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Abstract SiCp/Al composites are difficult-to-cut materials. In recent years, electrical arc discharge

machining has been developed to improve the machinability of these materials. However, there is a

big challenge to build a satisfactory heat transfer model of SiCp/Al composites in the arc machining.

This is not only because of the material property difference between the reinforcement and matrix

material but also because of the micro-dimension SiC reinforcements. This paper established a new

heat conduction simulation model considering the SiC particle-Al matrix interface and the phase

change effects in a single-pulsed arc discharge of SiCp/Al composites. A novel SiC particle-Al

matrix cell geometric model was designed firstly. Then, the temperature distribution at a different

depth from the workpiece surface was analyzed, the influence of sic volume fraction on temperature

field was studied, and the contribution of the interface thermal resistance and latent heat were

explained. To demonstrate the validity of the new numerical model, comparisons and verifications

were employed. Finally, the method of improving the model was proposed and the machining

mechanism of arc discharge of SiCp/Al matrix materials was discussed. It was found that high tem-

perature is prone to concentrate on the surface layers of the workpiece especially when the SiC frac-

tion is high, also, the temperature fluctuates respectively at the evaporation point of aluminum and

SiC, and the SiC-Al resistance has less influence on temperature distribution compared to latent

heat, etc. The model build in this work improves the simulation accuracy observably compared
scharge,
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to the previous model, and the simulation work will help to acquire a detailed mechanism of mate-

rial removal of SiCp/Al composites in the arc discharge machining.
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Fig. 1 Schematic of a single-pulsed arc discharge.
1. Introduction

SiCp/Al composites have high specific strength, specific stiff-
ness and wear resistance, low thermal expansion coefficient,

good fatigue resistance, thermal conductivity, and electrical
conductivity. They have attracted much attention in the mili-
tary, aerospace, and automotive industry, besides the elec-
tronic packaging and optics.1–3 It is known that SiCp/Al

composites consist of reinforcement particles (SiC) and matrix
material (aluminum alloys). Although the SiCp/Al composites
possess numerous excellent physical and mechanical proper-

ties, its natural characteristics of SiC particle’s high hardness
and high wear resistance lead to low tool life and poor
machined surface quality, especially in machining aluminum

matrix composites (AMCs) reinforced with a high fraction of
SiC particulate.4–7 Besides traditional cutting processes, e.g.,
turning, 8,9 milling, 5,10,11 drilling,3,12 grinding,4,13 non-

traditional processes have also been adopted to machine SiCp/
Al. Among them, the Electric discharge machining (EDM)
process14–17 is widely employed. EDM process is a material
removal process that relies on heat generation to melt and

vaporize a select portion of the workpiece material by ioniza-
tion within the dielectric medium, in which the workpiece is
dipped.18 One of the deficiencies of the EDM process lies in

its limited machining efficiency. In EDM, the discharges
between the electrode and workpiece are generally electrical
sparks. Compared to spark discharges, electrical arc discharge

has a lager discharge energy because a higher peak current and
a longer pulse duration are generally employed. Hence, arc dis-
charge machining processes, such as arc dimensional machin-
ing (ADM),19 short electric arc machining,20,21 combined

machining of electrical discharge machining and arc machin-
ing,22,23 electro-arc machining24 have been proposed to
improve the material removal ability of EDM.

Blasting erosion arc machining (BEAM) is also a typical
applicable arc discharge process which was developed by Zhao
and Gu around 2012.25 BEAM has been used to machining

difficult-to-cut materials such as titanium alloys,26 nickel-
based alloys27 and demonstrated a very high material removal
rate (MRR). Since 2014, Gu and Chen28–30 conducted experi-

ments on the machining of SiCp/Al composites with BEAM
and studied relevant processing properties. It was found that
the MRR of machining 20vol% and 50vol% SiCp/Al compos-
ites could be as high as 10,000 mm3/min, and 7500 mm3/min

respectively. At present, research about heat transfer simula-
tion of discharge machining SiCp/Al composites has been con-
ducted, for example, Gu et al.31 built a heat transfer model to

explain the heat affect zone (HAZ) of arc machining SiCp/Al
composites, Tang et al.17 established an EDM continuous
multi-pulse discharge temperature simulation model to explore

characteristics of EDM of SiCp/Al composite materials. How-
ever, the SiCp/Al composites in the reported models are gener-
ally simplified as an isotropic homogeneous material, SiC

particle-Al matrix interface effect, and phase change are nor-
al. Simulation of temperature distribut
16/j.cja.2020.05.033
mally not considered. It is predicted that the interfaces in com-
posites materials seriously affect the thermal properties of the
composites.32 The interfacial thermal resistance reduces the
conductivity of the composites, and this reduction can be very

pronounced for small reinforcement particles.33

There is a big challenge to build a heat transfer model of
SiCp/Al l composites in the arc machining not only because

of the material property difference but also because of the
micro-dimension SiC reinforcement (e.g., 10 lm) which makes
the geometry model very difficult. This paper attempts to

establish a heat conduction simulation model with the consid-
eration of the SiC particle-Al matrix interface and phase
change effects during the single arc discharge. The simulation
model will be verified and compared, the influence of SiC vol-

ume fraction and discharge energy on temperature field and
crater dimension will also be researched. The simulation work
will help to acquire a detailed mechanism of material removal

of SiCp/Al composites in arc discharge machining.

2. Simulation approach

2.1. Single arc discharge process

The schematic of a single pulse arc discharge is shown in
Fig. 1. The copper electrode is fixed on the spindle of a
CNC machine. The electrode moves with the spindle without

rotating. The workpiece immerses in the dielectric (deionized
water). The dielectric breaks down and an arc forms when
the distance of the electrode and the workpiece is within the
discharge gap. The power works in single discharge mode,

hence there is one pulsed arc generates and forms one crater
on the workpiece surface.

The occurrence of arc discharge and its heat conduction to

SiCp/Al composite workpiece is very complex, hence, neces-
sary simplifications are employed.
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 3 Full length geometric model with meshes.
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(1) Neglecting the influence of the external environment on

the arc plasma discharge. Assuming the energy of the arc
discharge plasma assigned to the workpiece is constant.

(2) Neglecting the effect of working fluid on the heat trans-

fer process of workpieces. Assuming that the phase
changed material is removed from the workpiece and
forms craters on the workpiece.

(3) Assuming the reinforcement particles are sphere-shape

and uniformly distributed in the matrix material.
(4) Neglecting the chemical reactions between SiC rein-

forcement and Al matrix material (e.g., the occurrence

of Al4C3) and not consider their influence on
temperature.

(5) The computational domain is axisymmetrical and can be

modeled in a two-dimensional coordinate.34
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2.2. Numerical model

In this study, the construction of the numerical model is based
on COMSOL Multiphysics 5.4. The Fouriers law of heat con-

duction and heat balance equation in solid is expressed as

q ¼ �krT ð1Þ

qCpð@T=@tþ urTÞ þ r � q ¼ �aT : dS=dtþ q ð2Þ
where k is the thermal conductivity (W/(m�K)), q is the density
(kg/m3), Cp is the specific heat capacity at constant pressure (J/
(kg�K)), u is the velocity vector (m/s), q is the heat flux by con-

duction (W/m2), a is the coefficient of thermal expansion (1/
K), S is the second Piola-Kirchhoff stress tensor (Pa), Q is
additional heat sources (W/m3), T is temperature.

To build a heat conduction model considering the interfa-
cial effects of reinforcement particles and matrix material, a
geometrical model containing both particle domain and matrix
domain should be employed. However, the construction of the

geometrical model will be very complex if a real-scale particle
dimension is adopted, this is because the size of a SiC particle
can be as small as 10 lm. Consequently, a compromised

method is adopted. A square cell which contains SiC particle
domain and the matrix domain is proposed, as shown in Fig. 2.

The length of the square cell (Lce) is set as a constant, and

Lce = 0.1 mm in this study. The radius of the particle is written
as
184
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201Fig. 2 Construction of geometric model.
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Rpar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fvolLce

2

p

s
ð3Þ

where fvol is the volume fraction of SiC particles. With this
method, the radiuses of SiC particles are 25.2 lm and
39.8 lm respectively when SiC volume fractions are 20% and
50%. Note that if the radiuses of SiC particles in the model

are too small, the calculation will be very difficult and time-
consuming, even not convergence. A full-length geometric
model (two-dimensional axis-symmetry) with meshes (mesh

size is chosen as ‘‘extra coarse”) is shown in Fig. 3.
On most occasions, essential thermal properties of SiC are

taken as constant. In this study, the temperature- dependent

properties of SiC are taken into account, which is given by35

CpðTÞ ¼ 0:48þ 0:023 exp
T

262

� �
ð4Þ

kðTÞ ¼ 2:67� 105T�1:26 ð5Þ
where Cp(T) is specific heat capacity function of temperature,

k(T) is thermal conductivity function of temperature.
It is known that the aluminum solid changes to liquid/gas at

the temperature of 933 K/2743 K, the corresponding latent

heats are 390 kJ/kg and 11,834 kJ/kg respectively. The thermal
properties of the liquid and gas states are expressed as a piece-
wise function of temperature. Here we use the piecewise func-
tions that have been built in the COMSOL material database.

Different from aluminum, it is generally regarded that SiC
decomposes (SiC ? Si + C) and evaporates at a temperature
of 3100 K. Sometimes, a melting process is also observed, for

example, a cloud of ejected liquid SiC material right above
the target surface starts being observable from 1000 ns in a
laser machining process.36 Reference 37–39 explained that

SiC becomes a solution of carbon in liquid silicon above melt-
ing temperature, and the thermal parameters of liquid SiC are
represented by those of liquid silicon. In some study cases, the
melting or evaporation of SiC is generally not considered.40 In

this study, we consider the evaporation of SiC but neglect its
melting process since the pulse duration adopted in this
research is less than 2 ms. The latent heat of SiC evaporation

is 530 kJ/mol,37,38 and the molecular weight of SiC is
40 g/mol,41 so we take a value of 1.325 � 104 kJ/kg as the
latent heat of SiC evaporation in the calculation. Furthermore,

we take aluminum as matrix material and consider both the
melting and evaporation of aluminum. We set the thermal
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

https://doi.org/10.1016/j.cja.2020.05.033
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Table 2 Thermal properties of SiC.

Quantity Value

Density (kg/m3) 3240

Decomposition temperature (K) 3100

Specific heat (J/(kg�K)) 0.48 + 0.023 exp(T/262)

Thermal conductivity (W/(m�K)) 2.67 � 105T�1.26

Latent heat of evaporation (kJ/kg) 1.325 � 104 (530 kJ/mol)

Table 3 Al-SiC interfacial thermal property.

Quantity Value

Thermal resistance (K�myy2/W) (14.95fvol + 2.39) � 10�9
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parameters of aluminum as constants in the solid phase
(<933 K). While in the liquid phase, the thermal conductivity
is 33.9 + 0.07892 T-2.099 � 10�5T2 W/(m�K) (933–1491 K)

and 105 W/(m�K) (>1491 K), and the specific heat is 1127 J/
(kg�K) as reported in reference.42

In terms of interfacial resistance between SiC and Al, a

value of 5.38 � 10�9 K�m2/W for 20 vol.% SiCp/Al and value
of 8.37 � 10�9 K�m2/W for 40vol% SiCp/Al are reported.33,43

The interfacial thermal resistance value for 20vol% SiCp/Al is

a little lower than that for 40vol% SiCp/Al, which is also due
to the dislocations induced by SiC-particle loading.33 In this
study, we use a linear fitting function to describe the interfacial
resistance of different volume fraction SiCp/Al composites

based on the above two values. The thermal parameters of
Al, SiC, and Al-SiC interface are also listed in Tables 1–3.

A Gaussian distribution heat flux q(r) is employed as a heat

source,31,44,45 which is expressed as
qðrÞ ¼ 3

1� expð�3Þ :
fUI

pr2P
:exp �3

r

rp

� �2
" #

ð6Þ
243
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Table 4 Study parameters employed in simulations.

Item Parameters

Discharge voltage U (V) 25

Discharge current I (A) 100

Pulse on time ton (ms) 0–2.0

SiC volume fraction fvol (vol%) 20, 30, 40, 50
where r is the distance from the center of the plasma column, f

is energy distribution coefficient and a value of 0.39 is gener-
ally adopted,31,44,45 U is discharge voltage which is generally
a constant during discharge, U = 25 V. I is discharge current

which can be taken as peak current value. Where rp is the
radius of the plasma heating area, generally, empirical formu-
las with discharge current and pulse on time (ton) are used to

describe this parameter, e.g., 2:04� 10�3I0:43t0:44on ,17

0:788t3=4on .
44,46 Currently, there is no available radius of the

plasma heating area function in the arc discharge machining,
a constant value of 0.55 mm is adopted in this study based
on previous measurement.31 Note that this value is only for

SiCp/Al material under a low energy arc discharge condition.
In our previous work, it has been demonstrated that discharge
energy has a great influence on the material removal rate and

HAZ.28–31 Generally, higher energy means a larger material
removal rate and a deeper HAZ. Since this study is focused
on the interfacial resistant effects, the discharge parameters
are selected as constant. A typical low energy arc discharge

parameter combination and SiC fractions are shown in
Table 4.
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Table 1 Thermal properties of Al.

Quantity Value

Density (kg/m3) 2700

Specific heat (solid) (J/(kg�K)) 900

Thermal conductivity (solid) (W/

(m�K))

238

Melt point temperature (K) 933

Latent heat of melting (kJ/kg) 390

Evaporation point temperature (K) 2743

Latent heat of evaporation (kJ/kg) 11,834

Specific heat (liquid) (J/(kg�K)) 1127

Thermal conductivity

(liquid < 1491 K) (W/(m�K))

33.9 + 0.07892 T-

2.099 � 10�5T2

Thermal conductivity

(liquid > 1491 K) (W/(m�K))

105
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3. Results, comparison and verification

3.1. Results

Fig. 4 shows a simulative 3D temperature calculation result of

single-pulsed arc discharge of SiCp/Al composites (20vol%
and 50vol% SiCp/Al), detailed temperature distributions are
shown in Fig. 5 (20vol%, 30vol%, 40vol% and 50vol% SiCp/
Al). When the pulse on time reaches 2 ms, the peak surface

temperature of SiCp/Al workpiece is generally higher than
3300 K. At this temperature, the evaporations of both matrix
material and SiC particles will happen. Also, the high temper-

ature is found to concentrate on the surface layers of the work-
piece, especially when the sic fraction is higher, it indicates that
the SiC particles have a strong thermal resistant characteristic

which is not conducive to thermal machining. There is another
trend that the peak value of workpiece surface decreases with
the increasing SiC fraction, which indicates that the SiC tends

to absorb more heat energy and leads to a decline of tempera-
ture. The detailed mechanism has been discussed in
reference.31

A detailed temperature increasing process at different depth

(r = 0.1 mm) is shown in Fig. 6. The workpiece with different
SiC fractions appears a similar temperature increasing ten-
dency. Once the heat source acts on the workpiece, the temper-

ature increases quickly to the evaporation point of aluminum
within 0.25 ms at the surface layers. Then, the temperature
rises slowly. At the evaporation point of aluminum and SiC,

the temperature fluctuation can be found respectively because
of the high latent heat of aluminum (11,834 kJ/kg) and SiC
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

https://doi.org/10.1016/j.cja.2020.05.033
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Fig. 4 Simulative 3D temperature calculation result (ton = 2 ms).

Fig. 5 Temperature distribution in SiCp/Al composites (ton = 2 ms).
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(13,250 kJ/kg). Compared to latent heat, the SiC-matrix inter-
face resistance has less influence on temperature distribution.
At the depth of �0.1 mm, the temperatures of different SiC

fraction workpiece increases over aluminum melting point
within 5 ms respectively, and then slowly increases with time.
The overall temperature is much lower than that of the surface
layers. At this depth, the main phase change is the melting of

the matrix material. At the depth of �0.2 mm, the material
temperature is around the melting point of aluminum after
1.25 ms. Based on the temperature distribution observation,
Please cite this article in press as: CHEN J et al. Simulation of temperature distribut
Chin J Aeronaut (2020), https://doi.org/10.1016/j.cja.2020.05.033
two mechanisms in the temperature increasing process can be
known, i.e., the evaporation of SiC and aluminum, and the
melting of aluminum. The former occurs on the surface of

the workpiece, the later exits in the material interior.

3.2. Comparison and verification

In previous work, an equivalent heat conduction model (Gu’s

model) was built to demonstrate the influence of Sic particle on
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

https://doi.org/10.1016/j.cja.2020.05.033
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Fig. 6 Temperature increasing process at different depth

(r= 0.1 mm).
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the arc machining.31 However, the workpiece materials are

considered as homogeneous in Gu’s model, and the thermal
properties of the workpiece were calculated according to a
combination of Al and SiC considering reinforcement frac-
tions. To verify the advantage of the simulation model built

in this work, the comparisons between the Gu’s model and
experiment results are conducted. The experimental setup
was based on a needle-plane single arc discharge device. The
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Fig. 7 Single pulsed arc discharge crater measured with a laser

confocal microscopy.30,31
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workpiece materials used for single discharge experiments were
20vol% SiCp/Al and 50vol% SiCp/Al composites respectively.
The experimental setup, results, and the discharge cater obser-

vations (with a laser confocal microscopy-ZEISS LSM700, as
shown in Fig. 7) are available in reference.31

A comparison of a single discharge crater in Gu’s model

and this work is shown in Fig. 8. The crater in this work is
smaller than that of Gu’s model under the same discharge
parameters. The surface of the discharge crater is also not as

smooth as that of Gu’s model, this phoneme demonstrates that
the SiC particles tend to cause uneven microscopic surfaces
(i.e., burr and flashing) which can be observed in Fig. 7. Both
Gu’s model and this work are compared with experimental

results, as shown in Fig. 9. The maximum crater radiuses of
the two models are close to the experimental values, this is
because the plasma heating area value adopted in the models

is based on the measurement, i.e. a constant value 0.55. How-
ever, the crater depths of Gu’s model are much larger than the
experimental values. Table 5 shows the error comparison with

Gu’s model. The errors of 20vol% SiCp/Al and 50vol% SiCp/
Al crater depths can be as high as 54.5% and 68.7%, which
indicates that the previous model method is far from satisfac-

tory. In this work, a new modeling method is adopted, and the
errors of crater depth can be reduced to 21.9% and 14.5%
respectively, which improves the simulation precision greatly.
It is noted that the reason why the new model not showing

good enough characteristics for the radius of the discharge cra-
ter is that the actual radius of the plasma heating area is not
the same for the different SiCp/Al composites with different

SiC fractions according to measurement value, however, this
model uses a uniform value for simplification. Thus, compared
to the discharge crater, the crater depth is paid more attention.

4. Discussion

Many factors affect the precision of the simulation model. In

this study, an energy distribution value of 0.39 is adopted. This
energy distribution coefficient is widely used in traditional
EDM studies.44,45,47–49 However, in the arc discharge, the

energy distribution coefficient is likely lower than this value,
because the discharge gap in an arc discharge can be higher
than 0.2 mm, which is larger than the EDM discharge gap.
Thus, the arc plasma is easier to be involved in the heat

exchange with the surrounding dielectric and leads to an extra
energy loss. A correction coefficient can be employed to over-
come this problem since the precise value of arc discharge dis-

tribution is not available currently. Table 6 shows the error
values when adopting different correction coefficients. When
the coefficients change from 1 to 0.8, the average error reduces

and then increases. Considering a balance combination of dis-
charge crater radius and depth, the coefficient value 0.85 is rec-
ommended in the simulation of arc discharge machining of
SiCp/Al composites.

Gu et al.28,31 and Chen et al.29 studied the processing and
mechanism of machining SiCp/Al composites, and it was
found that SiC reinforcement has a negative influence on the

machining efficiency, and HAZ thickness, etc. In term of the
different discharge crater dimensions, it has been revealed that
the extreme temperature-dependent prosperities of SiC rein-

forcement is the main reason. As shown in Fig. 10, the rein-
forcements tend to absorb more energy when the
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

https://doi.org/10.1016/j.cja.2020.05.033
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temperature increases, as a result, higher reinforcement frac-
tion will lead to a smaller discharge crater and lower machin-

ing efficiency. The viewpoint can be proved with the
temperature distribution. For instance, the surface tempera-
ture of 20vol% SiCp/Al material can be 550 K higher than that
Please cite this article in press as: CHEN J et al. Simulation of temperature distribut
Chin J Aeronaut (2020), https://doi.org/10.1016/j.cja.2020.05.033
of 50vol% SiCp/Al material. It is found that the higher temper-
ature concentrates on the surface layers of the workpiece, espe-
cially when the sic fraction is higher. Since the heat is not easy

to conduct and dissipate, the higher SiC fraction workpiece
will have a thicker HAZ. For example, the HAZ thickness of
50vol% SiCp/Al composites can be 2 times higher than that
of 20vol% SiCp/Al composites.31

Fig. 11 shows that the debris size and shape of blasting ero-
sion arc machining SiCp/Al materials are quite different. The
low SiC fraction SiCp/Al material debris has a larger size

and contains full SiC particles inside, while most of the high
SiC fraction SiCp/Al material has a smaller size and even with-
out containing SiC particle interiorly. Gu et al.31 explained the

above phenomenon with a hypothesis: a molten pool is filled
with liquidated aluminum and solid SiC particles, the flowabil-
ity of the molten aluminum with higher SiC fraction is much
worse than that of the lower SiC fraction SiCp/Al composites.

Because the solid SiC particles are too much for the molten
aluminum to take away, they tend to be left on the workpiece
surface and sublimated by the arc plasma.

The temperature distribution observed in this work can be
used to support Gu et al.’s hypothesis. The temperature of the
ion and discharge crater of SiCp/Al composites in a single-pulsed arc discharge,

https://doi.org/10.1016/j.cja.2020.05.033


Table 5 Error comparison with Gu’s model.

Model Radius Depth

20vol% 50vol% 20vol% 50vol%

Gu’s model 0.3 % 12.6 % 54.5 % 68.7 %

This work 10 % 5.2 % q21.9 % q14.5%

Table 6 Crater errors using different correction coefficients.

Coefficient Radius Depth Average

20vol% 50vol% 20vol% 50vol%

1 10 % 5.2 % 21.9 % 14.5 % 12.9 %

0.9 13.5 % 7.0 % 5.7 % 11.4 % 9.4 %

0.85 15.2 % 8.9 % 1.6 % 8.4 % 8.5 %

0.8 15.2% 10.8 % 6.5 % 2.4 % 8.7 %

Fig. 10 Equivalent thermal parameters of SiCp/Al composites.

Fig. 11 Discharge debris of SiCp/Al composites.
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workpiece surface layer is higher than the evaporation point of
both Al and SiC, which will cause the sublimation of SiC and
evaporation of Al. And the temperature is lower than 2743 K

(evaporation point of Al) at a depth range from �0.1 mm to
�0.3 mm, which will form a molten aluminum pool. Since
the temperature increasing tendency is almost the same regard-

less of the SiC fractions, the melting and evaporation of differ-
ent SiCp/Al composites should be similar. The difference lies in
the ejection process of the melton material. Since high SiC

fraction material contains more SiC particles, they are over-
heated by plasmas without the full protection of aluminum liq-
uid and sublimate. The sublimation of SiC absorbs plasma
heat, which will also decline the temperature of the plasma.

As evidence, the surface temperature of 20vol% SiCp/Al is
higher than that of 50vol% SiCp/Al composites.

5. Conclusions

This work built a new simulation model of single-pulsed arc
discharge of SiCp/Al matrix materials, the following conclu-

sions can be drawn.

(1) The SiC-matrix cell geometric model for the heat con-

duction calculations of SiCp/Al matrix materials is feasi-
ble. The model build in this work improves the
simulation accuracy observably compared to the previ-

ous model.
(2) The highest surface temperature of SiCp/Al workpiece is

higher than 3300 K and the high temperature is found to
concentrate on the surface layers of the workpiece, espe-

cially when the SiC fraction is high. Also, the peak value
of the workpiece surface temperature decreases with the
increase of SiC fraction.

(3) At the evaporation point of Al and SiC, the temperature
fluctuation can be found respectively because of the high
latent heat of Al and SiC. Compared to latent heat, the

SiC particle-Al matrix interface resistance has less influ-
ence on temperature distribution.

(4) Two mechanisms in the temperature increasing process

can be known, i.e., the evaporation of SiC and Al, and
the melting of Al, the former occurs on the surface of
the workpiece, the later exits in the material interior.

(5) Temperature increasing tendency is almost the same

regardless of the SiC fractions, the melting and evapora-
tion of different SiCp/Al composites should be similar,
and the difference lies in the ejection process of the mel-

ton material.
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