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ABSTRACT The goal of biometrics is to recognize humans based on their physical and behavioral
characteristics. Preliminary studies have demonstrated that the electroencephalogram(EEG) is potentially
more secure and private than traditional biometric identifiers. At present, the EEG identification method
targets specific tasks and cannot be generalized. In this study, a novel EEG-based biometric identification
method that extracts the phase synchronization (PS) features for subject identification is proposed under a
variety of tasks. We quantified the PS features by the phase locking value (PLV) in different frequency bands.
Subsequently, we employed the principal component analysis (PCA) to reduce the dimension. Then, we
used the linear discriminant analysis (LDA) to construct a projection space and projected the features onto
the projection space. Finally, a feature vector was assigned to the class label. The experimental results of
the proposed method used on 3 datasets with different cognitive tasks showed high classification accuracies
and relatively good stabilities. From the results, we found that particularly in the beta and gamma bands,
the average accuracies are more than 97% with the standard deviation equal to or less than the magnitude
10e-2 for both Dataset 1 and Dataset 2. For Dataset 3, the PS feature vectors in all off the bands have high
classification accuracies, which are more than 97% with the standard deviation of the same magnitude. Our
work demonstrated that the phase synchronization of EEG signals has task-free biometric properties, which
can be used for subject identification.

INDEX TERMS EEG biometric, Subject indentification, Phase synchronization, Linear discriminant
analysis.

I. INTRODUCTION

THe electroencephalogram (EEG) records the electrical
activity of the human brain along the scalp and reflects

the summation of the synchronous activity of thousands or
millions of neurons that have a similar spatial orientation [1],
[2]. The scalp EEG activity shows oscillations at a variety of
frequencies. Several of these oscillations have characteristic
frequency ranges and spatial distributions, which are associ-
ated with different states of brain functioning. In recent years,
there is a growing interest in using EEG signals as biometric
identifiers for subject recognition [3]. This is due to both an
increase in the understanding of physiological mechanisms

of brain activity and the growth of the research in the field of
biometric recognition [1].

EEG signals have several advantages over traditional bio-
metric identifiers such as fingerprints, palmprints, voice, iris
and face features [4]. As a new type of biological features,
EEG has unique advantages in non-stealing, unforgeability,
inactivity and so on, which can provide a far more secure
biometric identification approach. Unlike conventional bio-
metric systems, EEG-based recognition systems are robust
and secure against spoofing identification at the sensor by
attackers because attackers cannot covertly acquire EEG
signals in their physical form or synthetically generate them
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at a later time. Another advantage of EEG-based biometric
systems is that they are also available for people with certain
physical disabilities or injuries. In addition, EEG signals are
capable of constantly and transparently monitoring sponta-
neous brain activity or responses to cognitive stimuli, which
provide a safeguard against the substitution of another person
[4].

Poulos et al. [5] applied autoregressive (AR) models to
EEG signals acquired from subjects in a resting state with
their eyes closed during the experiment. They employed the
O2 channel, extracted the alpha rhythm activity of the EEG,
and used Kohonenąŕs linear vector quantization to classify
the signals. The correct classification scores ranged from
72% to 84%. Paranjape et al. [6] collected EEG data from
40 subjects who simply opened their eyes during the EEG
recording. The researchers used AR models to estimate a
model from the EEG signals and applied the discriminant
function analysis to classify the subjects. The identification
rates ranged from 49% to 85%. Marcel and Millĺćn [8] used
the task of motor imagery for person identification. They
employed imagined left- and right-hand movements as the
stimuli to acquire EEG signals, and extracted the alpha and
beta rhythms from the signals. Gaussian Mixture Models
and the Maximum A Posteriori model were used to model
the signals and classify their characteristics. Palaniappan and
Mandic [9] analyzed the spectral power of the visual evoked
potential (VEP) signals in the dominant frequency band
(gamma band) with the multiple signal classification (MU-
SIC) algorithm. The authors used the Elman neural network
as the classifier and achieved an average classification rate of
98.12% for 102 subjects. Brigham and Vijaya Kumar [10]
classified imagined speech EEG signals from 6 volunteer
subjects by using AR models and the support vector machine
(SVM) classifier. The accuracy of the subject identification
was 99.76% for their method. The same approach was tested
on the VEP EEG data of 120 subjects who were stimulated by
black and white pictures, and its identification accuracy was
98.96%. Das et al. [11] collected rapid visually evoked EEG
activity from 20 subjects and extracted discriminative spatio-
temporal features. They employed linear discriminant anal-
ysis (LDA) and SVM to classify these features separately,
and the recognition accuracies of the two classifications were
75% and 94%, respectively, using 2-fold cross validation.

All off the above methods were focused on only one spe-
cific dataset with a specific cognitive task or stage. However,
these methods could be difficult to apply in a real-world
setting because all of them require the subjects’ coopera-
tion. Hence, we aim to establish an approach that is task-
free for the subject and works well for identification. Phase
synchronization (PS) analysis has been demonstrated to be an
important and effective method to infer functional connec-
tivity with multichannel EEG signals [12]. Synchronization
phenomenon in the EEG, especially the oscillation in the
high frequency bands, plays a key role in establishing the
information exchange in different brain regions [13]. Varelaet
and Engel et al. [14] had shown that the synchronization

of neuronal assemblies played a major role in functional
cognitive integration processes. Bao et al. [7] applied phase
synchronization as one of the EEG features used to classify
the motor imagery data from the BCI Competition 2003
dataset, and they used a neural network classifier and attained
average recognition rates ranging from 81.2% to 90.6%.
Gysels and Celka [15] investigated the performance of fea-
tures for classifying mental tasks that were derived from the
phase locking value and the spectral coherence. With the sole
use of synchronization measures, the classification accuracy
reached 62%.

In this paper, we proposed a novel method for person
recognition using the phase synchronization features. The
phase synchronization phenomena between two EEG signals
were quantified by the phase locking value (PLV), since it
examined the relationship of the phases without containing
the influence of their amplitudes [16]. The proposed method
calculated the time averages of the phase locking values in
a certain stage with selected electrode pairs as the phase
synchronization feature vectors for classification.

II. METHOD AND MATERIAL
A. THE ICA ALGORITHM
The ICA is a statistical method that can separate mixed
signals, including EEG signals, to maximize the separation
of components in a statistically independent measure [18].
Generally, the ICA problem can be described as: Y =
[y1, y2, · · · , yNs ]T be a vector of random observation of
Ns dimensions, and S = [s1, s2, · · · , sM ] is the original
unobserved sources of M . The ICA mode can be expressed
as:

Y = AS (1)

Where A is a full-rank scalar matrix as [Ns × M ] that
mixes ICs back to observed signals, Ns is the number of
the channels to record EEG data, M is the number of the
original unobserved sources.Because we do not know the
effective number of independent signals, we suppose that
the number of source signals is equal to the number of
observation signals, that is, N = M . Given the EEG data,
the ICA algorithm can calculate the mixed matrix A and the
independent sources of Ns. The matrix A is expressed as
below:

A =


a11 a12 · · · a1Ns

a21 a22 · · · a2Ns

· · · · · · · · ·
aN1 aN2 · · · aNsNs

 (2)

where aij(i ≤ i, j ≤ Ns) is the transfer coefficient from the
j − th source to the i− th observed channel signal. And the
aim of ICA is to find out the linear unmixing matrix W and
acquire the ICs under the conditions of independent criterions
which is an inverse problem of Equation (1), so that:

S = WY (3)

Therefore, the ICA algorithm can effectively separate the
eye-movement artifacts from weaker EEG signals.
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B. PHASE FEATURE EXTRACTION
There are many different methods to measure synchroniza-
tion between two time-series signals. The most commonly
method used for analyzing EEG signals is the phase locking
value (PLV) [19]–[21]. Phase synchronization of EEG signal-
s is a reflection of the difference of physiological structure
of white matter in the brain [22]. Phase difference is often
used to estimate nerve conduction velocity and synaptic inte-
gration time. we can use the relationship between phase syn-
chronization of EEG signals and physiological characteristics
of brain individuals to analyze the phase synchronization
characteristics of each channel of EEG signals to obtain
phase synchronization matrix, and then extract the EEG
features of individuals for identity recognition. Therefore, in
this work, we employ PLV to quantify the interaction of EEG
signals recorded from different channels. PLV examines the
relationship of the instantaneous phase between two signals,
which is defined as follows:

PLV = |〈(j {Φx (t)− Φy(t)})〉| (4)

where 〈.〉 means the operator of averaging over time, Φi(t)
is the instantaneous phase of electrode i = {x, y} at time
instant t. Either the Hilbert transform or convolution with a
complex Gabor wavelet can be used to calculate this phase
value [16]. There is no obvious difference between those two
methods when applied to the EEG data [23]. So, we used
Hilbert transform in this paper, which is defined as

x̃ =
1

π
P

∫ +∞

−∞

x(τ)

t− τ
dτ (5)

where x̃(t) is the Hilbert transform of the continuous time
signal x(t) and P denotes the Cauchy principal value. Then
we define the analytic signal as

Zx(t) = x(t) + jx̃(t) = Ax(t)ejΦx(t) (6)

where Ax(t) and Φx(t) are the instantaneous amplitude and
instantaneous phase of EEG signal x(t) respectively. The
instantaneous phase can be calculated as

Φx(t) = arctan
x̃(t)

x(t)
(7)

In the same way, we can define the analytic signal Zy(t)
and calculate the instantaneous phase Φy(t) for signal y(t).

In this work, we study the phase synchronization of EEG
as biomarker for subject identification in different frequency
bands. The PLV values can be calculated with a one-second
time window using the selected electrodes signals. In our
experiments, there areN non-overlap segmentations for each
stage, the overall PLV during a certain stage is the mean
of N PLV corresponding to its segmentation. Therefore, the
average PLV can be written as

PLVavg =
1

N

∣∣∣∣∣
n=1∑
N

〈exp(j∆Φ)〉

∣∣∣∣∣ (8)

where ∆Φ denotes the phase difference between Φx(t) and
Φy(t) i.e., ∆Φ = Φx(t) − Φy(t), and n = 1, 2, ..., N is the
number of the segmentations.

Different electrode pairs can be constructed by pair-wise
electrodes. To get an optimal feature vector set, we only
consider the average PLV of the electrodes which satisfied
x 6= y. For selected M electrodes, we compute average PLV
values in a certain stage of all electrode pairs as a M ×M
upper triangular matrix of A, which contains both the phase
synchronization relationship and the spatial information a-
mong all electrodes. The matrix A is expressed as

A =


1 a12 a13 · · · a1(M−1) a1M

0 1 a23 · · · a2(M−1) a2M

...
...

...
...

...
...

0 0 0 · · · 1 a(M−1)M

0 0 0 · · · 0 1

 (9)

We rearrange this upper triangular matrix into a column
vector B as B = [a12, · · · , a1M , a23, · · · , a(M−1)M ]. Then
we employ such kind of vector calculating from each stage
of certain subject as the phase synchronization (PS) feature
vectors for subject identification.

C. PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is a well-known dimen-
sion reduction method for multivariate data [24], [25]. It is
primarily used to transform the data space into a lower di-
mensional feature space when the size of the original dataset
is unwieldy [26].

In this paper, PCA is applied to retain the most important
components of the PS features. Let matrix Z represents the
original dataset, and each column zi represents a sample, i.e.,
a PS vector from some stage of some subject. In addition, we
define deviation vector z

′

i = zi −m, where m is the mean
vector of all columns of matrix Z and Z

′
is the deviation

matrix of Z. Thus, Z can be calculated as

R = E(Z
′
Z

′T ) (10)

Then the eigenvalue decomposition is performed on R,
and we obtain V and D, where V is a orthogonal matrix
consisting of eigenvectors and D = diag(d1, d2, · · · , dn) is
the diagonal matrix consisting of eigenvalues. The projected
vector yi in eigen-space V can be calculated by

yi = VT zTi (11)

Actually, according to Bishop’s research [27], the eigen-
space is not consisting of all eigenvectors, and it can be
established with a subset of eigenvectors which is corre-
sponding to several largest eigenvalues. In such way, the main
information of data could be retained and the noise could be
eliminated.

D. LINEAR DISCRIMINANT ANALYSIS
After the dimention of the PS vectors has been reduced by
PCA, the next step is to project these vectors for all sam-
ples in the new feature space. Linear discriminant analysis
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(LDA) is a multivariate statistical method that can be used
for classification. LDA is commonly used to construct a
projection space. The model is constructed according to a set
of observations called the training set, which has the class
labels known in advance. The projection space can be built
from the training set and used to project the training sample
and the new test sample [24], [28], [29].

Here, we use LDA to derive the optimal projection space
Wopt using the PS training sample set.

The purpose of the LDA is to calculate an optimal Wopt.
The parameters of Wopt are determined in such a way
that the distance between the classes is maximized and the
distance within the classes is minimized, which achieves the
best discrimination between the classes. Each of the training
and test PS feature vectors is projected on the Wopt, and
then the distances between each test PS feature vector and
all training PS feature vectors are calculated by the nearest
neighbor (NN) algorithm. Subsequently, the test PS feature
vector is assigned to the class label with the shortest distance.

This method can be described as follows. Let X =
{x1,x2, · · · ,xN} be a dataset of the given D-dimensional
feature vectors, where N is the number of the feature
vectors. Each data point belongs to one of the class-
es
{
x1
c ,x

2
c , · · · ,xNc

c

}
, where c = {1, 2, · · · , C}. The

between-class scatter matrix Sb and the within-class scatter
matrix Sw are defined as

Sb =
C∑

c=1

Nc(mc −m)(mc −m)T (12)

Sw =
C∑

c=1

∑
x∈Xc

(x−mc)(x−mc)
T (13)

where Nc denotes the number of vectors in class Xc, mc

is the class mean of class Xc and m is the global mean of the
entire dataset.

To maximize the ratio of the determinant of the between-
class scatter matrix to the determinant of the within-class
scatter matrix, a matrix W is computed as

Wopt = arg max
W

∣∣WTSbW
∣∣

|WTSwW|
= [w1,w2, · · · ,wk, · · · ,wK ]

(14)
Where {wk|k = 1, 2, · · · ,K} is the set of generalized

eigenvectors of Sb and Sw corresponding to the K lagrest
generalized eigenvalues {λk|k = 1, 2, · · · ,K}, i.e.,

Sbwk − λkSwwk = 0, k = 1, 2, · · · ,K (15)

Note that there areC−1 nonzero generalized eigenvectors,
so there is an upper bound on K is C − 1, where C is the
number of classes. See [28].

E. SUMMARY OF THE PROPOSED METHOD
In this paper, we propose a novel method for person recog-
nition with phase synchronization features, which are quan-
tified by the PLV. This method can be summarized as having

two main algorithm stages. In addition, each algorithm stage
includes several steps.

Training Stage
Input: Training EEG signals X = {x1,x2, · · · ,xN} ;
Output: Eigen-space V, and LDA projection space Wopt.
(1) Calculate the PLV of N non-overlapping segmenta-

tions in a certain stage using the training EEG signals, and
produce N upper triangular matrices corresponding to the
segmentations;

(2) Average the PLV matrices of this stage as a matrix
A, and then rearrange the upper triangular matrix A into a
column vector Btrain;

(3) Calculate the eigen-space V from the Btrain by PCA;
(4) Project the training set Btrain on the eigen-space V

and produce Ytrain = [y1,y2, · · · ,yN ];
(5) Use the Ytrain to project on the Wopt, and produce

Ttrain = YT
trainWopt = [t1, t2, · · · , tN ] .

Test Stage
Input: Test EEG signal Xtest;
Output: The class label k for Xtest.
(1) Calculate the PLV matrix for test EEG signal Xtest,

and rearrange it into a column Btest;
(2) Project the test sample Btest on the V, and produce

Ytest;
(3) Use the Ytest to project on the Wopt, and produce

Ttest;
(4) Calculate the distance between each Ttest and all

Ttrain by NN;
(5) Assign the class label k by the shortest-distance.
The processing flow of the proposed method is given in

Fig. 1.

III. EXPERIMENTAL RESULTS
A. DATA ACQUISITION
There were three different kinds of datasets used in this paper.
The first dataset was collected from 20 healthy volunteers,
including 10 males and 10 females aged between 22 and 25
years. All subjects had no personal history of neurological or
psychiatric disorder. During the neuromarketing experiment,
subjects were asked to watch a video, which contained a
neutral documentary of 8 minutes, and six TV commercials
of approximately 30 s for each one. For the data acquisition,
subjects were required to be seated on a chair in a quiet and
isolated room and pay attention to what they watched without
knowing the purpose of the experiment.

The second dataset was recorded from 12 right-dominant
Chinese volunteers aged from 23 to 25 without a personal
history of neurological or a psychiatric disorder. All of the
subjects had a driving license and were prohibited to drink
alcohol, coffee or tea for one day before the experiment.
In the experiment, subjects were asked to drive using a
simulator system with manual gear. This experiment included
training and experimental sessions, and both of them were
performed after dinner on different days. The experimental
session consisted of eight conditions or stages, and the sub-
jects had to drive under different conditions in which they
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FIGURE 1. Principal process of the proposed method.

FIGURE 2. The overall PLV matrix in gamma band from the signals in the first stage of 12 subjects from the dataset 2.

had priority to control the driving. In five conditions, there
were extra tasks of alert and vigilance(TAV) to enhance the
workload for the driver. At the end of each condition, subjects
were required to fill out a questionnaire for the subjective
workload assessment.

Both of the first two datasets were recorded by a 16
channels system with the gUSBamp amplifier (g.Tec medical
engineering GmbH) at a sampling rate of 256 Hz while the
impedances were kept below 5 kΩ. The electrode cap that we
used was built according to the 10-20 international system.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2931624, IEEE Access

Kong et al.: EEG Fingerprints: Phase Synchronization of EEG Signals as Biomarker for Subject Identification

The 16 electrodes were FPz, Fz, Cz, Pz, POz, AF3, AF4, F3,
F4, T7, C3, C4, T8, P3, P4 and EKG. The EKG electrode
was placed in the pulse position on the left wrist to record the
EKG data. The right ear was used as a reference.

We used motor imagery data from the BCI Competition
2008 as the third dataset to further validate our method.
This dataset is comprised of recorded data from 22 channels
with a sampling rate of 250 Hz. The electrode cap was
built according to the 10-20 international system, and the 22
electrodes were Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1,
Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, and
POz. The reference electrode was placed on the left earlobe,
and the right earlobe was the GND.

Furthermore, all 3 of these datasets contain the resting
state session as the baseline. The datasets include descrip-
tions of states such as resting, motor imagery, being alert,
being fatigue and viewing five different videos. Additionally,
they also have in common that no matter what cognitive
task is experienced, a spontaneous EEG is produced. This
is different from the evoked EEG such as P300, where
the cognitive tasks require that the subjects cooperate with
the experimental protocol. To reduce the effect of artifacts,
the description data above are band-pass filtered with a
cutoff frequency of 2-47 Hz, and eye-movement artifacts
were removed with the recorded continuous horizontal and
vertical electro-oculograms (EOGs) by means independent
component analysis (ICA) method [17], [18], Further, EEG
signal was re-referenced to a common average reference.
Before calculating the PLV, a Butterworth band-pass filter is
employed to filter the EEG signals of each electrode to get
the phase synchronization in the desired frequency range. In
this work, the phase synchronization features are computed
in the theta, alpha, beta and gamma bands.

B. PHASE SYNCHRONIZATION FEATURES
For the first dataset, we intercept 480 second signals from
each subject, including 2 minutes of baseline data, 3 minutes
of neutral material data and 3 minutes of advertising data.
Signals of all the subjects are filtered separately to theta (4-
8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-40
Hz) bands by Butterworth band-pass filters. The same length
of data interception from the second dataset is selected,
including 2 minutes of baseline data and 6 minutes of driving
data. All of the signals are filtered to the same four bands to
calculate the PLV.

To analyze the phase synchronization on the whole brain
region of each subject, the phase locking values are calculat-
ed with a one-second time window using the signals from the
selected 15 channels (excluding the EKG).

For the third dataset, we select the same length of da-
ta interception from each subject to further validate the
classification results. Signals of all the subjects are filtered
separately to the above four bands by Butterworth band-pass
filters. The phase locking values are calculated with a one-
second time window using the signals from the selected 22
channels.

TABLE 1. CLASSIFICATION RESULTS OF DATASET 1 (ADDATA)

bands theta alpha beta gamma
Average 0.883 0.957 0.981 0.974
standard deviation 0.0193 0.0064 0.0087 0.0110

TABLE 2. CLASSIFICATION RESULTS OF DATASET 2 (DRIDATA)

bands theta alpha beta gamma
Average 0.951 0.940 0.974 0.989
standard deviation 0.0190 0.0195 0.0198 0.0159

For 15 electrodes, 105 different electrode pairs can be con-
structed. In our experiments, there are 30 non-overlapping
segmentations of each stage, and the PLV values of each
segmentation are computed as a 15 × 15 upper triangular
matrix. Additionally, for 22 electrodes, the PLV values of
each segmentation are computed as a 22×22 upper triangular
matrix. The matrix contains both the phase synchronization
relationship and the spatial information between electrodes.
Then, the mean of the 30 PLV matrices corresponding to dif-
ferent segmentations is calculated as the overall PLV during
a certain stage. There are 16 different stages for each subject
in the experiments, and the overall PLV matrix for the first
stage of 12 subjects from Dataset 2 is shown in Fig. 2.

To get the optimal feature vectors, we rearrange the overall
PLV matrix into a column vector. The column vectors that are
computed from the different stages of each subject provided
the phase synchronization feature vectors for classification.

C. CLASSIFICATION RESULTS
In this work, the PS feature vectors, which are obtained
after dimension reduction using PCA, are projected by LDA
and then classified by NN. Each subject has 16 PS features
calculated from 480 s EEG signals for classification. During
the classification processing, 8 trials are selected randomly
as the training samples, and the remaining trials are treated as
the test samples. To enhance the accuracy of the classification
and analyze the effects of the different frequency bands on
the classification results, the PS feature vectors are computed
in four frequency bands.

A total of 320 PS feature vectors (16 PS features×20
subjects) and 192 PS feature vectors (16 PS features ×12
subjects) are used respectively from Dataset 1 and Dataset
2. In addition, a total of 144 PS feature vectors (16 PS
features×9 subjects) are used from Dataset 3. The PS feature
vector is assigned to the class with the shortest-distance
and then is compared with the actual class to determine the
classification accuracy. The training and test are repeated 10
times to get the average accuracies for each dataset, and the
standard deviation of the accuracies are calculated to study
the robust stabilities of the results. The classification results
of the three datasets using the proposed method are given in
Tables I-III.

As shown in Table I and Table II, the classification accu-
racies in the beta and gamma bands are generally higher than
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FIGURE 3. Classification results of different time lengths in theta, alpha, beta and gamma band from Dataset 1.

TABLE 3. CLASSIFICATION RESULTS OF DATASET 3 (BCIDATA)

bands theta alpha beta gamma
Average 0.974 0.983 0.996 0.990
standard deviation 0.0168 0.0129 0.0068 0.0115

those in the theta and alpha bands. When the EEG signals
are filtered in the theta band, the PS features of Dataset
2 have better classification results than those of Dataset
1. The difference in average accuracies between Dataset 1
and Dataset 2 is not significant in the alpha band, but the
classification accuracies of Dataset 1 have a smaller standard
deviation, which means that these results are more stable.
For both of these two datasets, the classification accuracies
in the beta and gamma bands are not significantly different.
The average classification accuracies are more than 97%
when the frequency is greater than 13 Hz. This results from
the fact that the beta band involves conscious thinking and
logical thinking and gamma band involves higher processing
tasks and cognitive tasks. Then, there are very important in
learning, memory, and information processing. In the case of
excitement or cognitive tasks, such as simulated driving and
watching advertising videos, the beta band and gamma band
activities will increase. Therefore, the beta and gamma bands
have higher classification accuracies. In Table III, for Dataset
3, all of the four frequency bands have high classification
accuracies, with the average greater than 97%.

To further analyze the effects of different time lengths on
the classification results, we calculated the average PLV ma-
trices of Dataset 1 in the theta, alpha, beta and gamma band
with four different time lengths: 10 seconds, 20 seconds, 30

seconds and 40 seconds. The results of the classification are
shown in Fig. 3. The PS feature vectors calculated from 30 s
EEG signals obviously have better classification results than
those calculated from 10 s and 20 s EEG signals. Since the
accuracies from 40 s EEG signals are not better than the
30 s EEG signals, we choose 30 s as the time length for
calculating the PS feature vectors.

IV. CONCLUSION

In this paper, a novel classification method using PS features
is proposed, which can be used to identify task-free EEG
signals. We research phase synchronization of the whole
brain region in four bands for person recognition. The phase
locking values in the proposed method are computed from
the EEG signals with a one-second time window. To get
more effective PS features, we compare the classification
results in the alpha band with four different time lengths,
and the average PLV matrices that are calculated from 30 s
EEG signals produce better results. For all three datasets, the
experimental results using the PS features show high classifi-
cation accuracies and relatively good stabilities. Especially in
the beta and gamma bands, the average accuracies are more
than 97% with the standard deviation equal to or less than
the magnitude of 10e-2 for both Dataset 1 and Dataset 2.
For Dataset 3, the PS feature vectors in all bands have high
classification accuracies that are greater than 97% with the
standard deviation of the same magnitude. Our experiments
demonstrate that phase synchronization features calculated
from the PLV can be an efficient biometric identifier to
recognize different subjects. Exploring the spatial position of
electrode pairs and determining the length of segmentation to
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compute the PLV is our future work.
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