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Abstract

Colloidal suspensions of nanoparticles (nanofluids) are materials of interest for

thermal engineering, because their heat transfer properties are typically en-

hanced as compared to the base fluid one. Effective medium theory provides

popular models for estimating the overall thermal conductivity of nanofluids

based on their composition. In this article, the accuracy of models based on

the Bruggeman approximation is assessed. The sensitivity of these models to

nanoscale interfacial phenomena, such as interfacial thermal resistance (Kapitza

resistance) and fluid ordering around nanoparticles (nanolayer), is considered for

a case study consisting of alumina nanoparticles suspended in water. While no

significant differences are noticed for various thermal conductivity profiles in

the nanolayer, a good agreement with experiments is observed with Kapitza re-

sistance ≈ 10−9 m2K/W and sub-nanometer nanolayer thickness. These results

confirm the classical nature of thermal conduction in nanofluids and highlight

that future studies should rather focus on a better quantification of Kapitza re-

sistance at nanoparticle-fluid interfaces, in order to allow bottom up estimates

of their effective thermal conductivity.
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1. Introduction

Since the first report on their peculiar thermal conductivity in 1995, ther-

mophysical properties of colloidal suspensions of nanoparticles (nanofluids) have

been widely investigated in the biomedical and engineering fields [1].

In the biomedical sector, nanofluids show applications in cancer therapy,

drug delivery, imaging and sensing [2, 3]. As far as engineering applications are

concerned, nanofluids can be employed in mechanical systems as lubricants or

magnetic sealants, in structural systems as magneto-rheological fluid dampers,

in automotive or electric systems as coolants (including evaporators and con-

densers) [4–11], and in energy systems for either direct or indirect solar thermal

energy absorption [12–17].

In particular, suspending thermally conductive nanoparticles in conventional

fluids with the aim of improving their heat transfer properties has been among

the most investigated and controversial research areas [18–20]. Researchers have

studied experimental, semi-empirical and theoretical models for the thermal con-

ductivity of nanofluids, which is typically enhanced respect to the base fluid one

[21–25]. While the classical nature of thermal conduction in nanofluids forces

their thermal conductivities to fall between lower and upper Maxwell bounds

for homogeneous systems [26], a general model accommodating the numerous

experimental evidences has been under debate for more than two decades. In

particular, classic Effective Medium Theories (EMTs), such as Maxwell-Garnett

(MG) [27] or Bruggeman (BR) [28] approximations, have been progressively

amended to include the nanoscale effects at nanoparticle-fluid interface, as well

as the nanoparticle size, shape and aggregation [13].

In this work, we analyze two nanoscale phenomena involved in the effec-

tive thermal conductivity of nanofluids, namely interfacial thermal resistance

(Kapitza resistance) and fluid ordering around nanoparticles (nanolayer). The

sensitivity of BR approximation to these interfacial effects is systematically eval-

uated. Results show that Kapitza resistance plays a significant role in determin-
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ing the effective thermal conductivity of nanofluids; whereas, the approximation

employed for the thermal conductivity profile within the nanolayer has not a

sensible effect. Moreover, the influence of nanolayer on the effective thermal

conductivity appears as negligible if realistic values of nanolayer thickness are

considered, namely less than 1 nm. This analysis suggests that future studies

on thermal properties of nanofluids should focus on a better quantification of

Kapitza resistance at the nanoparticle-fluid interface.

2. Methods

Several models based on EMT have been proposed to predict the thermal

conductivity of nanofluids. In particular, Bruggeman approximation predicts

the effective thermal conductivity of homogeneous suspensions as:

φ

(
λp − λeff
λp + 2λeff

)
+ (1 − φ)

(
λf − λeff
λf + 2λeff

)
= 0 , (1)

where φ is the particle volume fraction, while λp, λf and λeff are the particle,

base fluid and effective thermal conductivity of nanofluid, respectively. The

Bruggeman approximation is particularly suitable for nanosuspensions with un-

biased configuration, namely a mix of linearly aggregated and well-dispersed

nanoparticles [26]. Note that, for low volume concentrations, MG and BR

models lead to approximately equal predictions. Models based on EMT have

demonstrated good accuracy with experiments for a large span of particle vol-

ume fractions: for example, the benchmark study on the thermal conductivity

of nanofluids carried out by Buongiorno et al. found a good agreement (i.e.

<20% mismatch) in the range φ = 0.001-3% [29].

2.1. Nanolayer

The nanolayer is a structured layer of fluid molecules at the interface with

nanoparticle surface, and it generally shows properties different from the bulk

fluid ones [30–32]. In particular, in case of hydrophilic nanoparticles immersed

in aqueous media, the average thermal conductivity of nanolayer (λ̄l) has report-

edly higher values respect to the base fluid one (see Fig. 1) [33]. The nanolayer
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Figure 1: Thermal conductivity profile in the water nanolayer in the proximity of an alumina

nanoparticle (λf = 0.60 W/m·K, λp = 35 W/m·K [29], rp = 20 nm and t = 0.30 nm [26, 30]).

The thermal conductivity profiles in the nanolayer predicted by Eqs. 6–9 are compared.

typically shows sub-nanometer thickness, namely a few layers of water molecules

in the proximity of nanoparticle surface [34, 35].

Several models have been proposed to capture the effect of nanolayer on the

thermal conductivity of nanofluids. For example, the EMT model modified by

Yu and Choi accounts for the effect of liquid layering on the thermal conductivity

of nanofluids [36]. In this model, nanoparticle (radius: rp) and the surrounding

nanolayer (thickness: t) are treated as a single particle with an equivalent radius

equal to rp + t. The resulting equivalent volume concentration (φe) is thus

evaluated as

φe = φ(1 + δ)3 , (2)

where δ = t
rp

is the ratio between nanolayer thickness and particle radius. The

thermal conductivity of equivalent particles (λpe) is subsequently derived from

effective medium theory as

λpe =
[2(1 − γ) + (1 + δ)3(1 + 2γ)]γ

−(1 − γ) + (1 + δ)3(1 + 2γ)
λp , (3)
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being γ = λ̄l

λp
. The BR model in Eq. 1 can be then modified as

φ(1 + δ)3

(
λpe − λeff
λpe + 2λeff

)
+
[
1 − φ(1 + δ)3

]( λf − λeff
λf + 2λeff

)
= 0 . (4)

Since the average thermal conductivity of nanolayer should present values

higher than base fluid one and possibly lower than that of the particle (λp ≥

λ̄l ≥ λf ), a continuous thermal conductivity profile (λl(r)) has been typically

hypothesized within the nanolayer (rp ≤ r ≤ rp + t) [37], and λ̄l computed as

λ̄l =
t

rp(rp + t)
∫ rp+t

rp

(
1

r2λl(r)

)
dr

. (5)

Different thermal conductivity profiles in the nanolayer have been proposed

in the literature. For instance, Xie et al. [37] investigated the effect of a linear

λl(r) profile, namely

λl(r) = λp − (λp − λf )
r − rp
t

. (6)

Jiang et al. [38], instead, introduced a cubic polynomial model for the nanolayer

thermal conductivity:

λl(r) =
(λp − λf )

4

[(
2(r − rp)

t
− 1

)3

− 3

(
2(r − rp)

t
− 1

)]
+
λp + λf

2
; (7)

whereas, Kotia et al. [39] a logarithmic one

λl(r) = λf +
λp − λf

t

√
t2 − (r − rp)2 . (8)

Finally, Pasrija et al. [40] proposed a exponential profile for λl(r), that is

λl(r) = λp +

(
λf − λp
1 − em

)[
1 − e

m(r−rp)

t

]
, (9)

where m is a real positive value (m = 2 [40]). Considering Eqs. 6–9, Fig. 1 com-

pares the different thermal conductivity profiles in a representative case study,

which is made of an alumina nanoparticle immersed in water and surrounded

by water nanolayer.
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2.2. Kapitza resistance

The Kapitza resistance at nanoparticle-fluid interface also influences the ef-

fective thermal conductivity of nanofluids [41, 42]. Such interfacial thermal

resistance arises from the phonon scattering due to acoustic mismatch at the

interface of dissimilar materials (e.g. solid-liquid phases). Kapitza resistance

can be expressed as

Rk =
∆T

q
, (10)

where ∆T is the temperature jump at the interface generated by a specific heat

flux q.

To take into account this additional resistance to heat transfer in nanopar-

ticle suspensions, the thermal conductivity of nanoparticles can be modified

as

λ∗p =
2rp

Rk +
2rp
λp

, (11)

where Rk refers to the nanoparticle-fluid interface [43]. The thermal conductiv-

ity of equivalent particles (λpe, Eq. 3) can be then computed using λ∗p instead

of λp; finally, BR model (Eq. 4) can be adopted to estimate λeff .

3. Results and discussions

3.1. Sensitivity of thermal conductivity to nanolayer and Kapitza resistance

The sensitivity of EMT-based thermal conductivity models to nanolayer

thermal conductivity and Kapitza resistance has been then assessed (see Tab.

1 for a detailed list of tested models). A water-alumina nanofluid has been

considered as a case study (rp = 20 nm, λp = 35 W/m·K, λf = 0.60 W/m·K

[29]).
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Table 1: Models for estimating the effective thermal conductivity of nanofluids that are con-

sidered in the sensitivity analysis.

Model λeff λl(r) Particle λ

BR Eq. 1 — λp

BR-LIN Eq. 4 Eq. 6 λp

BR-CUB Eq. 4 Eq. 7 λp

BR-LOG Eq. 4 Eq. 8 λp

BR-EXP Eq. 4 Eq. 9 λp

BR-LIN-RK Eq. 4 Eq. 6 λ∗p, Eq. 11

On the one hand, the influence of different λ(r) profiles on λeff is shown

in Fig. 2a. As generally predicted by EMT approximations, effective thermal

conductivity increases with nanoparticle volume fraction. In accordance with

experimental and numerical studies in the literature [26, 30], the nanolayer

thickness is first taken as t = 0.30 nm (black lines and symbols). Results show

that the models accounting for nanolayer effect lead to slightly higher λeff

predictions respect to BR model, namely up to 0.5% more. This is due to the

fact that, while BR model considers a bulk value of thermal conductivity in

the nanolayer (λ̄l = λf = 0.60 W/m·K), λ̄l is estimated as 8.54, 4.84, 13.42

and 23.21 W/m·K in the BR-LIN, BR-CUB, BR-EXP and BR-LOG models,

respectively. Nevertheless, λeff predictions are substantially similar (less than

0.1% differences) among the four λl(r) profiles. Blue lines and symbols in Fig.

2a, instead, represent λeff predictions obtained with the nanolayer thickness

hypothesized by Tso et al. for aqueous alumina nanosuspensions with 5 nm

≤ rp ≤ 30 nm, namely t = 2.55 nm [44]. Under such assumption, λeff appears

to be significantly enhanced by nanolayer effect (up to 4.1% increase), while

no relevant discrepancies between the different λl(r) profiles are still observable

(less than 0.6% differences). However, nanolayer thicknesses larger than 1 nm

are at variance with consolidated experimental and numerical evidences [26].
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On the other hand, Fig. 2b illustrates a general decrease of λeff with Kapitza

resistance. In fact, by exploring typical values of Kapitza resistance at the

interface between hydrophilic solid surfaces and water (0.2 × 10−8 − 5.0 × 10−8

m2K/W [45, 46]), a sensible drop (as much as -7.8% respect to BR model) in

λeff could be observed with increasing Rk.

Figure 2: Sensitivity analysis of the effective thermal conductivity with respect to (a)

nanolayer thermal conductivity profile and (b) Kapitza resistance. The reported models are

defined according to Tab. 1 and refer to alumina-water nanofluid.

3.2. Experimental validation of EMT models

Experimental data from the literature are then used to assess the accuracy

of effective thermal conductivity predictions by EMT-based models [45, 47–

55]. The detailed list of considered experimental data is given in Tab. 2. As

a first approximation, t = 0.30 nm [26, 30] and Rk = 0.2 × 10−8 m2K/W

(fitting value adopted in reference [45]) are taken as nanolayer thickness and

Kapitza resistance at the alumina-water interface, respectively. Nanofluids with

nanoparticles characterized by a diameter approximately equal to 39 nm are

initially considered. In Fig. 3, a large mismatch with experiments is shown by

the model accounting only for nanolayer effect (BR-LIN, R2=0.61) and by the

the classic Bruggeman model (BR, R2=0.71); whereas, better agreement with

experiments is achieved by both the model including Kapitza resistance together

with nanolayer effect (BR-LIN-RK, R2=0.80) and the model including only

the effect of Kapitza resistance (BR-RK, R2=0.84). Note that the variability
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of results between different experimental sets may be due to the presence of

various surfactants in the nanofluids, since surfactants strongly regulate the

particle aggregation behavior and thus the resulting λeff [56].

Table 2: Experimental studies of alumina-water nanofluids that have been considered for

validating the EMT-based models. Note that only experiments carried out at around room

temperature (20◦C to 25◦C) are considered in this work.

Reference Particle diameter (nm)

Timofeeva et al. [45] 11, 40

Das et al. [47] 38.4

Lee et al. [48] 38.4

Patel et al. [49] 11, 45, 150

Beck et al. [50] 12, 46

Beck et al. [51] 12

Yiamsawasd et al. [52] 120

Chandrasekar et al. [53] 43

Prasher et al. [54] 38.4

Kim et al. [55] 38
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Figure 3: Comparison between modeling (lines) and experimental (dots) values of normalized

effective thermal conductivity of nanofluids made of water and alumina nanoparticles (39 nm

diameter). The reported models are defined according to Tab. 1; whereas, experimental data

are extracted from the references in Tab. 2.

3.3. Optimal nanolayer thickness and Kapitza resistance

Since both interfacial thermal resistance [57–59] and nanolayer [30, 60, 61] at

the nanoscale interface between solid and liquid phase have been widely observed

by experiments and simulations, the BR-LIN-RK model should - in principle -

best represent the heat transfer mechanisms determining λeff . Therefore, the

significant discrepancy between BR-LIN-RK model and experiments in Fig. 3

may be due to sub-optimal estimations of Rk, t or both. The sensitivity analysis

reported in Fig. 4 indeed shows that, with proper combinations of Rk and

t values, the BR-LIN-RK model could potentially achieve an accurate match

(up to R2=0.87) of the experimental results in Fig. 3. For example, a large

coefficient of determination (R2=0.86) is observed with Rk = 5.0×10−9 m2K/W

and t = 0.35 nm, namely typical values of Kapitza resistance [59, 62] and

nanolayer thickness [30] observed in case of other metal oxide-water interfaces

under fully hydrated conditions.

The latter values are then employed to evaluate the applicability of these
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Figure 4: Coefficient of determination (R2) of BR-LIN-RK model fitting to the experimental

results reported in Fig. 3, with different values of Kapitza resistance (Rk) and nanolayer

thickness (t) at the alumina-water interface. For the sake of clarity, combinations of Rk and

t leading to R2<0 are colored in white.

EMT-based models with other nanoparticles sizes. Results in Fig. 5 illustrate

that a better match between experiments and models is generally observed with

larger particles (Figs. 5b and c), while an higher variability can be noticed with

the smaller ones (Fig. 5a). In the latter case, the nanolayer extension becomes

comparable with nanoparticle diameter, therefore determining an increased in-

fluence of interfacial phenomena on λeff ; hence, small variations in the value of

nanolayer thickness or Kapitza resistance may cause a large scattering of results.

Nonetheless, the linear fitting (i.e. the average value) of experimental results

in Fig. 5a presents a difference less than 0.8% with respect to the BR-LIN-RK

model.

Hence, models based on effective medium theory that account for nanoscale

thermal transport phenomena (interfacial thermal resistance and nanolayer)

have the potential to provide good approximations of the effective thermal

conductivity of suspensions of nanoparticles with a broad range of diameters.

However, further researches should be devoted to measure, both numerically
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Figure 5: Comparison between modeling (lines) and experimental (dots) values of thermal

conductivity enhancement for nanofluids made of water and alumina nanoparticles with dif-

ferent diameters: (a) 11.25 nm; (b) 45 nm; (c) 135 nm. Models are defined according to Tab.

1; experimental data are extracted from the references in Tab. 2. Note that the dashed green

line in panel (a) is a linear fitting of the reported experimental results.

and experimentally, more accurate values of Kapitza resistance and nanolayer

thickness at typical solid-liquid interfaces of engineering interests, for instance

alumina-water ones or any other pair of interest.
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4. Conclusions

Enhanced physical properties of nanofluids have led to their widespread ex-

ploitation in different fields, for instance the energy, mechanical, automotive,

and biomedical ones. In particular, the thermal conductivity of such nanopar-

ticle suspensions is generally improved respect to the base fluid one. However,

nanoscale characteristics and the resulting macroscopic properties have to be

better understood to achieve a more rational design of nanosuspensions.

In this study, different models based on Bruggeman approximation have been

compared with experimental data from the literature, in order to assess the sen-

sitivity of the effective thermal conductivity of nanofluids to Kapitza resistance

and liquid layering at the nanoparticle-fluid interface. First, it has been shown

that estimates of effective thermal conductivity of nanofluids significantly de-

pend on the Kapitza resistance at their solid-liquid interface. Second, results

show that different hypotheses of thermal conductivity profile in the nanolayer

have no significant effect on the predicted effective thermal conductivity. Third,

the effective thermal conductivity is only very slightly affected by the enhanced

thermal conductivity of nanolayer, at least when realistic sub-nanometer thick-

nesses of nanolayer are considered. In fact, the assumption of thicker water

layering around nanoparticles leads to overestimated values of effective thermal

conductivity.

In conclusion, EMT models accounting for nanoscale effects at the nanoparticle-

fluid interface can provide good approximations of the effective thermal conduc-

tivity of colloidal nanosuspensions once optimal values of Kapitza resistance

and nanolayer thickness are provided. In perspective, better matching be-

tween experimental and predicted values of effective thermal conductivity could

be potentially achieved by more accurate measures of Kapitza resistance and

nanolayer thickness at the nanoparticle-fluid interface, for example by atomistic

simulations or ad hoc experiments.
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