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The enzyme xanthine oxidoreductase (XOR) catalyses the last step of purine degradation in the highest uricotelic
primates as a rate-limiting enzyme in nucleic acid catabolism. Although XOR has been studied for more than a
century, this enzyme continues to arouse interest because its involvement in many pathological conditions is
not completely known. XOR is highly evolutionarily conserved; moreover, its activity is very versatile and
tuneable at multiple-levels and generates both oxidant and anti-oxidant products. This review covers the basic
information onXORbiology that is essential to understand its enzymatic role in humanpathophysiology and pro-
vides a comprehensive catalogue of the experimental and human pathologies associated with increased serum
XOR levels. The production of radical species by XOR oxidase activity has been intensively studied and evaluated
in recent decades in conjunction with the cytotoxic consequences and tissue injuries of various pathological
conditions. More recently, a role has emerged for the activity of endothelium-bound enzymes in inducing the
vascular response to oxidative stress, which includes the regulation of pro-inflammatory and pro-thrombotic ac-
tivities of endothelial cells. The possible physiological functions of circulating XOR and the products of its enzyme
activity are presented here together with their implications in cardiovascular and metabolic diseases.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. More than a century of studies

The enzyme xanthine oxidoreductase (XOR) catalyses the oxidation
of hypoxanthine to xanthine and the latter to uric acid as the terminal
steps of purine degradation in the highest primates [1]. The activity of
XOR has been known since the end of the 1800s and has been the object
of a large number of studies, mainly because of its stability and high
concentration in a widely available source, bovine milk (for historical
reviews, see [2–4]).

1.1. Functions of xanthine oxidoreductase

In addition to being a housekeeping enzyme, XOR is known as the
rate-limiting enzyme in purine catabolism. Indeed, it has a regulatory
effect on the turnover of nucleic acids because its activity produces irre-
versible metabolites, thus blocking the recovery of nucleotides through
the purine salvage pathway [5]. This activity could also interfere with
the purinergic activity of adenosine accumulation, as suggested by the
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anti-nociceptive effect of theXOR inhibitor allopurinol inmice [6]. How-
ever, other functions have been proposed for XOR, explaining the con-
stant interest in this poorly understood enzyme.

XOR can oxidise a variety of endogenous metabolites, including al-
dehydes, purines, pyrimidines, pteridines, azopurines, heterocyclic
compounds [7] (reviewed in [8]), and retinol [9]. Additionally, different
xenobiotics can be catalysed by XOR [10], including antiviral and anti-
cancer agents (reviewed in [11]), thus contributing to liver detoxifica-
tion. XOR can also reduce oxygen, methylene blue, ferricyanide, and
NAD+ (reviewed in [12]), implying a low specificity towards both
oxidising and reducing substrates. When oxygen is the electron accep-
tor, the reaction occurs via a one-electron reduction, producing super-
oxide ions [13], and a two-electron reduction, generating hydrogen
peroxide (reviewed in [12]). These reactive oxygen species (ROS) may
be produced by XOR and are responsible for cytotoxicity in physiologi-
cal and pathological conditions due to the formation of hydroxyl radi-
cals in the presence of iron via the Haber–Weiss reaction [14], as is the
case in acute iron intoxication [15]. In particular, XOR-derived oxygen
radicals have been implicated in reperfusion injury, including during
organ preservation and transplantation [16].

In addition to cytotoxicity and tissue damage, XOR-generated
ROS are responsible for many biological activities, including iron
mobilisation from ferritin in the liver [17], iron absorption in the
intestinal mucosal [18], and the induction of proliferation [19–21] as
well as defence against infectious diseases by contributing to leukocyte–
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Molecular and catalytic structure of the xanthine oxidoreductase (XOR) monomer.
(a) Domains and linker peptides of rat XOR: each XOR monomer includes a 20-kDa
N-terminal domain, a 40-kDa intermediate domain and an 85-kDa C-terminal domain
(reviewed in [67]). (b) Primary catalytic electron flow: the catalytic centre of XOR in-
cludes a molybdopterin cofactor (MO-pterin), two unequal iron–sulphur redox centres,
Fe2/S2 I, Fe2/S2 II and one molecule of FAD (reviewed in [67]).
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endothelial cell adhesive interactions. Indeed, these oxidantsmay play a
role in the cytotoxic activity of phagocytes either directly [22] by acti-
vating a chemotactic factor [23] and pro-collagenase [24], by increasing
the adhesion of leukocytes [25] and cytokine production by monocytes
[26], or by inducing the accumulation of leukocytes inmicrovasculature
[27]. The contribution of XOR to host defence against ROS-sensitive
pathogens was described in a mouse model of chronic granulomatous
disease [28]. The bactericidal activity of XOR may be potentiated either
by the possibility to act as an NADH oxidase [29–31] or by the ability to
produce peroxynitrite [32]. The anti-microbial activity of XOR has been
exhaustively reviewed in [33]. However, patients with a defective XOR
gene causing xanthinuria do not show impaired immunological re-
sponses, suggesting that XOR activity is not essential to host defences
(reviewed in [34]), although it may be responsible for tissue damage.

However, it should be noted that the final product of purine catabo-
lism, uric acid, has an important role in vivo as an antioxidant (reviewed
in [35]). The protection against oxidative stress provided by uricaemia
has been proposed as the reason for increased life span in humans;
therefore, the lack of uricase activity could represent an evolutionary
advantage for uricotelic primates over ureotelic mammals [36]
(reviewed in [37]). Collectively, the above considerations and others
that will be put forth later have generated many hypotheses on the
biological roles of XOR, which are not yet completely understood
(reviewed in [34]).

1.2. Species and organ distribution

XOR has a widespread distribution among different species and has
been identified in prokaryotic organisms as well as in plants and
animals (reviewed in [2,38,39]), althoughwith some variation in its cat-
alytic activity; early studies established XOR in lower organisms as a de-
hydrogenase, whereas mammalian XOR was thought to be an oxidase
(reviewed in [3]) until almost half a century ago, when mammalian
XOR was shown to be a dehydrogenase in its native state [40,41]. XOR
has a high level of phylogenetic conservation, with 70% and 53%
sequence homology between the mammalian and avian or Drosophila
enzymes, respectively (reviewed in [42]).

In mammals, the presence of XOR has been demonstrated in many
organs, albeit at different levels; however, most cells show little enzyme
activity (reviewed in [39,43]). Accordingly, XORmRNA has been detect-
ed in most tissues, and the highest transcript levels are found in the or-
gans with the highest enzyme levels, i.e., liver and intestine inmice [44]
and humans [45]. This tissue distribution shows a considerable species
variation; in particular, a wide range of activity levels has been reported
in biological fluids, such as blood [46] (reviewed in [47]) and milk
(reviewed in [39]). XOR has mostly been purified from cytosolic frac-
tions, although it has also been associated with the cellular membrane
as well as with intracellular organelles, such as peroxisomes [48]
(reviewed in [49]).

Based on its levels of mRNA and protein expression, the highest ac-
tivity levels of human XOR are present in the intestine [50,51] and
liver [52–54], while a very low activity has been detected in other
human organs [55,56]. XOR can be found in human milk, although
with a lower activity compared with cow milk [57,58]. High serum
XOR levels have been reported in several species, in particular in ro-
dents and bovines, whereas in humans, it is very low in physiological
conditions (reviewed in [39,48]). Interestingly, human endothelial
cells from the microvasculature of several tissues have been identified
as having high levels in XOR activity. Moreover, XOR has been detected
not only in the cytoplasm of endothelial cells but also on the outer sur-
face of the plasmamembrane (reviewed in [11]). Later, the implications
of these findings will be discussed together with the increase of XOR
serum levels in pathological conditions.

XOR activity determination is usually performed by a spectrophoto-
metric test to measure the accumulation of uric acid at 292 nm and
NADH formation at 340 nm. The detection of XOR in tissues and fluids
containing low levels of XOR requires particularly sensitive assays,
such as radiometry [59,60], fluorometry [61,62], HPLC [63], enzyme im-
munoassays, and immunohistochemistry [64–66]. Obviously, immuno-
logical methods cannot determine the quantity or quality of enzyme
activity; however, such methods provide an opportunity for measuring
the amount of total XOR protein, both active and inactive.

1.3. Molecular and catalytic structure

The kinetics andmolecular structures of the dehydrogenase and ox-
idase activities have been detailed, and a domain structure common to
all xanthine oxidising enzymes has been proposed (reviewed in [42]).
The XORmolecule belongs to themetalloflavoprotein family (reviewed
in [8]) and is a homodimer consisting of two chains with a molecular
mass of approximately 145 kDa (reviewed in [12]). Each subunit corre-
sponds to one catalytic centre that includes a molybdopterin cofactor
containing one atomofmolybdenum, onemolecule of FAD, and two un-
equal iron–sulphur redox centres (Fig. 1). These cofactors are contained
in three domains of approximately 85, 40, and 20 kDa, respectively
(Fig. 1a). The oxidation of a fully reduced XOR molecule includes the
transfer of its six electrons to O2, with the generation of two hydrogen
peroxide and two superoxide anion species (reviewed in [42]). Usually,
the substrate binds to themolybdopterin domain, and the electrons are
released to the acceptor by the FAD-containing domain (Fig. 1b), except
in the case of NADH oxidation, which is catalysed at the FAD-containing
domain (reviewed in [34]). As a consequence, competitive XOR inhibi-
tors, such as allopurinol, are ineffective against XOR NADH oxidase
activity [29].

2. A multiple-level tuneable enzyme activity

The human gene for XOR (XOR) has been cloned and expressed
in vitro [68–70]. Human XOR is located on chromosome 2, and its
expression is under strict regulatory control (reviewed in [8,71]).
Gene expression of XOR in humans is lower comparedwith othermam-
mals, and promoter suppression has been hypothesised as the cause
[72]. In animal models, the inhibition of protein synthesis by cyclohex-
imide induces an increase of XORmRNA levels, suggesting the presence
of a repressor protein that limits XOR expression (reviewed in [37]).

2.1. Transcriptional regulation of xanthine oxidoreductase protein

Based on the above observations, the first level of XORmodulation is
gene expression, whichmay be regulated by nutritional factors, oxygen
tension, steroid hormones [73], phorbol esters [74], regenerative



Fig. 2. Post-transcriptional regulation of enzyme activity. (a) Active and inactive forms of
Xanthine oxidoreductase [58]: inter-convertible active (XDH) and inactive demolybdo-
form (de-Mo XDH) [99] or desulpho-form (de-S XDH) of xanthine dehydrogenase
(reviewed in [100]). Inter-convertible active (XO) and inactive desulpho-forms (de-S
XO) of xanthine oxidase. (b) XOR activities and proposed modalities of conversion [101]:
inter-convertible enzyme activities include dehydrogenase (XDH), intermediate
(XDH/XO), and reversible oxidase. Thiol groups involved in the transition: fast (SH*)
and slow (SH**) reacting (reviewed in [67]). Irreversible oxidase activity is the only result
of partial proteolytic cleavage of XOR.
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and hyperplastic stimulus [75,76], different cytokines implicated in in-
flammation (reviewed in [77]), insulin, growth factors, and differentia-
tion [78]. Additionally, tobacco smoke condensate up-regulated XOR
activity in pulmonary endothelial cells by increasing XOR mRNA
expression and XOR gene promoter activity [79].

Transcriptional regulation of XOR has been reported in association
with food intake; for instance, XOR expression decreased due to the
intake of tungsten, which antagonises molybdenum (Mo), and a diet
poor in proteins and molybdenum [80]. In contrast, a lack of vitamin
E, selenium or folic acid or a lipid-enriched diet increased liver XOR
mRNA and protein expression [81,82]. In cell cultures and animal
studies, iron depletion resulted in low XOR enzyme activity, which
was reversedwhen the intracellular concentration of ironwas increased
(reviewed in [71]).

XOR expression was down-regulated in weakly differentiated
tumours; in particular, decreased XOR protein is associated with a
poorer prognosis in most patients with gastric, colorectal, and non-
small cell lung cancer, breast tumours, hepatomas, and serous ovarian
cancer (reviewed in [83]).

XOR activity may be subject to transcriptional regulation in mouse
mammary epithelial cells, increasing mRNA levels from mid-pregnancy
until lactation followed by decreasing levels with mammary involution
[84]. The increase in XOR expression during pregnancy and lactation
has been shown to be due to glucocorticoids and prolactin [85] and has
been suggested to involve a glucocorticoid receptor and the STAT3 intra-
cellular transduction pathway [78]. Human mammary epithelial cells
increased XOR expression and enzyme activity when stimulated by
IFNγ and other pro-inflammatory cytokines [86]. In this case, the up-
regulation of both XOR transcriptional and post-translational activation
was implicated because XOR activity increased much more than either
XOR mRNA or protein levels alone. Moreover, the expression of XOR in
the apical plasma membrane of mammary epithelial cells is required
for enveloping milk fat droplets, and a role has been envisaged for XOR
as a membrane-associated protein in the secretion of milk lipids during
lactation in mice [87,88] (reviewed in [89]).

The administration of IFN or IFN-inducers to mice stimulated a
marked increase of XOR activity in different organs [90], particularly
in the liver [91,92]. Additionally, XOR activity was up-regulated by
IFNγ in rat lung endothelial cells [93]. This effectwas abolished by cyclo-
heximide, suggesting that new protein synthesis was required. More-
over, IFNγ markedly increased XOR mRNA levels, demonstrating the
transcriptional activation of the XOR gene. Likewise, various inflamma-
tory cytokines, including IFNγ, IL-1, IL-6, and TNF, and steroids may
up-regulate both XOR expression and activity in bovine epithelial cells
[94]. In this case, new XOR protein synthesis and increased levels of
XOR mRNA were also required. These and subsequent similar findings
(reviewed in [8]) are in agreement with the reported increase of XOR
activity in inflammatory/reparative conditions [60], in particular in
viral infections, including lung [95], brain [96], and liver [97] in mouse
pathology and liver in human pathology [54]. The infection of mice
with Salmonella typhimurium induced a significant increase of XOR
and nitric oxide (NO) synthase activity in the liver concurrently with
the formation of granulomas with neutrophils and macrophages. The
inhibition of these enzyme activities resulted in the exacerbation of
the infection, indicating their importance as anti-microbial leukocyte
defences [98].

2.2. Post-transcriptional regulation of xanthine oxidoreductase activity

The post-translational regulation of XOR activity (Fig. 2) includes
conversions between active and inactive forms (Fig. 2a, [58,99]
reviewed in [100]) as well as between XOR dehydrogenase and oxidase
activities (Fig. 2b, [101] reviewed in [67]).

Studies on XOR from milk have shown that only 2% of the human
enzyme is present in an active form, possibly because most XOR is in
demolybdo- and/or desulpho-forms (Fig. 2a), both of which also occur
in bovine XOR, although to a lesser extent [58]. XOR commonly contains
a small percentage of these forms,which are unable to catalyse xanthine
butmay still act as an NADH oxidase, generating superoxide and hydro-
gen peroxide [102,103]. The demolybdo-XOR apoprotein may be
converted into the active enzyme in mouse L929 fibroblastic cells by
molybdenum salts [99]. The desulpho-XOR could be reactivated
in vivo by the XORmolybdenum cofactor sulphurase via the reinsertion
of a sulphur atom at the active site (reviewed in [100]). Indeed, the phe-
notype of patients with molybdenum cofactor sulphurase mutations
was that of xanthinuria, i.e., XOR deficiency [104]. Thus, the presence
of demolybdo- and desulpho-XOR formsmay be considered to be amo-
dality of post-translational control of XOR activity. Accordingly, XOR ac-
tivity varied widely in human milk, in most cases reaching the highest
level during the first two weeks after parturition and falling thereafter,
without changes in XOR protein levels [105].

The effect of hypoxia in Swiss 3T3 cells has been reported to increase
XOR activity without an increase of mRNA levels and followed by an in-
crease ofmRNA levels andXOR activity [106]. These results are in agree-
ment with the increase of XOR activity observed in rat brain slices in
simulated ischaemia/reperfusion conditions [107]. Hypoxia, alone or as-
sociatedwith LPS and IL-1, up-regulated both XOR expression and activ-
ity in rat lung and induced pulmonary oedema, which was caused by
XOR activity because it was prevented by treating the animals with
tungsten [108]. Moreover, hyperoxia was shown to be a negative regu-
lator of XOR activity in rat pulmonary endothelial cells [109]. Thus, the
control of XOR activity by oxygen tension is likely to involve several
points of adaptation at pre- and post-translational levels. In cells, hyp-
oxia is able to induce numerousmetabolic alterations and the activation
of transcriptional factors, including hypoxia-inducible factor-1 (HIF-1),
nuclear factor-κB (NF-κB), and protein kinases, such as mitogen-
activated protein kinase (MAPK) (reviewed in [110]). Although the
mechanism of regulating XOR is still unclear, some evidence points
to the phosphorylation of STATs by Janus kinases followed by the
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translocation of these transcriptional factors to the nucleus. Indeed, XOR
activity is increased in cultured endothelial cells during hypoxia, induc-
ing the production of IL-6 and the sequential activation of JAK-STAT
signal transducers and transcription activators [111].

A different interpretation has been envisaged to explain the
hypoxia-dependent increase of XOR activity instead of a higher level
of either gene expression or post-translational activation induced by
hypoxic conditions. This alternative hypothesis suggested that the mo-
lybdenum centre of XORmay be inactivated by the atmospheric oxygen
in normoxic conditions, and the lack of such inactivation in hypoxia
could explain the apparent induction of XOR activity. Accordingly, the
increased XOR activity observed in response to hypoxia or hypoxia
and reoxygenation is due to the post-translational modulation of XOR
in cultured bovine aortic endothelial cells [112]. Additionally, the in-
crease of enzyme activity in human bronchial epithelial cells cultured
in hypoxic conditions was not accompanied with any change in the
level of mRNA or enzyme protein, and the apparent activation was
reversed upon return to normoxic conditions [113].

2.3. Dehydrogenase and oxidase enzyme activities

Mammalian XOR has the peculiarity of being found in two inter-
convertible forms: constitutively expressed in vivo NAD+-dependent
dehydrogenase (XDH, EC 1.1.1.204) and post-transcriptionally modi-
fied oxidase (XO, EC 1.1.3.22). The conversion may occur either irre-
versibly, by limited proteolysis [40,114], or reversibly, by chemical
[101] or enzymatic [115] oxidation of XDH thiol groups [116,117].

It was reported that four Cys residues were modified to form two
disulphide bonds during the conversion of XDH to XO from rat liver
and bovine milk (Fig. 2b). The oxidation of two Cys residues forms a
disulphide bond in the first rapid phase of the reversible XDH to XO
transition followed by a second, much slower, phase associated with
the modification of two more Cys residues (reviewed in [67]). These
findings are in agreement with previous observations suggesting the
presence of an intermediate form of XOR that is able to react with O2

and NAD+ [101,118,119]. The proteolytic nicking of the crucial Cys res-
idues in the rapid-phase formation of the disulphide bond is responsible
for the irreversible XDH to XO conversion, as already proposed [120].
The cleaved peptide connects the molybdenum- and FAD-containing
domains. Either disulphide formation or proteolytic cleavage occurs at
the same linker peptide in the reversible or irreversible transition,
respectively (reviewed in [67]).

The ability of some XOR forms to react with O2 and to act as NADH
oxidases, inducing oxidative stress, has prompted much research to
identify pathological situations in which the conversion from XDH to
XOoccurs. Such a transition can be shown by an elevatedXO/XDH activ-
ity ratio and has been the object of numerous studies in the last forty
years. The increase of ROS-producing enzyme forms has been reported
in burn injury [121]; haematoporphyrin derivative-mediated cuta-
neous photosensitisation [122]; in vivo and in vitro ethanol intoxi-
cation [119,123,124]; glutathione depletion [125]; endothelial
stimulation with C5a, TNF, a chemotactic N-formyl peptide [126]
or activated neutrophils [127,128]; kainic acid [60] or glutamate
neurotoxicity [129]; ricin hepatotoxicity [130]; in a rat model of
nephropathy [131]; ultraviolet B radiation [132]; irradiation with
gamma rays [133]; hepatocellular injury induced by iron accumula-
tion [134] or cholestasis [135]; in gut mucosal lining of experimental
cirrhotic rats [136]; and in rat brain following in vivo acute ammonia
intoxication [137].

Additionally, reversible or irreversible XDH/XO conversion was ob-
served in a variety of hypoxic/ischaemic conditions in rat tissues, in-
cluding the liver, kidney, heart, and lung [138], liver and kidney [139],
intestine [140], liver [141], and brain [106,142–144]. The transition
from the dehydrogenase to the oxidase form of XOR proceeded slowly
in rat brain during complete ischaemia [143]. Cell death preceded the
conversion of XDH to XO during the reoxygenation injury of isolated
rat hepatocytes. Furthermore, XOR was released from the severely
injured cells before the XDH/XO conversion occurred [145]. The produc-
tion of ROS by XO and by other cellular systems has been reported
in many experimental hypoxic conditions with different cell types
(reviewed in [110]). However, whether the increase in the XO/XDH
activity ratio and the production of ROS precedes or is a consequence
of cellular injury is not yet clear.

In particular, attention has been focused on the role of XOR-derived
ROS in the pathogenesis of tissue lesions induced by reperfusion after is-
chaemia (reviewed in [16,146]). The presumed sequence of events was
as follows: first, ischaemia induced the Ca++-dependent proteolytic
conversion of XDH to XO and the increased level of substrate, which
was derived from the degradation of nucleic acids; second, the reperfu-
sion supplied the molecular oxygen needed for ROS production
(reviewed in [146]). The hypothesis concerning the post-ischaemia/
reperfusion damage induced by XOR-generated ROS was supported by
the results of many investigations, which have been carried out in
the small intestine, stomach, pancreas, liver, skin, skeletal muscle,
heart, lung, kidney, and central nervous system (reviewed in [147]).
Reoxygenation-dependent oxidative stress has been reported to cause
injury in a variety of cell cultures, showing an intracellular generation
of such oxidants and demonstrating that ROS production by activated
neutrophils, as proposed for vascular reperfusion injury, is not required
(reviewed in [148]). XOR has been indicated as the major cause of oxi-
dative stress after hypoxia/reoxygenation and ischaemia/reperfusion;
however, the XOR activity level was highly variable in the different
experimental models, suggesting that more than one source of ROS
may be implicated (reviewed in [110]).

The relevance of XOR activity on tissue injury after reperfusion was
investigated in animal models by pre-treatment with tungsten, which
inactivates XOR, to prevent organ damage (reviewed in [149]). For the
same purpose, the XOR inhibitor allopurinol has been used in many
experimental and clinical studies (reviewed in [150]). For instance,
patients with chronic heart failure due to dilated cardiomyopathy
showed an up-regulated expression of XOR, and the inhibition of
enzyme activity by allopurinol administration resulted in a significant
improvement in myocardial efficiency [151]. Additionally, ischaemic
pre-conditioning has been used to protect organs from ischaemia reper-
fusion damage, and oxidative stress is reduced as a consequence of the
diminished conversion of XDH to XO in rat small intestine subjected
to pre-conditioning procedures [152]. Despite the protective roles of
tungsten and allopurinol treatment and ischaemic pre-conditioning in
ischaemia/reperfusion injury, the impact of XOR-derived ROS is still a
point of contention. However, ROS could at least contribute to the
amplification of tissue damage (reviewed in [153]) based on the
three-zone-model of liver injury due to hypoxia and reoxygenation
(reviewed in [154]).

Tissue damage due to ROS generated during reperfusion after is-
chaemia has been considered to be a key problem in organ preservation
for transplantation, particularly for XOR-rich organs, such as the
intestine and liver. Therefore, the University of Wisconsin preservation
solution includes allopurinol [155], although XOR activity was not de-
finitively shown to be the main source of oxidative stress in tissue
grafting. However, enhanced levels of XOR protein and activity were
observed in rat renal allografts at day 9 post-transplantation, and
XOR-generated ROS were associated with histological signs of acute
renal allograft rejection [156].

A marked XDH to XO conversion occurred as a consequence of cold
ischaemia in rat liver transplantation [157–159]. This conversion
was prevented by ischaemic pre-conditioning of the graft through a
10-min interruption of blood flow of the donor liver followed by reflow
for another 10 min. Additionally, the pre-conditioning was able to
reduce liver damage and injurious effects in the lung following liver
transplantation. Similar protective effects were obtained by inhibiting
XOR with allopurinol and were abolished by the administration of
xanthine and XOR to pre-conditioned rats.
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3. Increased xanthine oxidoreductase serum levels in experimental
and human pathology

As highlighted above, high serum XOR levels are present in healthy
individuals of some animal species, although the purpose of this pres-
ence has not been clarified. However, the amount of circulating enzyme
may become more elevated in some pathological conditions, such as
liver pathology, viral infectious diseases, and tissue injury, due to hyp-
oxia, as reported for hypoxic new-born pigs [160], or reoxygenation
after hypoxia.

3.1. Experimental pathology

Hepatic damage caused by a variety of toxic agents was associated
with elevated serum XOR levels, particularly after treatment with CCl4
or thioacetamide in sheep [161] and after treatment with CCl4 [162,
163], colchicine [164], halothane [165], ethanol [166], saporin [130] or
aluminium [167] in rats. Cobra venom factor injection in rats and the
consequent intravascular activation of complement resulted in a rapid
increase of XOR activity in plasma,whichwas partially related to the ap-
pearance of histamine in plasma [168]. Additionally, in rat pups treated
with selenite to induce cataract formation, XOR serum levels were
significantly higher than those in control animals, whereas antioxidant
enzymes were lower than those in controls, suggesting a pathogenic
role of XOR-produced ROS in this model of eye damage [169].

A higher XOR level in blood serum has been described in association
with inflammation, as reported in mice treated with the IFN inducer
[90] or infected with influenza virus [170–172], in rats after thermal
skin injury [173–175], in cattle receiving LPS [176], in hypercholesterol-
aemic rabbits [177], in streptozotocin-induced diabetic rats [178] and
mice [179], and in fructose-induced hyperuricaemic mice [180].

Ischaemia/reperfusion was apparently the reason for serum XOR
elevation after artery ligation in cats [181], rabbits [182–186], and rats
[27,157,187,188] as well as after haemorrhagic shock in mice [26] and
rats [189,190]. XOR was also released in the perfusate of ischaemic/re-
perfused rat liver [191], and the XOR activity level determined in the
perfusate was similar to the paralleled decrease in endogenous tissue
enzyme [192]. Similarly, in rat liver/lung preparations, XOR was re-
leased from the liver after ischaemia/reperfusion, in which XOR activity
decreased in hepatic tissue and increased in the effluent perfusate [193].
Moreover, an increase in XOR activity was demonstrated in the effluent
of ischaemic/reperfused rat pancreas, whereas it decreased by half in
the organs that underwent ischaemia [194].

These ex-vivo experiments implicated the XOR that leaked out from
the liver in ischaemia/reperfusion injury and in vascular endothelium
damage because, in these conditions, the absence of blood allows the
exclusion of neutrophil components from the generation of ROS. How-
ever, the contribution of leukocyte-derived ROS to the pathogenesis of
ischaemia/reperfusion damage in vivo was confirmed by the observa-
tion that neutrophil depletion attenuates human intestinal reperfusion
injury [195]. In an in vivo rabbitmodel of lung ischaemia/reperfusion in-
jury, XOR increased together with malondialdehyde content in serum
andwith the activity ofmyeloperoxidase and the expression of intercel-
lular adhesion molecule-1 in lung tissue, indicating oxidative stress and
inflammation [196].

XOR activity increased in the venous effluent of reperfused human
muscle flaps subjected to experimental warm ischaemia. Such an in-
crease was statistically correlated with the duration of ischaemia and
biochemical markers of cellular injury [197].

3.2. Human pathology

The activity of serum XOR in healthy humans is very low, corre-
sponding to the production of less than 4 nmol O2/ml of plasma/minute
when calculated as the reduction of ferricytochrome c by free radicals
[198]. However, its increase has been reported in several pathological
conditions. Increased plasma XOR levels were first observed in patients
with viral hepatitis [199] in which two main situations were identified,
inflammation and liver pathology, possibly explaining the sizable
amount of circulating enzyme in humans. Elevated XOR levels in
human serumwere found in patients with acute and chronic viral hep-
atitis [61,62,163,200–203], infectious mononucleosis [200], rheumatic
and autoimmune diseases [204], pneumonia [205], irritable bowel
syndrome [206], schizophrenia [207], and type 2 diabetes [208,209].
In the latter pathology, a correlation was observed between the serum
XOR activity level and lipid peroxidation in diabetic lens injury and
senile cataract formation. Additionally, the blood concentration of
glycated haemoglobin was positively correlated with lens and serum
XOR levels, suggesting that inadequate glycaemic control may up-
regulate XOR activity, possibly contributing to an earlier onset of
cataracts by inducing lens oxidative stress [210].

Among human hepatopathies that induce increased plasma XOR
levels, we can count massive toxic necrosis [200] as well as the liver
damage due to halothane anaesthesia [211], alcoholism [212], or chole-
static disorders [203]. An elevation of serum XOR was observed in
patients after surgical operations [213]. In particular, elevated serum
enzyme activity followed biliary tract and gastric surgery, possibly
reflecting hepatocellular damage caused by surgical trauma to the
liver [214]. Additionally, a significant elevation in serum XOR has been
reported in children affected by falciparummalaria with varying sever-
ity based on parasitaemia. In the severe malaria group, a significant
correlation, based on biochemical parameters, was observed between
serum XOR levels and liver function impairment [215].

A significant increase in plasma XOR activity occurred in sickle cell
disease patients, possibly because this pathology is associated with
intrahepatic hypoxia/reoxygenation, which can induce XOR release
into the circulation from an injured liver [216]. Sickle cell disease was
reproduced in a knockout-transgenicmousemodel. Mice demonstrated
decreased liver XOR, with XOR increased on and in vascular luminal
cells, suggesting that circulating XOR can bind to endothelial cells and
impair vascular function. A similar enhancement of XOR was observed
in the plasma of hypoxic subjects, such as patients with adult respirato-
ry distress syndrome [217] and preterm newborn babies [218]. XOR
serum levels were greater in the spermatic vein of varicocele patients
compared with the peripheral vein, possibly because of the hypoxia
due to reduced blood flow in the dilated varicocele vein [219].

XOR activity increased after tourniquet release (reperfusion) in local
and systemic blood in patients undergoing tourniquet-induced exsan-
guination for limb surgery [220–222]. Additionally, in one patient, an el-
evated circulating XOR level was detected thatwas caused by ischaemia/
reperfusion injury during an aortic cross-clamp procedure, and it was
proposed that XOR-induced ROS may explain the damage to the lung
or heart observed after ischaemia in human liver and intestine [223].

Maternal and foetal plasma XOR levels were higher than normal
in pre-eclampsia [224]. Indeed, pre-eclampsia is characterised by
hyperuricaemia and signs of increased formation of ROS as well as by
endothelial dysfunction and inflammatory cytokine production. More-
over, the serum XOR level significantly correlated to the severity of
the pre-eclamptic condition [225]. However, the results of these studies
were not sufficient to clarify if the elevation of circulating XOR is the
main pathogenic mechanism of ROS generation and the resulting
vascular dysfunction or just a consequence of this syndrome.

Increased XOR serum levels were reported in patients undergoing
liver [226–228] and kidney [229,230] transplantation. Elevated plasma
concentrations of XOR were observed during reperfusion after liver
transplantation compared with preoperative levels [226]. XOR was re-
leased into blood from liver grafts but not from recipient bowels [227,
228]. XOR was transformed from XDH to reversible XO in the circula-
tion. The serum XOR level was higher in the liver effluent of patients
with moderate dysfunction compared with those with slight primary
graft dysfunction [227]. The elevation of serum XOR persisted during
the three weeks following liver transplantation [228].
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The serum XOR activity level in the recipients of kidney allografts
was significantly increased compared with the pre-grafting level 1 and
5 min after transplantation [229]. Additionally, the XOR level was in-
versely related to the early, slow, and delayed graft function activation.
Moreover, a higher XDH to XO conversion was observed in the patient
group, showing delayed functional graft recovery compared with the
other two groups. A 6-month follow-up after transplantation showed
that the average serum XOR level was constantly growing in kidney-
transplanted patients starting from the first day after surgery [230]. It
has been suggested that the XOR level in plasma on the first day after
transplantation reflects the extent of damage caused by an ischaemia/
reperfusion insult of the transplanted organ and that this may influence
the grafting outcome. Further increases of XOR levels could be explained
by immunosuppressive therapy, which includes steroids.
3.3. Origin and fate of circulating xanthine oxidoreductase

XOR is primarily produced by epithelial cells, although antibodies
recognising the bovinemilk enzyme detected the XORmolecule in cap-
illary endothelial cells of many human tissues [231]. XOR leakage out of
cells may occur as a result of physiologic cell turnover or as a conse-
quence of pathological cell conditions. The intestine and liver are the
main sources of serumXORbecause of the high XOR content of these or-
gans, and these organs may support a strong elevation of circulating
XOR only after a wide tissue injury, which induces XOR release into
the circulation from damaged cells [130,181] (Fig. 3).

After being released into plasma, XOR is rapidly converted to the XO
form [124,227,232]. Circulating XOR may reach remote organs and has
the ability to stick to vascular cells because it binds to sulphated glycos-
aminoglycans on the endothelial cell surface [233]. The binding of XOR
to vascular lining was shown to be heparin reversible in studies with
cultured endothelial cells [189]. Commercial re-purified XOR bound
specifically and with high affinity to sulphated proteoglycans on the
surface of bovine aortic endothelial cells in culture. A shift was then ob-
served for XOR,while still conserving the superoxide-production ability,
from extracellular binding sites to intracellular compartments (Fig. 4).
Finally, endothelium-bound XOR activity was also able to inhibit endo-
thelial NO production, thus impairing vasodilatory reaction [234].

XOR bound to and endocytosed by endothelial cells may explain the
discrepancies in the reported organ and cellular distribution of XOR as
well as the protection given by enzyme inhibitors to organs with a
low XOR activity. Indeed, increased circulating XOR may bind to endo-
thelial cells of distant organs devoid of enzyme activity after hypoxic
or ischaemic damage, particularly in the splanchnic system.
Fig. 3. Increase of circulating xanthine oxidoreductase (XOR) due to hepatic leakage. Main
aetiological factors causing hepatocellular damage that induce XOR release in blood:
hypoxia [216–219], ischaemia/reperfusion [223], transplantation [226–228], toxic agents
[200,211,212], and viral infection [61,62,163,200–203].
4. Physiological and pathological roles of circulating xanthine
oxidoreductase

4.1. Remote organ injury caused by increased xanthine oxidoreductase ac-
tivity in serum

CirculatingXORhas been implicated in the development of endothe-
lial dysfunction and remote organ injury after different ischaemia/
reperfusion protocols, including the ligation and reperfusion of limbs,
in experimental and clinical pathology. The XOR level released in the
perfusate was sufficient to produce severe vascular endothelial injury
in vitro and in a rat model of liver ischaemia/reperfusion. These results
suggested that the amount of ROS produced in circulation by XOR,
which leaks out from damaged cells after hepatic ischaemia, could
produce widespread tissue injury [192].

Hepatic ischaemia/reperfusion in rats not only induced theXOR con-
version from XDH to XO in liver tissue but also resulted in increased
levels of circulating XOR and microvascular disorders in the lung. Isch-
aemic pre-conditioning reduced XOR conversion and leakage as well
as liver and lung damage, whereas the administration of xanthine and
XOR abolished the benefits of pre-conditioning [157]. XOR leaked out
of ischaemic/reperfused liver in rat liver/lung preparations, and it was
converted from XDH to XO in the hepatic effluent. Subsequently, XO
concentrated within the lung, where XOR activity increased significant-
ly, possibly because of its binding to the endothelial lining. Finally, a dra-
matic increase in pulmonary microvascular and alveolar permeability
occurred, suggesting that ROS derived from circulating XO severely
impairs alveolar-capillary membrane integrity [193].

Rats subjected to intestinal ischaemia/reperfusion not only had in-
creased plasma XOR activity but also had increased plasma leukotactic
activity for neutrophils and lung neutrophil retention compared with
sham-treated rats. These alterations decreased in rats administered
antisera against XOR, indicating that circulating XORmediates lung neu-
trophil sequestration after being released from ischaemia/reperfusion in-
jured intestine [187]. Gut ischaemia/reperfusion is followed in rats by
simultaneous liver and lung injury, and neutrophils have been shown
to play a critical role in this process, which has been suggested to beme-
diated byXOR. Indeed, the lung and liver capillary leakage and the hepat-
ic metabolic derangement induced by gut ischaemia/reperfusion were
not observed in animals given a tungsten-enriched, molybdenum-
depleted diet [235].

In a rat model of gut ischaemia/reperfusion, increased gut and lung
myeloperoxidase levels were reported together with increased lung
endothelial permeability. XOR inactivation by a tungsten-enriched,
molybdenum-depleted diet abolished these alterations, suggesting a
XOR-dependent neutrophil mechanism in the pathogenesis of remote
organ injury [236]. The increased plasma XOR level induced by haemor-
rhage in mice is associated with the expression of pro-inflammatory
and immune-regulatory cytokines in the lungs. The administration of
post-haemorrhage plasma to recipient mice activated the nuclear tran-
scriptional regulatory factor CREB and increased cytokine expression in
lung mononuclear cells through an XOR-dependent mechanism [26].

The animal model of occlusion/reperfusion of the descending
thoracic aorta has been used to study the remote consequences of
hepatoenteric ischaemia/reperfusion induced by circulating XOR. Re-
mote pulmonary injurymanifested by increased protein concentrations
in bronchoalveolar lavage in rabbits was significantly associated with
hepatic ischaemia/reperfusion induced by the occlusion/reperfusion of
the descending thoracic aorta, i.e., with liver injury and elevated circu-
lating XOR activity [184,237]. These results are in agreement with the
attenuation of post-occlusion shock after descending thoracic aorta oc-
clusion and reperfusion observed in rabbits pre-treated with tungsten,
which showed a moderate increase of plasmatic enzyme activity, thus
suggesting a contribution of XOR-derived ROS in the pathogenesis of
de-clamping shock [183]. Tungsten pre-treatment of rabbits subjected
to occlusion/reperfusion of the descending thoracic aorta was also
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Fig. 4. Binding of xanthine oxidoreductase (XOR) to endothelial cells. The binding of circulating XOR to proteoglycans on the surface of the vascular lining is heparin-reversible until XOR is
endocytosed by endothelial cells [189,234].
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protective towards the decrease of gastric intramucosal pH induced by
hepatoenteric ischaemia/reperfusion, which is considered a marker of
multiple organ injury [185]. A similar XOR-dependent mechanism has
been suggested for remote myocardial injury following hepatoenteric
ischaemia/reperfusion induced in rabbits by the occlusion/reperfusion
of the descending thoracic aorta because of the protective effect of
tungsten pre-treatment in animals [186].

A high circulating XOR level has been observed after the ligation and
reperfusion of rat hind limbs, and it has been proposed that the XOR re-
leased from the ischaemic limb after reperfusion is able to induce liver
damage by activating Kupffer cells and neutrophils, thus contributing
to the development of multiple system organ failure [188]. The vascular
alterations produced by XOR-released ROS may be responsible for
endothelium activation and cytokine production, with possible
consequences in distant organs that may lead to systemic inflammatory
response syndrome and multiple organ dysfunction syndrome
(reviewed in [238]). Ischaemic pre-conditioning protects liver and
lung from damage in rat liver transplantation by preventing post-
ischaemic ROS generation from hepatic XOR and liver injury as well as
lung inflammatory damage, including neutrophil accumulation, oxida-
tive stress, and oedema formation. The role of XOR was demonstrated
by the elevation of transaminases to levels similar to those found
after reperfusion and by the abolition of the protective effect of pre-
conditioning on lung inflammatory damage caused by the administra-
tion of xanthine and XOR to pre-conditioned rats [158].

In many cases of XOR leakage from damaged tissues, XOR inhibition
by allopurinol reduced remote organ injury, suggesting that XOR
may act as a circulating mediator in the induction of tissue damage
(reviewed in [150]). Accordingly, intestinal reperfusion after superior
mesenteric artery ligation in rats led to an elevation in XOR serum
levels, and XOR activity inhibition with febuxostat reduced the degree
of local intestinal injury and the consequent remote hepatic and lung
impairment [239].

The supposedmechanismof action is based on the binding of circulat-
ing XOR to the endothelium, where XOR-produced superoxide can com-
bine with the endothelium-derived NO. The resulting peroxynitrite may
activate downstream pathways of cell injury in a variety of pathological
conditions, which can lead to endothelial and tissue injury (reviewed in
[150]). For example, although the depression of myocardial function in-
duced in dogs by haemorrhagic shock was restored after the reinfusion
of shed blood, 50% of the animals suffered complete circulatory collapse
and death in a couple of hours. However, the pre-treatment with allopu-
rinol was able to guarantee a 100% survival rate [240].

4.2. Vascular effects of oxidants produced by circulating xanthine
oxidoreductase

The direct effect of XOR on endothelial cellswas studied by an exper-
imental model in rat brain; oedema and vascular permeability were
induced by oxygen-derived free radicals produced by the infusion of
XOR, and the consequent brain injury was proportional to the injected
enzyme level [241].
The release of ROS in the bloodstreamhas been implicated in remote
damage. For example, the protection from ischaemia/reperfusion injury
obtained by direct ischaemic pre-conditioning of an organ may be
achieved by short cycles of artery occlusion in a different organ. This
effect suggests that low oxidant levels may lead to endothelial cell
stimulation and to the formation of protective pre-conditioning triggers
in distant organs, whereas high levels of ROS may activate a cascade
of ischaemia/reperfusion injury (reviewed in [242]). In addition to
the immediate protection against ischaemia/reperfusion injury, pre-
conditioning triggersmay also induce delayed protection. Redox signal-
ling may be involved during the initial pre-conditioning period and the
late pre-conditioning period, thus providing delayed protective effects,
possibly through the increased expression of antioxidants (reviewed
in [243]).

A biphasic production of ROS was observed after ischaemia/
reperfusion; early XOR-dependent oxidative stress was followed by
later ROS generation by leukocytes, which were induced to adhere to
vasculature lining through the activation of endothelial cells caused by
XOR-produced oxidants (reviewed in [148,244]; see also above). Thus,
before having cytotoxic effects, the production of ROS may promote
inflammatory alterations to vascular endothelium during ischaemia/
reperfusion injury (Fig. 5). The consequences of endothelial dysfunction
are represented by reduced NO production and the impaired vasodila-
tion of arterioles (Fig. 5a), the increased expression of adhesion mole-
cules in capillaries that induce leukocyte adhesion, protein leakage
from post-capillary venules and the formation of tissue oedema
(Fig. 5b) (reviewed in [245]).

Because XOR is one of the main sources of ROS in plasma, a role has
been suggested for its enzyme activity in orientating the behaviour of
endothelial cells and in regulating their pro-inflammatory and pro-
thrombotic activities. A variety of therapeutic procedures, such as
thrombolytic therapy, organ transplantation, and cardiopulmonary sur-
gery, may induce microvascular dysfunction related to the oxidative
stress generated by ischaemia/reperfusion, which overlaps themolecu-
lar and biochemical changes that are characteristic of an acute inflam-
matory response. For instance, enhanced fluid filtration and leukocyte
plugging were observed in capillaries and in neutrophils and plasma
protein extravasation in post-capillary venules (reviewed in [238]).
In this frame, the post-translational conversion of XDH to the ROS-
producing form of XOR in vivo could imply its well-studied pathological
role of inducing tissue damage and the physiological function of
triggering a microvascular inflammatory response through an oxidant-
mediated signal transduction (reviewed in [246]).

Data that demonstrate the role of XOR activity as a transducer of in-
flammatory signals and the implications related to vascular dysfunction
continue to accumulate. XOR inmononuclear phagocytes contributed to
acute cytokine-induced lung injury in rats, and the reduction of enzyme
activity obtained either by allopurinol's administration or by feeding the
animals with tungsten resulted in a decrease of inflammatory cell
infiltration and alveolar cell apoptosis [247]. Moreover, XOR activity
was increased in mononuclear phagocytes isolated from inflamed rat
lungs and promoted the inflammatory state of these cells through the
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Fig. 5. Vascular effects of oxidants produced by xanthine oxidoreductase (XOR). (a) Impaired
vasodilation of arterioles: XOR activity causes the endothelial dysfunction that is respon-
sible for reduced nitric oxide production ending in the impaired vasodilation of arterioles
[234]. (b) Pro-inflammatory action: thepro-inflammatory action of ROSderived fromXOR
activity causes (i) the induction of adhesion molecules and the permeabilisation of
endothelial cells, (ii) exudate formation and mononuclear cell adhesion and diapedesis
(reviewed in [244]), and (iii) the consequent over-expression of XOR by mononuclear
cells and the production of ROS, peroxynitrites, and cytokines [247,248]. ROS, reactive
oxygen species; eNOs, endothelial nitric oxide synthase.
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modulation of chemokine expression [248]. In virus-infected mice, the
endosomal Toll-like receptors 7 and 8 stimulated the expression of
hypoxia-inducible factor 1, possibly inducing XOR transcription, which
in turn may activate inflammasome-complex formation through the
production of uric acid and ROS, as suggested by the effect of allopurinol
in attenuating caspase 1 activation and IL-1β release [249].
The supposed role of XOR-produced ROS as amodulator of endothe-
lial function suggests that the evolution of theXOR gene inmammals led
to the acquisition of the post-translational modification of the activity
from XDH to XO, thus allowing the generation of oxidants with the
function of mediators on the surface of the vascular lining.

4.3. Role of xanthine oxidoreductase in cardiovascular disease

The microvascular alterations elicited by ischaemia/reperfusion, in-
cluding the impaired endothelium-dependent dilation in arterioles,
are similar to those induced by hypercholesterolaemia, hypertension,
and diabetes, which are well known risk factors for cardiovascular
disease (reviewed in [238]). Indeed, the inhibition of NO production
by vascular XOR activity could explain how XOR released into plasma
during diverse pathological processes may alter vascular functions via
oxidative mechanisms by reducing vasodilatory responses (reviewed
in [244]).

The enhanced expression and activity of XOR were reported in a rat
model of heart failure [250]. Indirect evidence of a role for XOR in car-
diovascular disease was provided by the protective effect of allopurinol
in dogswith pacing-induced heart failure [251]. In this animalmodel, an
increased expression of XOR in cardiac myocytes was shown, which
resulted in an imbalance between XOR activity and NOproduction, con-
tributing to mechanoenergetic uncoupling in heart failure [252]. The
up-regulation of XOR at the transcriptional level was associatedwith el-
evated circulating XOR in dog heart failure, and XOR inhibition with al-
lopurinolwas able to prevent increases in systemic vasoconstriction and
was able to improve myocardial contractility [253]. Long-term allopuri-
nol treatment has been shown to prevent left ventricular hypertrophy
and to improve cardiac function and structure in a rat model with
established chronic heart failure [254]. The functional improvement of
cardiac contractility with XOR inhibitors was dependent on the initial
XOR activity level, which was more pronounced in failing rat myocardi-
um [255]. Additionally, XOR inhibitors improved energy metabolism
and function after infarction in failing mouse heart [256].

XOR serum levels were significantly higher in patients with ischae-
mic heart disease than those in control subjects, and there was a
significant positive correlation between XOR and ischaemia-modified
albumin, creatine kinase and other cardiac markers [257]. XOR inhibi-
tion with allopurinol had beneficial effects in patients with idiopathic
dilated cardiomyopathy [151], and it improved peripheral vasodilator
capacity and blood flow locally and systemically in hyperuricaemic pa-
tients with chronic heart failure [258,259] and in patientswith coronary
artery disease [260]. XOR inhibition by oxypurinol was tested for one
month in thirty patients with congestive heart failure and compared
with placebo-treated controls. The treatment significantly improved
the left ventricular ejection fraction only in 21 patients who exhibited
this initial parameter lower or equal to 40% [261]. The vascular benefits
of allopurinol have been demonstrated in stroke survivors by reducing
arterial wave reflection as a measure of vascular function [262]. Allopu-
rinol treatment attenuated the rise in intercellular adhesionmolecule-1
levels, thus controlling the expression of inflammatory markers in
patients after acute ischaemic stroke [263]. However, in 405 patients
with symptomatic heart failure due to systolic dysfunction, clinical
outcomes did not differ in a 24-week clinical trialwith oxypurinol treat-
ment versus placebo, although a sub-group of patients with high levels
of serum uric acid had some benefit from XOR inhibition in a manner
correlating with the degree of serum uric acid reduction [264].

A further possible link between circulatory impairment and XOR
activity has been suggested by the ability of angiotensin II to increase
XOR protein levels and superoxide production activity in cultured
endothelial cells. In patients with coronary disease, treatment with the
AT1-receptor blocker losartan reduced endothelium-bound XOR activi-
ty and endothelial dysfunction [265]. These observations indicate a
regulatory function of the vascular tone for endothelium-bound XOR
through its activity products, i.e., ROS and uric acid (Fig. 6).

image of Fig.�5


Fig. 6. Effects of redox imbalance on cardiac cells. (a)Hyperactivity of the ryanodine receptor
(RyR2) in failing myocardium: the reactive oxygen species (ROS) produced by xanthine
oxidoreductase (XOR) inhibit nitric oxide synthase (NOs), thus blocking the regular
nitrosylation of RyR2, and induce the abnormal oxidation of RyR2, causing a diastolic
leak and a consequent reduction of CA2+ content in the sarcoplasmic reticulum that im-
pairs sarcomere contraction (reviewed in [266]). (b) Hypertrophic/apoptotic response of
myocardiocytes: the reactive oxygen species (ROS) produced by angiotensin II-up-
regulated XOR may activate the gene expression of mitogen activated protein kinase
(MAPK) if present at low levels or may trigger the mitochondrial apoptotic pathway if
present at high levels (reviewed in [243,267]).
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Increased XOR expression was detected by immunostaining heart
sections of rats with spontaneous-hypertensive heart failure. XOR up-
regulation was associated with increased superoxide production and
with decreased S-nitrosylation of the ryanodine receptor. As a conse-
quence, increased diastolic calcium leakage from the sarcoplasmic retic-
ulum and decreased sarcomere shortening in failing myocytes were
observed (Fig. 6a). With XOR inhibition, these alterations were reduced
to the levels of non-failing myocytes. Collectively, these findings indi-
cate that nitroso-redox disequilibrium at the sarcoplasmic reticulum
level is due to oxidative stress, which is possibly dependent on XOR
up-regulation [266].
It has been proposed that XOR activity is part of an oxidant/
anti-oxidant balance, the disequilibriumofwhich, leading to increased
ROS production, may favour either hypertrophic or apoptotic effects in
cardiac myocytes (reviewed in [267]). Moreover, the implication of
superoxide anion and hydrogen peroxide has been suggested through
redox-sensitive pathways in cardiac outcomes (Fig. 6b), including detri-
mental effects, such as pathological hypertrophy or apoptosis, and
protective effects, such as adaptive hypertrophy and angiogenesis
(reviewed in [243]).

4.4. Role of uric acid in vascular alterations

It has been proposed that the reduced vasodilator capacity
and impaired peripheral blood flow observed in association with
hyperuricaemia in patients with chronic heart failure could be ascribed
to the endothelial dysfunction induced by the products of XOR activi-
ty [258]. Indeed, the serum concentration of uric acid was correlated
with a reliable marker of endothelial dysfunction, albuminuria, in
patients with heart failure [268].

The pathophysiological role of uric acid is controversial because
it appears to be responsible for both antioxidant (primarily in plas-
ma) and pro-oxidant (primarily within the cell) effects and pro-
inflammatory effects, the latter function being exerted by the products
of uric acid oxidation in the presence of peroxide [269]. Hyperuricaemia
is associated not onlywith gout, urate nephrolithiasis, and tumour lyses
syndrome but also with vascular diseases (reviewed in [270,271]),
which are considered an adverse prognostic marker for metabolic syn-
drome (reviewed in [272]), including hypertension, visceral obesity,
dyslipidaemia, insulin resistance, and type 2 diabetes, as well as for
several consequences of atherosclerosis, such as stroke, myocardial
infarction, and cardiovascular death (reviewed in [273,274]).

Estimated cardiac output and stroke volume were inversely related
to uricaemia in a large sample of pharmacologically untreated subjects
[275]. Moreover, the serum concentration of uric acid was an indepen-
dent predictor of all-causemortality in patients at high risk of cardiovas-
cular disease [276]. This study was conducted between 1998 and 2004
on a total of 1300 patients, taking into account age, sex, smoking status,
alcohol consumption, weight, body mass index, waist circumference,
blood pressure, history of cardiovascular disease, estimated glomerular
filtration rate, cholesterol fraction levels, and plasma glucose levels.
Clinical studies with XOR inhibition or therapies with uricosuric agents
indicated that uric acid reductionmay contribute to the reduction of risk
(reviewed in [277,278]).

The possibility of predicting clinical outcomes in heart failure from
the elevation of uric acid in serum indicates a pathogenic role either
for the oxidative stress produced by the activity of circulating XOR or
for the impairment of NO signalling directly by uric acid (reviewed in
[273]). Uric acid-derived free radicals can have a pathogenic role in ath-
erosclerosis development by activating dysfunctional responses, such as
up-regulating the angiotensin system in cultured endothelial cells and
lowering the availability of NO by directly scavenging and inducing
thedegradation of NO aswell as by stimulating the proliferation andmi-
gration of arterial smooth muscle cells and inducing them to produce
monocyte chemoattractant protein-1 (Fig. 7, reviewed in [274,279]).

Increased serum uric acid levels may be a consequence of metabolic
derangement due to the hypertension developed in many pathological
conditions or may just reflect the increased activity of XOR, which can
result in high blood pressure through the production of ROS. However,
a direct pathogenic role of hyperuricaemia in hypertension has been
suggested by its frequent emergence before blood pressure rises and be-
cause serum uric acid level is an independent predicting factor for the
development of hypertension. The supposed mechanism of action is
mediated by the intracellular production of uric acid-derived radicals
and the consequent oxidative stress on endothelial cells, which acti-
vates the renin/angiotensin pathway, thus developing renal arteriolar
disease (reviewed in [280]). This hypothesis was supported by the
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Fig. 7.Role of uric acid-derived free radicals (UAFR) in hypertension and atherosclerosis.UAFR
may cause endothelial dysfunction, leading to systemic and renal vasoconstriction (i) by
decreasing nitric oxide (NO) availability and (ii) by stimulating the up-regulation of the
renin/angiotensin pathway. Moreover, UAFR may activate arteriolar smooth muscle cells
(SMC) by inducing migration, proliferation, and the production of monocyte chemotactic
protein 1 (MCP-1) (reviewed in [274,279]). XOR, xanthine oxidoreductase; eNOs, endo-
thelial nitric oxide synthase.
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observation in a rat model that oxonic acid-induced hyperuricaemia
is associated with hypertension and that the latter was prevented
either by inhibiting XOR activity, which produces uric acid, or by
inducing uricosuria, which eliminates uric acid [281,282]. A high-
fructose diet was shown to induce obesity and hyperuricaemia
[283], which, by impairing the NO production of endothelial cells,
may not only cause hypertension but also stimulate hyperinsulinaemia
and hypertriglyceridaemia. These features of metabolic syndromewere
prevented with allopurinol or reversed with a uricosuric agent [284]
(reviewed in [272,285]).

Plasma levels of uric acid were significantly higher in spontaneously
hypertensive rats than in control animals, and blood pressure was de-
creased markedly by XOR inhibitors, suggesting that enzyme-generated
oxidants may have a critical role in the pathogenesis of hypertension
[286]. Mean arterial pressure positively correlated with uric acid, choles-
terol, and XOR activity in the serum of normotensive subjects [287].
Moreover, allopurinol treatment resulted in blood pressure reduction in
adolescents with newly diagnosed hypertension [288], although it is
not clear if the benefit was due to XOR activity inhibition, uricaemia
reduction, or the ROS scavenging activity of allopurinol (reviewed in
[289]). XOR activity inhibition with polydatin reduced enzyme activity
in serum and renal injury by attenuating hyperuricaemia and related
inflammatory responses in fructose-induced urate nephropathic mice
[180]. Moreover, epidemiological evidence indicates the advantage of
lowering the serum concentration of uric acid by XOR inhibition, which
supports this clinical strategy (reviewed in [277]).

4.5. New emerging roles for xanthine oxidoreductase activity

In the second half of the past century, a large body of evidence was
focused on the cytotoxic effect and consequent tissue damage of oxida-
tive stress, while more recently, much attention has focused on the sig-
nal transmission and regulation of vascular function exerted by ROS.
The main molecular sources of such oxidants in endothelial cells
have been identified in NAD(P)H oxidase, xanthine oxidase, and NO
synthase, which are involved in the dysregulation of the vascular
redox environment that is associated with impaired vascular function
and cardiovascular diseases (reviewed in [290]). In aging rats, the in-
creased ROS-associated elevation of systolic blood pressure appeared
to be dependent on vascular XOR but not on NAD(P)H oxidase activi-
ty [291]. However, XOR may be converted by NAD(P)H oxidase to the
ROS-producing form of the enzyme and XOR-derived ROSmay activate
NAD(P)H oxidase activity. Moreover, the increased XOR expression in-
duced by angiotensin II is prevented by NAD(P)H oxidase inhibition.
Therefore, it is not simple to identify the specific role of these two
enzymes in cardiovascular diseases (reviewed in [292]).

The pro-inflammatory action of XOR products has been enriched by
new details that link this enzymewith pathologies resulting from endo-
thelial dysfunction. Increased plasma XOR activity was found signifi-
cantly correlated with NF-kB activation, high levels of inflammatory
markers and insulin resistance in familial combined hyperlipidaemia
[293]. In patients with metabolic syndrome and in patients with or at
risk of cardiovascular disease, XOR inhibition by means of allopurinol
treatment (1) had beneficial effects on endothelial function, thus
improving brachial artery flow-mediated dilation and (2) reduced
oxidative stress by decreasing myeloperoxidase levels [294] (reviewed
in [295]).

Collectively, these findings suggest that XOR-induced oxidative
stress is implicated in the pathogenesis of endothelial dysfunction,
which is associated with smoking, hypercholesterolaemia, hyperten-
sion, and diabetes, i.e., the main risk factors for atherosclerosis
(reviewed in [244]). The consequences of such vascular dysfunction
are platelet aggregation, the loss of vasodilatation and inflammation,
which are responsible for cardiovascular diseases (reviewed in [296]).

Recently, the effects of XOR activity inhibition on heart failure, chron-
ic kidney diseases, and other pathologies were analysed by comparing
the protective results obtained with allopurinol and febuxostat treat-
ments (reviewed in [297]). Febuxostat is a non-competitive, specific
XOR inhibitor and is more effective against the endothelium-associated
enzyme than allopurinol. In animal models, febuxostat has displayed a
protective role in pathological conditions with an underlying inflamma-
tory process. In particular, febuxostat attenuates systolic overload-
induced left ventricular hypertrophy and dysfunction in mice [298].
Additionally, febuxostat treatment corrected hyperuricaemia, hyperten-
sion, and hypertriglyceridaemia and prevented an increase in fasting
plasma insulin in rats with fructose-induced metabolic syndrome [282].

The protection given by XOR inhibition, either with allopurinol or
febuxostat, to damaged hearts was effective only if initiated shortly
after myocardial infarction in rabbits, suggesting the need to consider
the differences between species in choosing the appropriate therapy
against the vascular consequences of oxidative stress [299].

Controversial results have been obtained in both experimental and
clinical investigations addressing the pathological role of XOR in coro-
nary diseases, cardiomyopathy and heart failure. Thus far, no conclusive
results have been reached regarding the suggested protection given by
XOR inhibition against adverse cardiovascular outcomes, possibly be-
cause these effects result from the balance and interactions between
the activities of XOR and the other ROS producing enzymes NAD(P)H
oxidase and NO synthase (reviewed in [292]).

XOR inhibitor treatment efficiently lowers hyperuricaemia and alle-
viates problems associated with urate accumulation, such as gout and
tumour lyses syndrome. Such treatment could possibly be beneficial
for metabolic syndrome with diet-derived obesity, in which the level
of serum uricaemia is increased by alimentary fructose. However, a
protective effect against hypertension or chronic renal disease induced
by XOR inhibition is not yet demonstrated, although hyperuricaemia
has been suggested to cause these pathologies through the down-
regulation of NO production (reviewed in [300]).

An opposite role for XOR activity was proposed in a rat model of
myocardial ischemia/reperfusion injury because nitrite-induced cardio
protection against infarction was abolished by inhibiting XOR or
NADPH oxidase but not by inhibiting NO synthase activity [301].
Accordingly, a recent study showed that erythrocytic XOR may have a
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blood pressure-lowering action because of its nitrite reductase activity
in an experimental model of hypertension and possibly in hypertensive
patients. Thus, allopurinol treatment could suppress the blood pressure-
lowering effects of dietary nitrates [302].

As for the future perspectives, despite the lack of a definitive demon-
stration, the pathogenic role of XOR in cardiovascular diseases seems to
be the most promising field for further investigations. The experience
from previous clinical trials suggests designing future studies with
large numbers of patients, and it also indicates an essential role of a
more stringent selection process of the cohort of patients to include in
each trial to better identify the pathological conditions that are sensitive
to the inhibition of enzyme activity. The availability and efficacy of in-
hibitors of the enzyme, in part already used for a long time in therapy,
guarantee the opportunity to safely perform these studies and also
suggest that the exploration of new drugs that inhibit XOR activity is a
promising topic for future research.

5. Conclusions

This review underlines the new emerging role of XOR as a multi-
tasking enzyme and the possible biological meaning of the fine tuning
of its action at the transcriptional and post-transcriptional levels. The
evidence collected and analysed here indicates the involvement of
circulating XOR as one of themainmechanisms for the regulation of en-
dothelial functions. Indeed, XOR action is responsible for the production
of ROS and uric acid with pathophysiological consequences, including
the induction of pro-inflammatory and pro-thrombotic activities of en-
dothelial cells. Additionally, the increased activity of circulating XOR is
associated with hypertension, dyslipidaemia, diabetes, and cigarette
smoking, and it may contribute to the pathogenesis of atherosclerosis.
Moreover, epidemiological studies continue to accumulate evidence
on the beneficial effects of XOR inhibition inmetabolic syndrome. How-
ever, the beneficial versus detrimental outcomes of XOR activity and
XOR-derived products are hardly predictable because they depend on
the balance between the actions of various enzymes involved in
generating and/or controlling oxidative stress.
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