioning and stable
for the entire timeline. A connection interruption or an
excessive loading time could interfere with the correct
behaviour of the automation.

• Eventual certificates required for secure connections
with the websites visited by the automation must be pre-
ventively installed. On the contrary, the browser might
show a warning dialog that would remove the focus from
the main window.

• It could be necessary to disable the automatic saving
of login information in order to prevent errors when re-
filling authentication forms.

• The block of pop-ups should be disabled whether the
automation uses pop-up frames to interact with some
websites.

• All the websites accessed by the automation should be
added to the ‘‘Trusted Sites’’ of Internet Explorer.

2) Use of Facebook
Taking a cue from the case of Rodney Bradford (see
Section I-A), the false digital alibi of this case study
includes the posting of a status message on Facebook.
The procedure in charge to accomplish this task is started
at time t1. After the browser is launched, the automa-
tion simulates the CTRL + L keystroke in order to gain
the focus of the address bar. Subsequently, the address
www.facebook.com is typed in order to access the Face-
book website. Once the page is loaded, the focus automat-
ically passes to the login form. The required information
is typed and submitted for authentication. Once the per-
sonal page of the user is loaded, a sequence of keystrokes
(CTRL + F, What’s on your mind?, ESC) is sent to
the browser in order to gain the focus of the Update Status
input box, then a message is typed and submitted to Face-
book. The result is a new Update Status message with a
timestamp compliant with the alibi timeline. It is important

to highlight that all the actions performed by the automation
are interleaved with appropriate time delays in order to allow
the proper loading of the visited webpages. Moreover, each
delay is also randomized in order to comply with the normal
user behaviour. An excerpt of the VBScript code performing
this task is shown in Listing 2. Some details, such as random
delays, have been omitted for the sake of simplicity.
Since the automation code is strictly related to the page

layout, this procedure may fail on unexpected changes of the
Facebook website.

3) Use of a Word Processor
At time t3 the automation executes the WordPad application
in order to simulate a document writing. The text to be writ-
ten is embedded in the automation script. Once the writing
operation is completed, the Save As dialog is triggered by
the CTRL + S keystroke, a name for the document is typed,
then the ENTER keystroke is sent to the application in order
to save such document. An excerpt of the code performing
these operations is shown in Listing 3. As for the previous
cases, some details have been omitted for the sake of clarity.

A digital forensic analysis could reveal an anomaly if the
creation date of the document is very close to the last modified
date. Such information can be retrieved from the filesystem
metadata. This issue is addressed by introducing a random
delay between each keystroke by means of the Type()
function. An excerpt of the Type function is shown in
Listing 4. The variables min_delay and max_delay indi-
cate, respectively, the minimum andmaximum delay between
each keystroke.

4) Sending of an Email
The last activity performed by the automation is the use of
the GMail service in order to send an email. At time t5,
after closing the WordPad window, the input focus passes
to Internet Explorer. Similarly to the case of Facebook, the
automation exploits the keyboard shortcut CTRL + L to
acquire the focus of the location bar, types the URL of the
GMail website and sleeps some seconds in order to allow
its loading. At this point the script fills the login form and
waits for the loading of the service. The page used for the
composition of a new email is invoked by exploiting the

VOLUME 1, 2013 227

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

Find function of the browser (CTRL + F) and searching
for the string COMPOSE. This trick enables to acquire the
focus of the COMPOSE button. After inserting the recipient
and the message, a TAB keystroke is sufficient to acquire
the focus of the SEND button in order to send the email.
As for the case of Facebook, the proper functioning of
the automation strictly depends on the layout of the GMail
website.

D. ANALYSIS
The analysis phase has a twofold objective: (1) verify that
the digital evidence produced by the automation on the TS
is coherent with the alibi timeline; (2) discover any unwanted
evidence left by the automation. In order to accomplish these
tasks a digital forensic analysis has been arranged according
to the methodology presented in [65]. With respect to a real
case, the DFA has full knowledge about methods, procedures
and technologies adopted to construct the digital alibi. As
a consequence, the analysis may be better targeted. The TS
has been implemented as a Virtual Machine (VM) in order to
speed-up and simplify the overall analysis procedure. More-
over, the use of a VM allows to create different snapshots of
the system in order to analyze differences between the state
before and the state after the execution of the automation
procedure. The analysis mainly focused on the following
aspects.

Operating System and Applications: All the system
structures containing information about executed applications
(e.g., Registry, Prefetch and Superfetch files, Pagefile, and
so on) have been analyzed in order to verify whether the
automation produced artifacts. Any evidence being part of
the alibi (accesses to websites, creation of documents, etc.)
has been also collected in order to reconstruct the alibi
timeline.

Timeline: This analysis focused on the identification of all
the files accessed or modified during the construction of the
alibi in order to detect any relationship with the automation
that generated them.

File Content: All the files modified during the alibi time-
line have been analyzed in order to find any suspicious trace
that may be linked to the execution of the automation.

Low-level search: A set of signatures of the automation
has been used to perform a deep low-level scan of the entire
hard disk (including allocated and unallocated space) in order
to find any possible clue of the automation.

The above activities have been carried out by using the
following digital forensic tools. RegRipper2 [66] has been
used to analyze the Windows Registry. IECookiesView [67],
IEHistoryView [68] and IECacheView [69] have been used
to analyze the browser activities. AccessData Forensic
Toolkit [70] has been used for the storage media analysis,
and in particular the DT Search engine has been adopted to
perform the low-level signature search. The Superfetch files
have been analyzed bymeans of SuperFetchDumper [61]. All
the traces revealed by the analysis confirmed the alibi, while
no clue about the automation was found.

VII. CONCLUSION
This paper presents a methodology to generate a set of
digital evidence that could be exploited by a party in a
trial in order to claim an alibi. With respect to common
anti-forensic techniques, which are typically based on infor-
mation tampering, our methodology relies on the construc-
tion of an automation. The automation is a program able
to simulate a series of human activities on a computer at a
given time. They include local operations such as document
writing and music playing, as well as remote operations
such as Web surfing and email sending. Using this approach,
it is possible to construct a digital alibi involving trusted-
third-parties such as ISPs and companies providing services
via Internet. The problem of avoiding or deleting unwanted
traces left by the automation is also addressed. Finally, a
case study on a target system running Windows 7 is pre-
sented in order to show a real application and implemen-
tation of the proposed methodology. A computer forensic
analysis of the target system has confirmed the alibi and
has revealed no unwanted evidence about the presence and
execution of the automation. Apart some differences, the
same methodology can be extended to any digital device
equipped with a modern operating system, such as Android
smartphones [71], [72].
This work highlights the need of an evolution in approach-

ing legal cases that involve digital evidence. Digital evidence
are circumstantial evidence and should be always considered
as part of a larger behavioural pattern, which requires to
be reconstructed by means of traditional investigation tech-
niques. To sum up, the plausibility of a digital alibi should be
always verified cum grano salis.

ACKNOWLEDGMENT
The authors would like to thank friends from IISFA (Inter-
national Information System Forensics Association) for their
support, their valuable suggestions and useful discussions
during the research phase. In particular to Gerardo Costa-
bile (President of IISFA Italian Chapter), Francesco Cajani
(Deputy Public Prosecutor High Tech Crime Unit Court of
Law in Milano, Italy), Mattia Epifani and Litiano Piccin of
IISFA Italian Chapter.
We would like to thank V.Q.A. Elvira D’Amato (Head

of the Centre Against Child Pornography on the Internet,
Postal and Communications Police, Italian Ministry of the
Interior), Lieutenant Colonel Antonio Colella (cybercrimi-
nologist and Italian Army Officier) and Moti Yung (Google
Inc. and Columbia University) for their worthy advices and
support.
A special thank goes to Mario Ianulardo, Computer Crime

Lawyer (Naples, Italy) for the endless and interesting discus-
sions on the probative value of a false digital alibi.

REFERENCES
[1] Miniwatts Marketing Group. (2012, Jun.). Internet World Stats,

Bogota, CA, USA [Online]. Available: http://www.internetworld
stats.com/stats.htm

228 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

[2] W. Kruse and J. Heiser,Computer Forensics: Incident Response Essentials.
Upper Saddle River, NJ, USA: Pearson Education, 2001.

[3] Symantec Corporation. (2013, Feb.). Norton Cybercrime Report
2012, Sunnyvale, CA, USA [Online]. Available: https://www.norton.
com/2012cybercrimereport

[4] U.S. Legal, Inc. (2001–2013). Digital Evidence Law &
Legal Definition, Flowood, MS, USA [Online]. Available:
http://definitions.uslegal.com/d/digital-evidence/

[5] U.S. Legal, Inc. (2001–2013). Legal Definitions and Legal
Terms Dictionary, Flowood, MS, USA [Online]. Available:
http://definitions.uslegal.com/

[6] Msnbc News, Company. (2013, Mar.). Facebook Message Frees
NYC Robbery Suspect, New York, NY, USA [Online]. Available:
http: // www.msnbc.msn.com / id / 33883605 / ns/technology_and_science-
tech_and_gadgets/

[7] The New York Times Company. (2013, Mar.). I’m Innocent. Just Check
My Status on Facebook, New York, NY, USA [Online]. Available:
http://www.nytimes.com/2009/11/12/nyregion/12facebook.html?_r=1

[8] V. Juarez. (2009, Nov.). Facebook Status Update Provides
Alibi—CNN Website [Online]. Available: http://edition.
cnn.com/2009/CRIME/11/12/facebook.alibi/index.html

[9] S. Vitelli. (2013, Feb.). Sentenza Di Primo Grado
Del Processo Stasi [Online]. Available: http://static.
repubblica.it/laprovinciapavese/pdf/SENTENZA_STASI.pdf

[10] F. Bravo. (2013, Jan.). La Computer Forensics Nelle Motivazioni
Della Sentenza Sull’Omicidio Di Garlasco [Online]. Available:
http://internetsociety.wordpress.com/2010/03/16/ la-computer-forensics-
nelle-motivazioni-della-sentenza-sullomicidio-di-garlasco /

[11] Corte di Assise di Appello di Milano. (2013, Jan.). Sentenza Di
Appello Del Caso Garlasco, Milan, Italy [Online]. Available:
http://www.giuristiediritto.it/le-sentenze-dei-processi-penali-celebri/880-
sentenza-appello-caso-garlasco-alberto-stasi.html

[12] Corriere della Sera, Redazione Online. (2013, Jan.).
Garlasco, L’accusa Ricorre in Cassazione: Illogica
L’assoluzione di Alberto Stasi, Milan, Italy [Online]. Available:
http://www.corriere.it/cronache / 12_aprile_24 / garlasco-procura-ricorre-
cassazione-assoluzione-alberto-stasi_b42e721c-8e18-11e1-839c-11a4cf
6ed581.shtml

[13] D. McCullagh. (2013, Jan.). Police Blotter: Web Cookies Become
Defendant’s Alibi [Online]. Available: http://news.cnet.com/Police-blotter-
Web-cookies-become-defendants-alibi / 2100-1047_3-6129993.html?tag
=mncol;txt

[14] D. McCullagh. (2013, Jan.). Police Blotter: Computer Logs as Alibi
in Wife’s Death [Online]. Available: http://news.cnet.com/Police-blotter-
Computer-logs-as-alibi-in-wifes-death/2100-1030_3-6167028.html

[15] A. De Santis, A. Castiglione, G. Cattaneo, G. De Maio,
and M. Ianulardo, ‘‘Automated construction of a false digital alibi,’’
in MURPBES (Lecture Notes in Computer Science), A. M. Tjoa,
G. Quirchmayr, I. You, and L. Xu, Eds. New York, NY, USA: Springer-
Verlag, 2011, pp. 359–373.

[16] TeamViewer GmbH. (2012, Aug.). TeamViewer—Free Remote Control,
Remote Access & Online Meetings, Goppingen, Germany [Online]. Avail-
able: http://www.teamviewer.com/

[17] A. Weber. (2012, Aug.). Portable RealVNC Server [Online]. Available:
http://www.andysblog.de/portable-realvnc-server

[18] GoTo Servers. (2013, Oct.). VNC Server Java Applet (GSVNCJ),
New York, NY, USA [Online]. Available: http://www.gotoservers.
com/gsvncj.html

[19] PRO Group, Inc. (2013, Jan.). ProRat, Englewood, CO, USA [Online].
Available: http://www.prorat.net/

[20] Nuclear Winter Crew. (2013, Feb.). Bandook, New York, NY, USA
[Online]. Available: http://www.nuclearwintercrew.com/

[21] Opengear, Inc. (2013, Mar.). IP-KVM 1001, Sandy, UT, USA [Online].
Available: http://www.opengear.com/product-IP-KVM.pdf

[22] T. Myer, Apple Automator with AppleScript Bible. New York, NY, USA:
Wiley, 2009.

[23] (2013, Feb.). Video Game Bot—Wikipedia, the Free Encyclopedia
[Online]. Available: https://en.wikipedia.org/wiki/Video_game_bot

[24] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
8th ed. New York, NY, USA: Wiley, 2008.

[25] (2012, Dec.). Linux System Administration (8)—SYSKLOGD [Online].
Available: http://www.linuxmanpages.com/man8/syslogd.8.php

[26] Forensics Wiki. (2013, Feb.). Windows Event Log (EVT), Pittsburgh,
PA, USA [Online]. Available: http://www.forensicswiki.org/wiki/
Windows_Event_Log_(EVT)

[27] M. Russinovich, Microsoft Windows internals: Microsoft Windows Server
2003, Windows XP, and Windows 2000. San Francisco, CA, USA:
Microsoft, 2005.

[28] Linux Man-Pages. (2012, Dec.). Linux Programmer’s Manual
(8)—LDCONFIG, San Francisco, CA, USA [Online]. Available:
http://www.linuxmanpages.com/man8/ldconfig.8.php

[29] Microsoft. (2013, Jan.). Resources and Tools for IT Professionals—
TechNet, San Francisco, CA, USA [Online]. Available:
http://technet.microsoft.com/en-us/

[30] M. Kerrisk. (2013, Jan.). Linux Man-Pages Online [Online]. Available:
http://man7.org/linux/man-pages/index.html

[31] Digital Forensics Community. (2013, Feb.).ForensicsWiki, Rockland,MA,
USA [Online]. Available: http://www.forensicswiki.org/

[32] A. Castiglione, G. Cattaneo, G. De Maio, and A. De Santis, ‘‘Automatic,
selective and secure deletion of digital evidence,’’ in Proc. Broadband,
Wireless Comput., Commun. Appl., Int. Conf., Oct. 2011, pp. 392–398.

[33] M. Kerrisk. (2012, Sep.). Unlink(2)—Linux Manual Page [Online]. Avail-
able: http://man7.org/linux/man-pages/man2/unlink.2.html

[34] P. Gutmann, ‘‘Secure deletion of data from magnetic and solid-state mem-
ory,’’ in Proc. 6th Conf. USENIX Security Symp., Focusing Appl. Cryptog-
raphy, vol. 6. Jul. 1996, pp. 77–89.

[35] P. Gutmann, ‘‘Data remanence in semiconductor devices,’’ in Proc. 10th
Conf. USENIX Security Symp., vol. 10. Aug. 2001, pp. 1–4.

[36] U.S. Department of Defense. (2010, Feb.). DoD Directive
5220.22, National Industrial Security Program (NISP), New
York, NY, USA [Online]. Available: http://www.dtic.mil/whs/
directives/corres/html/522022m.htm

[37] C. Wright, D. Kleiman, and R. S. Sundhar, ‘‘Overwriting hard drive data:
The great wiping controversy,’’ in ICISS (Lecture Notes in Computer
Science), R. Sekar and A. K. Pujari, Eds. New York, NY, USA: Springer-
Verlag, 2008, pp. 243–257.

[38] (2006, Sep.). NIST Special Publication 800-88: Guidelines
for Media Sanitization [Online]. Available: http://csrc.nist.gov/
publications/nistpubs/

[39] P. Christias. (2012, Sep.). UNIX Man Pages: Shred (1) [Online].
Available: http://unixhelp.ed.ac.uk/CGI/man-cgi?shred+1

[40] M. Russinovich. (2013, Jan.). SDelete [Online]. Available: http://
technet.microsoft.com/en-us/sysinternals/bb897443

[41] S. Padrepietro. (2013, Jan.). DEFT Linux—Computer Forensics Live CD
[Online]. Available: http://www.deftlinux.net/

[42] J. Bennett. (2012, Jan.). AutoIt v3.3.6.1 [Online]. Available: http://www.
autoitscript.com/autoit3/

[43] M. Russinovich and B. Cogswell. (2012, Apr.). Process Monitor
[Online]. Available: http://technet.microsoft.com/en-us/sysinternals/
bb896645

[44] V. Abell. (1994). LSOF(8)—List Open Files [Online]. Available:
http://unixhelp.ed.ac.uk/CGI/man-cgi?lsof

[45] N. Bassetti. (2012). CAINE (Computer Aided INvestigative Environment)
[Online]. Available: http://www.caine-live.net

[46] Wikipedia. (2013, Apr.). List of Sequenced
Bacterial Genomes [Online]. Available:
http://en.wikipedia.org/wiki/List_of_sequenced_bacterial_genomes

[47] N. Fierer, C. L. Lauber, N. Zhou, D. McDonald, E. K. Costello,
and R. Knight, ‘‘Forensic identification using skin bacterial commu-
nities.’’ Proc. Nat. Acad. Sci. United States Amer., vol. 107, no. 14,
pp. 6477–6481, Jan. 2010.

[48] C. Colombini and A. Colella, ‘‘Digital profiling: A computer forensics
approach,’’ inAvailability, Reliability and Security for Business, Enterprise
and Health Information Systems (Lecture Notes in Computer Science),
A. Tjoa, G. Quirchmayr, I. You, and L. Xu, Eds. New York, NY, USA:
Springer-Verlag, 2011, pp. 330–343.

[49] C. M. Colombini, A. Colella, A. Castiglione, and V. Scognamiglio, ‘‘The
digital profiling techniques applied to the analysis of a GPS naviga-
tion device,’’ in IMIS, I. You, L. Barolli, A. Gentile, H.-D. J. Jeong,
M. R. Ogiela, and F. Xhafa, Eds. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 591–596.

[50] C. Colombini, A. Colella, M. Mattiucci, and A. Castiglione, ‘‘Network
profiling: Content analysis of users behavior in digital communication
channel,’’ inMultidisciplinary Research and Practice for Information Sys-
tems (Lecture Notes in Computer Science), G. Quirchmayr, J. Basl, I. You,

VOLUME 1, 2013 229

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

L. Xu, and E. Weippl, Eds. New York, NY, USA: Springer-Verlag, 2012,
pp. 416–429.

[51] K. Gudjonsson. (2013, Apr.). Log2Timeline—A Framework to
Extract Timestamps from Various Artifacts and Combine Into a
Single Timeline—Google Project Hosting [Online]. Available: https://
code.google.com/p/log2timeline/

[52] (2013, Jan.). AutoHotkey [Online]. Available: http://www.autohotkey.
com/

[53] H. Sandklef. (2013, Jan.). GNU Xnee [Online]. Available: http://www.
gnu.org/software/xnee/

[54] (2012, Oct.). X11, X.Org Foundation [Online]. Available: http://www.
x.org/wiki/

[55] J. Sissel. (2013, Jan.). Xdotool—Fake Keyboard/Mouse Input,
Window Management, and More [Online]. Available: http://www.
semicomplete.com/projects/xdotool/

[56] Apple Inc. (2013, Feb.). Apple Automator, Cupertino, CA, USA
[Online]. Available: http://www.macosxautomation.com/automator/

[57] Apple Inc. (2013, Jan.). AppleScript Overview, Cuper-
tino, CA, USA [Online]. Available: https://developer.apple.
com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptX/
AppleScriptX.html

[58] Oracle Java Documentation. (2012, Dec.). Robot (Java Platform
SE 6), Santa Clara, CA, USA [Online]. Available: http://
docs.oracle.com/javase/6/docs/api/java/awt/Robot.html

[59] Oracle Java Documentation. (2012, Dec.). Robot (Java
Platform SE 7), Santa Clara, CA, USA [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/java/awt/Robot.html

[60] Microsoft. (2013, Feb.). NTFS Technical Reference: Local
File Systems, San Francisco, CA, USA [Online]. Available:
http://technet.microsoft.com/en-us/library/cc758691(v=ws.10).aspx

[61] ReWolf’s blog. (2011, Oct.). Windows SuperFetch File Format—
Partial Specification, Salt Lake, UT, USA [Online]. Available:
http://blog.rewolf.pl/blog/?p=214

[62] Microsoft Support. (2013, Feb.). Windows 7 & SSD: Defragmentation,
SuperFetch, Prefetch, San Francisco, CA, USA [Online]. Available:
http://support.microsoft.com/kb/2727880

[63] Microsoft. (2013, Feb.). System Restore—Microsoft Windows, San Fran-
cisco, CA, USA [Online]. Available: http://windows.microsoft.com/en-
US/windows7/products/features/system-re%store

[64] M. Russinovich. (2013, Feb.). Inside the Registry [Online]. Available:
http://technet.microsoft.com/en-us/library/cc750583.aspx

[65] A. Castiglione, G. Cattaneo, G. De Maio, A. De Santis, G. Costabile, and
M. Epifani, ‘‘The forensic analysis of a false digital alibi,’’ in Proc. 6th Int.
Conf. Innovative Mobile Internet Services Ubiquitous Comput., Jul. 2012,
pp. 114–121.

[66] H. Carvey. (2012, Feb.). RegRipper [Online]. Available: http://regripper.
wordpress.com/

[67] N. Sofer. (2013, Feb.). IECookiesView: Cookies Viewer/Manager
for Internet Explorer [Online]. Available: http://www.nirsoft.
net/utils/iecookies.html

[68] N. Sofer. (2013, Feb.). IE HistoryView: Freeware Internet Explorer History
Viewer [Online]. Available: http://www.nirsoft.net/utils/iehv.html

[69] N. Sofer. (2013, Feb.). IECacheView—Internet Explorer Cache Viewer
[Online]. Available: http://www.nirsoft.net/utils/ie_cache_viewer.html

[70] AccessData Group, LLC. (2011). Forensic Toolkit v4, Lindon, UT,
USA [Online]. Available: http://accessdata.com/products/computer-
forensics/ftk

[71] P. Albano, A. Castiglione, G. Cattaneo, G. De Maio, and A. De Santis,
‘‘On the construction of a false digital alibi on the Android OS,’’ in INCoS,
F. Xhafa, L. Barolli, and M. Köppen, Eds. Arrowhead, CA, USA: IEEE
Computer Society, 2011, pp. 685–690.

[72] P. Albano, A. Castiglione, G. Cattaneo, and A. De Santis, ‘‘A novel anti-
forensics technique for the Android OS,’’ in Proc. Broadband, Wireless
Comput., Commun. Appl., Int. Conf., 2011, pp. 380–385.

ANIELLO CASTIGLIONE (S’04–M’08) received
a Degree and Ph.D. degree from the University
of Salerno, Salerno, Italy, both in computer sci-
ence. He joined the Dipartimento di Informatica ed
Applicazioni ‘‘R. M. Capocelli’’ of University of
Salerno.

He is a Reviewer for several international jour-
nals (Elsevier, Hindawi, IEEE, Springer, Inder-
science, Wiley) and he has been a Program Chair
and Member of international conference commit-

tees. He acted as a Guest Editor in several journals and several editorial board
of international journals.

He is a member of various associations, including the Association for
Computing Machinery, the IEEE Computer Society, the IEEE Communi-
cations Society, of GRIN (Gruppo di Informatica) and the International
Information System Forensics Association, Italian Chapter (IISFA). He is
a fellow of the Free Software Foundation (FSF) as well as Free Software
Foundation Europe (FSFE). For many years, he has been involved in forensic
investigations, collaborating with several Law Enforcement agencies as a
consultant. His current research interests include data security, communica-
tion networks, digital forensics, computer forensics, security and privacy, and
security standards and cryptography.

GIUSEPPE CATTANEO received a Degree in
computer science from the Universita‘ di Salerno
in 1983. Since 1986 he has been a Research
Associate with the Dipartimento di Informatica ed
Applicazioni, where he is currently a Associate
Professor. From 1987 to 1990, he has been a Visit-
ing Researcher at Laboratoire d’Informatique The-
orique et Programmation (LITP), Universite Paris
6, Paris, France, working on a project aimed to the
development of a Parallel Lisp Machine designing

and implementing special purpose extensions to the functional language
dedicated to the explicit parallelism management. Since 1993, he has been
involved in research on system security, in particular experimental algorithm
evaluation and algorithm engineering. In the last ten years, he has been a
Team Leader, responsible for the local unit of 8 ICT projects co-funded by
national large companies.

GIANCARLO DE MAIO received the Bachelors
and Masters degrees in computer science from the
University of Salerno, Salerno, Italy.

He is currently pursuing the Ph.D. degree in
computer science under supervision of Prof. G.
Cattaneo with the University of Salerno. In 2013,
he was a Visiting Scholar with the University of
California, Santa Barbara, CA, USA. He is a com-
puter security enthusiast and his research interests
mostly focus on Web Security, Mobile Security

and Digital Forensics.

230 VOLUME 1, 2013

A. CASTIGLIONE et al.: Automated Production of Predetermined Digital Evidence

ALFREDO DE SANTIS received a Degree in com-
puter science (cum laude) from the Universitá di
Salerno, Salerno, Italy, in 1983. Since 1984, he
has been with the Dipartimento di Informatica ed
Applicazioni, Universitá di Salerno. Since 1990,
he has been a Professor of computer science. From
November 1991 toOctober 1995 and fromNovem-
ber 1998 to October 2001, he was the Chairman of
the Dipartimento di Informatica ed Applicazioni,
Universita di Salerno.

From November 1996 to October 2003, he was the Chairman of the PhD
Program in computer sciencewith the Universitá di Salerno. FromSeptember
1987 to February 1990, he was a Visiting Scientist at IBM T. J. Watson
Research Center, YorktownHeights, NY, USA. He was with the International
Computer Science Institute (ICSI), Berkeley CA, USA, in 1994, as a Visiting
Scientist. From November 2009 to October 2012, he was with the Board of
Directors of ConsortiumGARR (the Italian Academic&Research Network).
His current research interests include algorithms, data security, cryptography,
information forensics, communication networks, information theory, and
data compression.

VOLUME 1, 2013 231

