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Abstract

The phenomenology of 3-neutrino mixing, the current status of our knowledge about the 3-neutrino mix-
ing parameters, including the absolute neutrino mass scale, and of the Dirac and Majorana CP violation in 
the lepton sector are reviewed. The problems of CP violation in neutrino oscillations and of determining the 
nature – Dirac or Majorana – of massive neutrinos are discussed. The seesaw mechanism of neutrino mass 
generation and the related leptogenesis scenario of generation of the baryon asymmetry of the Universe are 
considered. The results showing that the CP violation necessary for the generation of the baryon asymmetry 
of the Universe in leptogenesis can be due exclusively to the Dirac and/or Majorana CP-violating phase(s) 
in the neutrino mixing matrix U are briefly reviewed. The discrete symmetry approach to understanding the 
observed pattern of neutrino mixing and the related predictions for the leptonic Dirac CP violation are also 
reviewed.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction: the three-neutrino mixing

There have been remarkable discoveries in the field of neutrino physics in the last 18 years 
or so. The experiments with solar, atmospheric, reactor and accelerator neutrinos have provided 
compelling evidences for the existence of neutrino oscillations [1,2] – transitions in flight be-
tween the different flavour neutrinos νe, νμ, ντ (antineutrinos ν̄e, ν̄μ, ν̄τ ) – caused by nonzero 
neutrino masses and neutrino mixing (see, e.g., Ref. [3] for review of the relevant data). The ex-
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istence of flavour neutrino oscillations implies the presence of mixing in the weak charged lepton 
current:

LCC = − g√
2

∑
l=e,μ,τ

lL(x) γανlL(x)Wα†(x) + h.c. , νlL(x) =
n∑

j=1

Ulj νjL(x) , (1)

where νlL(x) are the flavour neutrino fields, νjL(x) is the left-handed (LH) component of the 
field of the neutrino νj having a mass mj , and U is a unitary matrix – the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) neutrino mixing matrix [1,2,4], U ≡ UPMNS. All compelling neutrino 
oscillation data can be described assuming 3-neutrino mixing in vacuum, n = 3. The number of 
massive neutrinos n can, in general, be bigger than 3 if, e.g., there exist RH sterile neutrinos [4]
and they mix with the LH flavour neutrinos. It follows from the current data that at least 3 of 
the neutrinos νj , say ν1, ν2, ν3, must be light, m1,2,3 � 1 eV, and must have different masses, 
m1 �= m2 �= m3.1

In the case of 3 light neutrinos, the 3 × 3 unitary neutrino mixing matrix U can be 
parametrised, as is well known, by 3 angles and, depending on whether the massive neutrinos 
νj are Dirac or Majorana particles, by one Dirac, or one Dirac and two Majorana, CP violation 
(CPV) phases [7]:

U = V P , P = diag(1, ei
α21

2 , ei
α31

2 ) , (2)

where α21,31 are the two Majorana CPV phases and V is a CKM-like matrix,

V =
⎛
⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎠ . (3)

In eq. (3), cij = cos θij , sij = sin θij , the angles θij = [0, π/2], and δ = [0, 2π) is the Dirac CPV 
phase. Thus, in the case of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in 
what concerns the number of mixing angles and CPV phases, to the CKM quark mixing matrix. 
The PMNS matrix U contains two additional physical CPV phases if νj are Majorana particles 
due to the special properties of Majorana fermions (see, e.g., Refs. [7–9]). On the basis of the 
existing neutrino data it is impossible to determine whether the massive neutrinos are Dirac or 
Majorana fermions.

The probabilities of neutrino oscillation are functions of the neutrino energy, E, the source-
detector distance L, of the elements of U and, for relativistic neutrinos used in all neutrino 
experiments performed so far, of the neutrino mass squared differences 	m2

ij ≡ (m2
i − m2

j ), 

i �= j (see, e.g., Ref. [9]). In the case of 3-neutrino mixing there are only two independent 	m2
ij , 

say 	m2
21 �= 0 and 	m2

31 �= 0. The numbering of neutrinos νj is arbitrary. We will employ the 
widely used convention which allows to associate θ13 with the smallest mixing angle in the 
PMNS matrix, and θ12, 	m2

21 > 0, and θ23, 	m2
31, with the parameters which drive the solar (νe) 

and the dominant atmospheric νμ and ν̄μ oscillations, respectively. In this convention m1 < m2, 
0 < 	m2

21 < |	m2
31|, and, depending on sgn(	m2

31), we have either m3 < m1 or m3 > m2. The 

1 At present there are several experimental inconclusive hints for existence of one or two light sterile neutrinos at the 
eV scale, which mix with the flavour neutrinos, implying the presence in the neutrino mixing of additional one or two 
neutrinos, ν4 or ν4,5, with masses m4 (m4,5) ∼ 1 eV (see, e.g., Ref. [5]). For a discussion of these hints and of the related 
implications see, e.g., Ref. [6].
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existing data allow us to determine 	m2
21, θ12, and |	m2

31(32)|, θ23 and θ13, with a relatively good 

precision [10,11]. The best fit values (b.f.v.) and the 3σ allowed ranges of 	m2
21, s2

12, |	m2
31(32)|, 

s2
23 and s2

13 read [10]:

(	m2
21)BF = 7.54 × 10−5 eV2, 	m2

21 = (6.99 − 8.18) × 10−5 eV2 , (4)

(sin2 θ12)BF = 0.308, 0.259 ≤ sin2 θ12 ≤ 0.359 , (5)

(|	m2
31(32)|)BF = 2.48 (2.44) × 10−3 eV2 , (6)

|	m2
31(32)| = (2.26 (2.21) − 2.70 (2.65)) × 10−3 eV2 , (7)

(sin2 θ23)BF = 0.437 (0.455) , 0.374(0.380) ≤ sin2 θ23 ≤ 0.628(0.641) , (8)

(sin2 θ13)BF = 0.0234 (0.0239) , 0.0176(0.0178) ≤ sin2 θ23 ≤ 0.0295(0.0298) , (9)

where the value (the value in brackets) corresponds to 	m2
31(32) > 0 (	m2

31(32) < 0). Note, in 

particular, that although (sin2 θ23)BF = 0.437 (0.455) < 0.5, sin2 θ23 = 0.5 is within the 2σ in-
terval of allowed values, while at 3σ we can have sin2 θ23 ∼= 0.6 or 0.4. Thus, sin2 θ23 can deviate 
significantly from 0.5.

It follows from the results quoted above that 	m2
21/|	m2

31(32)| ∼= 0.03. We have |	m2
31| =

|	m2
32 −	m2

21| ∼= |	m2
32|. The value of θ12 = π/4, i.e., maximal solar neutrino mixing, is ruled 

out at more than 6σ by the data. One has cos 2θ12 ≥ 0.28 (at 99.73% C.L.). The quoted results 
imply also that θ23 ∼= π/4, θ12 ∼= π/5.4 and that θ13 ∼= π/20. Thus, the pattern of neutrino mixing 
differs significantly from the pattern of quark mixing.

There are also hints from data about the value of the Dirac phase2 δ. In both analyses [10,
11] the authors find that the best fit value of δ ∼= 3π/2. The CP conserving values δ = 0 and π
(δ = 0) are disfavoured at 1.6σ to 2.0σ (at 2.0σ ) for 	m2

31(32) > 0 (	m2
31(32) < 0). In the case 

of 	m2
31(32) < 0, the value δ = π is statistically 1σ away from the best fit value δ ∼= 3π/2 (see, 

e.g., Fig. 3 in Ref. [10]). The hint that δ ∼= 3π/2 is strengthened somewhat by the first results of 
the NOνA neutrino oscillation experiment [14,15].

The relatively large value of sinθ13 ∼= 0.15, measured in the Daya Bay [16], RENO [17] and 
Double Chooz [18] experiments, combined with the value of δ = 3π/2 has far-reaching implica-
tions for the searches for CP violation in neutrino oscillations (see further). It has also important 
implications for the “flavoured” leptogenesis scenario of generation of baryon asymmetry of the 
Universe (BAU). As we will discuss in Section 3, if all CP violation necessary for the generation 
of BAU is due to the Dirac phase δ, a necessary condition for reproducing the observed BAU is 
[19] | sin θ13 sin δ| � 0.09, which is comfortably compatible with the measured value of sinθ13
and with the best fit value of δ ∼= 3π/2.

The sign of 	m2
31(32) cannot be determined from the existing data. In the case of 3-neutrino 

mixing, the two possible signs of 	m2
31(32) correspond to two types of neutrino mass spectrum. 

In the convention of numbering of neutrinos νj employed by us the two spectra read:

2 Using the most recent T2K data on νμ → νe oscillations, the T2K collaboration finds for δ = 0, sin2 θ23 = 0.5

and |	m2
31(32)

| = 2.4 × 10−3 eV2, in the case of 	m2
31(32)

> 0 (	m2
31(32)

< 0) [12]: sin2 2θ13 = 0.140+0.038
−0.032

(0.170+0.045
−0.037). Thus, the best fit value of sin2 2θ13 thus found in the T2K experiment is approximately by a factor of 

1.6 (1.9) bigger than that measured in the Daya Bay experiment [13]: sin2 2θ13 = 0.090+0.008
−0.009. The compatibility of the 

results of the two experiments on sin2 2θ13 requires, in particular, that δ �= 0 (and/or sin2 θ23 �= 0.5), which leads to the 
hints under discussion about the possible value of δ in the global analyses of the neutrino oscillation data.
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i) spectrum with normal ordering (NO): m1 < m2 < m3, 	m2
31(32) > 0, 	m2

21 > 0, m2(3) =
(m2

1 + 	m2
21(31))

1
2 ;

ii) spectrum with inverted ordering (IO): m3 < m1 < m2, 	m2
32(31) < 0, 	m2

21 > 0, m2 =
(m2

3 + 	m2
23)

1
2 , m1 = (m2

3 + 	m2
23 − 	m2

21)
1
2 .

Depending on the values of the lightest neutrino mass, min(mj ), the neutrino mass spectrum can 
also be:

a) Normal Hierarchical (NH): m1 
 m2 < m3, m2 ∼= (	m2
21)

1
2 ∼= 8.7 × 10−3 eV, m3 ∼=

(	m2
31)

1
2 ∼= 0.050 eV; or

b) Inverted Hierarchical (IH): m3 
 m1 < m2, m1,2 ∼= |	m2
32|

1
2 ∼= 0.049 eV; or

c) Quasi-Degenerate (QD): m1 ∼= m2 ∼= m3 ∼= m0, m2
j � |	m2

31(32)|, m0 � 0.10 eV.

All three types of spectrum are compatible with the constraints on the absolute scale of neutrino 
masses. Determining the type of neutrino mass spectrum is one of the main goals of the future 
experiments in the field of neutrino physics3 (see, e.g., Refs. [3,5,20]).

Data on the absolute neutrino mass scale (or on min(mj )) can be obtained, e.g., from mea-
surements of the spectrum of electrons near the end point in 3H β-decay experiments [22–24]
and from cosmological and astrophysical observations. The most stringent upper bound on the 
ν̄e mass was reported by the Troitzk [25] experiment:

mν̄e < 2.05 eV at 95% C.L.

Similar result was obtained in the Mainz experiment [23]: mν̄e < 2.3 eV at 95% CL. We have 
mν̄e

∼= m1,2,3 in the case of QD spectrum. The upcoming KATRIN experiment [26] is designed 
to reach sensitivity of mν̄e ∼ 0.20 eV, i.e., to probe the region of the QD spectrum.

Constraints on the sum of the neutrino masses can be obtained from cosmological and astro-
physical data (see and, e.g.,Ref. [27]). Depending on the model complexity and the input data 
used one typically obtains [27]: 

∑
j mj � (0.3–1.3) eV, 95% CL. Assuming the existence of 

three light massive neutrinos and the validity of the � CDM (Cold Dark Matter) model, and 
using their data on the CMB temperature power spectrum anisotropies, polarisation, on gravi-
tational lensing effects and the low l CMB polarization spectrum data (the “low P” data), the 
Planck Collaboration reported the following updated upper limit [28]: 

∑
j mj < 0.57 eV, 95% 

C.L. Adding supernovae (light-curve) data and data on the Baryon Acoustic Oscillations (BAO) 
lowers the limit to [28]:∑

j

mj < 0.23 eV, 95% C.L. (10)

Understanding the origin of the observed pattern of neutrino mixing, establishing the status 
of the CP symmetry in the lepton sector, determining the type of spectrum the neutrino masses 
obey and determining the nature – Dirac or Majorana – of massive neutrinos are among the 
highest priority goals of the programme of future research in neutrino physics (see, e.g., [3,5]). 
The principal goal is the understanding at a fundamental level the mechanism giving rise to 

3 For a brief discussion of experiments which can provide data on the type of neutrino mass spectrum see, e.g., 
Ref. [20]; for some specific proposals see, e.g., Ref. [21].
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neutrino masses and mixing and to Ll-non-conservation. Are the observed patterns of ν-mixing 
and of 	m2

21,31 related to the existence of a new fundamental symmetry of particle interactions? 
Is there any relation between quark mixing and neutrino mixing? What is the physical origin 
of CPV phases in the neutrino mixing matrix U? Is there any relation (correlation) between the 
(values of) CPV phases and mixing angles in U? Progress in the theory of neutrino mixing might 
also lead to a better understanding of the mechanism of generation of baryon asymmetry of the 
Universe.

2. Observables related to leptonic CPV phases

Apart from the hint that the Dirac phase δ ∼= 3π/2, no other experimental information on the 
Dirac and Majorana CPV phases in the neutrino mixing matrix is available at present. Thus, the 
status of CP symmetry in the lepton sector is essentially unknown. Our interest in the leptonic 
CPV phases is stimulated, in particular, by the fact that the values of these CPV phases, together 
with values of the neutrino mixing angles, might provide information about the existence of new 
fundamental symmetry in the lepton (and possibly – the quark) sector(s) (see, e.g., [29–31]), and 
by the intriguing possibility that the Dirac and/or the Majorana phases in UPMNS can provide the 
CP violation necessary for the generation of the observed baryon asymmetry of the Universe [19].

2.1. Dirac CP violation

With θ13 ∼= 0.16 �= 0, a CP nonconserving value of the Dirac phase δ can generate CP violating 
effects in neutrino oscillations [7,32,33], i.e., a difference between the probabilities of the νl →
νl′ and ν̄l → ν̄l′ oscillations, l �= l′ = e, μ, τ . A measure of CP violation is provided, e.g., by the 
asymmetries:

A
(l,l′)
CP = P(νl → νl′) − P(ν̄l → ν̄l′) , l �= l′ = e,μ, τ . (11)

The magnitude of CPV effects in neutrino oscillations in the case of 3-neutrino mixing is con-
trolled, as is well known [34], by the rephasing invariant JCP associated with the Dirac phase δ: 
A

(e,μ)
CP = A

(μ,τ)
CP = −A

(e,τ)
CP = JCP F vac

osc ,

JCP = Im
{
Ue2U

∗
μ2U

∗
e3Uμ3

}
, F vac

osc = sin(
	m2

21

2E
L) + sin(

	m2
32

2E
L) + sin(

	m2
13

2E
L) . (12)

The JCP factor in the expressions for the asymmetries A(l,l′)
CP , l �= l′ is analogous to the rephasing 

invariant associated with the Dirac phase in the Cabibbo–Kobayashi–Maskawa quark mixing 
matrix, introduced in Ref. [35]. In the “standard” parametrisation of the neutrino mixing matrix, 
eq. (2), JCP has the form:

JCP ≡ Im (Uμ3 U∗
e3 Ue2 U∗

μ2) = 1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (13)

As we have discussed, the existing neutrino oscillation data allowed to determine the PMNS 
angles θ12, θ23 and θ13 with a relatively high precision. The size of CPV effects in neutrino os-
cillations is still unknown because the value of the Dirac phase δ is not determined. Obviously, 
the values of δ = 0, π are CP-conserving. The current data imply |JCP| � 0.039| sin δ|, where we 
have used the 3σ ranges of sin2 θ12, sin2 θ23 and sin2 θ13 given in eqs. (5), (8) and (9). For the 
b.f.v. of sin2 θ12, sin2 θ23, sin2 θ13 and δ found in [10] we find for 	m2 > 0 (	m2 < 0): 
31(2) 31(2)
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JCP ∼= 0.034 sin δ ∼= −0.032 (JCP ∼= 0.035 sin δ ∼= −0.029). Thus, if the indication that δ ∼= 3π/2
is confirmed by future more precise data, the CPV effects in neutrino oscillations would be 
relatively large provided the factor F vac

osc is not suppressing the CPV asymmetries. Such a sup-
pression would not occur if under the conditions of a given experiment both neutrino mass 
squared differences 	m2

21 and 	m2
31(32) are “operative”, i.e., if neither sin(	m2

21L/(2E)) ∼= 0

nor sin(	m2
31(32)L/(2E)) ∼= 0. If, e.g., sin(	m2

21L/(2E)) ∼= 0, we would have F vac
osc

∼= 0 and 

consequently A(l,l′)
CP

∼= 0.
The searches for Dirac CPV effects in neutrino oscillations is one of the principal goals 

of the future experimental studies in neutrino physics (see, e.g., Refs. [5,37,36]). As we 
have already noticed, in order for the CPV effects in neutrino oscillations to be observable, 
both sin(	m2

31L/(2E)) and sin(	m2
21L/(2E)) should be sufficiently large. In the case of 

sin(	m2
31L/(2E)), for instance, this requires that, say, 	m2

31L/(2E) ∼ 1. The future exper-
iments on CP violation in neutrino oscillations are planned to be performed with accelerator 
νμ and ν̄μ beams with energies of ∼ 0.7 GeV to a few GeV. Taking as an instructive example 
E = 1 GeV and using the best fit value of 	m2

31 = 2.48 × 10−3 eV2, it is easy to check that 
	m2

31L/(2E) ∼ 1 for L ∼ 103 km. Thus, the chance to observe CP violation in neutrino os-
cillations requires experiments to have relatively long baselines. The MINOS, T2K and NOνA
experiments, for example, which provide data on νμ oscillations (see, e.g., Ref. [3] and refer-
ences therein), have baselines of approximately 735 km, 295 km and 810 km, respectively. The 
planned DUNE experiment [36], which is designed to search for CP violation effects in neutrino 
oscillations, will have a baseline of 1300 km.

Thus, in the MINOS, T2K, NOνA and in the future planned experiments DUNE [36] and 
T2HK [37] the baselines are such that the neutrinos travel relatively long distances in the matter 
of the Earth mantle. As is well known, the pattern of neutrino oscillations can be changed signifi-
cantly by the presence of matter [38] due to the coherent (forward) scattering of neutrinos on the 
“background” of electrons (e−), protons (p) and neutrons (n) present in matter. The scattering 
generates an effective potential Veff in the neutrino Hamiltonian: H = Hvac +Veff . This modifies 
the vacuum neutrino mixing since the eigenstates and eigenvalues of Hvac and of H = Hvac +Veff

differ, leading to different oscillation probabilities with respect to those of oscillations in vacuum. 
The matter of the Earth (and the Sun), is not charge conjugation (C-) symmetric: it contains only 
e−, p and n but does not contain their antiparticles. As a consequence, the oscillations taking 
place in the Earth, are neither CP- nor CPT- invariant [39]. This complicates the studies of CP 
violation due to the Dirac phase δ in long baseline neutrino oscillation experiments.

The expression for the νμ → νe oscillation probability in the case of 3-neutrino mixing and 
for neutrinos crossing the Earth mantle, when both 	m2

21 and 	m2
31 contribute and the CPV 

effects due to the Dirac phase in UPMNS are taken into account, has the following form in the 
constant density approximation and keeping terms up to second order in the two small parameters 
|α| ≡ |	m2

21|/|	m2
31| 
 1 and sin2 θ13 
 1 [40]:

P 3ν man
m (νμ → νe) ∼= P0 + Psin δ + Pcos δ + P3 . (14)

Here

P0 = sin2 θ23
sin2 2θ13

(A − 1)2
sin2[(A − 1)	] ,P3 = α2 cos2 θ23

sin2 2θ12

A2
sin2(A	) , (15)

Psin δ = −α
8JCP

(sin	)(sinA	) (sin[(1 − A)	]) , (16)

A(1 − A)
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Pcos δ = α
8JCP cot δ

A(1 − A)
(cos	)(sinA	) (sin[(1 − A)	]) , (17)

where

α = 	m2
21

	m2
31

, 	 = 	m2
31 L

4E
, A = √

2GFNman
e

2E

	m2
31

, (18)

Nman
e being the electron number density of the Earth mantle. The Earth matter effects in the 

oscillations are accounted for by the quantity A. The mean electron number density in the 
Earth mantle relevant for the experiments of interest is [41] N̄man

e
∼= 1.5 cm−3 NA, NA being 

Avogadro’s number. Ne varies little around the indicated mean value along the trajectories of 
neutrinos in the Earth mantle corresponding to the experiments under discussion. Thus, in what 
concerns the calculation of neutrino oscillation probabilities, the constant density approxima-
tion Nman

e = const. = Ñman
e , where Ñman

e is the mean density along the given neutrino path in 
the Earth, was shown to be sufficiently accurate [34,42,43]. The4 expression for the probabil-
ity of ν̄μ → ν̄e oscillation can be obtained formally from that for P 3ν man

m (νμ → νe) by making 
the changes A → −A and JCP → −JCP, with JCP cot δ ≡ Re(Uμ3U

∗
e3Ue2U

∗
μ2) remaining un-

changed. If the Dirac phase in the PMNS matrix U has a CP-conserving value, we would have 
Psin δ = 0. However, we would still have (P 3ν man

m (νμ → νe) −P 3ν man
m (ν̄μ → ν̄e)) �= 0 due to the 

Earth matter effects. It is possible, in principle, to experimentally disentangle the effects of the 
Earth matter and of JCP in A(eμ) man

CP by studying the energy dependence of P 3ν man
m (νμ → νe)

and P 3ν man
m (ν̄μ → ν̄e). This will allow to obtain direct information about Dirac CP violation 

in the lepton sector and to measure the Dirac phase δ. In the vacuum limit Nman
e = 0 (A = 0) 

we have A(eμ) man
CP = A

(eμ)
CP (see eq. (12)) and only the term Psin δ contributes to the asymmetry 

A
(eμ)
CP .
The expressions for the probabilities P 3ν man

m (νμ → νe) and P 3ν man
m (ν̄μ → ν̄e) can be used 

in the interpretation of the results of MINOS, T2K, NOνA, and of the future planned T2HK 
and DUNE, experiments. For a discussion of the sensitivity of these experiments to δ see, e.g., 
Refs. [5,36,37]). If indeed δ ∼= 3π/2, the T2HK and DUNE experiments are foreseen to establish 
the existence of leptonic Dirac CP violation at the ∼ 5σ C.L.

2.2. Majorana CP violation phases and (ββ)0ν-decay

The massive neutrinos νj are predicted to be Majorana particles by a large number of theories 
of neutrino mass generation (see, e.g., Refs. [31,44–46]). The 3-neutrino mixing matrix contains 
in the case of massive Majorana neutrinos two additional Majorana CPV phases [7], α21 and α31. 
The phases α21 and α31 can play the role of the leptogenesis CPV parameter(s) at the origin of 
the baryon asymmetry of the Universe [19]. However, getting experimental information about 
the Majorana phases in UPMNS is a remarkably difficult problem [47–52]. The flavour neutrino 
oscillation probabilities P(νl → νl′) and P(ν̄l → ν̄l′), l, l′ = e, μ, τ , are insensitive to the phases 
α21,31 [7,39].

If the neutrinos with definite mass νj are Majorana fermions, their exchange can trigger pro-
cesses in which the total lepton charge changes by two units, |	L| = 2: K+ → π− + μ+ + μ+, 
e− + (A, Z) → e+ + (A, Z − 2), etc. The rates of these processes are typically proportional to 

4 For a detailed discussion of the conditions of validity of the analytic expression for P 3ν man
m (νμ → νe) quoted above 

see Ref. [40].
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the factor (mj/M(|	L| = 2))2, M(|	L| = 2) being the characteristic mass scale of the given 
process, and thus are extremely small. The experimental searches for neutrinoless double beta 
((ββ)0ν -) decay, (A, Z) → (A, Z + 2) + e− + e−, of even–even nuclei 48Ca, 76Ge, 82Se, 100Mo, 
116Cd, 130Te, 136Xe, 150Nd, etc., are unique in reaching sensitivity that might allow to observe 
this process if it is triggered by the exchange of the light neutrinos νj (see, e.g., Refs. [8,53–55]). 
In (ββ)0ν -decay, two neutrons of the initial nucleus (A, Z) transform by exchanging virtual ν1,2,3

into two protons of the final state nucleus (A, Z + 2) and two free electrons. The corresponding 
(ββ)0ν -decay amplitude has the form (see, e.g., Refs. [9,54]): A((ββ)0ν) = G2

F 〈 m 〉 M(A, Z), 
where GF is the Fermi constant, 〈 m 〉 is the (ββ)0ν -decay effective Majorana mass and M(A, Z)

is the nuclear matrix element (NME) of the process. The (ββ)0ν -decay effective Majorana mass 
〈 m 〉 contains all the dependence of A((ββ)0ν) on the neutrino mixing parameters. We have (see, 
e.g., [9,54]):

|〈m 〉| =
∣∣∣m1|Ue1|2 + m2|Ue2|2eiα21 + m3|Ue3|2ei(α31−2δ)

∣∣∣ , (19)

|Ue1| = c12c13, |Ue2| = s12c13, |Ue3| = s13. For the normal hierarchical (NH), inverted hierarchi-
cal (IH) and quasi-degenerate (QD) neutrino mass spectra, |〈m 〉| is given by:

|〈m 〉| ∼= |
√

	m2
21 s2

12 +
√

	m2
31 s2

13e
i(α32−2δ)|, α32 = α31 − α21, NH,

|〈m 〉| ∼=
√

|	m2
32|

∣∣∣c2
12 + s2

12 eiα21

∣∣∣ , IH,

|〈m 〉| ∼= m0

∣∣∣c2
12 + s2

12 eiα21

∣∣∣ , QD.

Obviously, |〈m 〉| depends strongly on the Majorana phase(s): the CP-conserving values of 
α21 = 0, ±π [56], for instance, determine the range of possible values of |〈m 〉| in the cases of IH 
and QD spectrum. As is well-known, if CP-invariance holds, the phase factor ηjk = eiαjk = ±1, 
j > k, j, k = 1, 2, 3, represents [56,9] the relative CP-parity of Majorana neutrinos νj and νk , 
ηjk = ηνCP

j (ηνCP
k )∗, ηνCP

j (k) = ±i being the CP-parity of νj (k).
Using the 3σ ranges of the allowed values of the neutrino oscillation parameters quoted in 

eqs. (4)–(9) one finds that:

i) 0.58 × 10−3 eV � |〈m 〉| � 4.22 × 10−3 eV in the case of NH spectrum;
ii) 1.3 × 10−2 eV � |〈m 〉| � 5.0 × 10−2 eV in the case of IH spectrum;

iii) 2.8 × 10−2 eV � |〈m 〉| � m0 eV, m0 � 0.10 eV, in the case of QD spectrum.

The difference in the ranges of |〈m 〉| in the cases of NH, IH and QD spectrum opens up the 
possibility to get information about the type of neutrino mass spectrum from a measurement of 
|〈m 〉| [57]. The main features of the predictions for |〈m 〉| are illustrated in Fig. 1, where |〈m 〉|
is shown as a function of the lightest neutrino mass mmin ≡ min(mj ).

The experimental searches for (ββ)0ν-decay have a long history (see, e.g., Ref. [58]). A posi-
tive (ββ)0ν -decay signal at > 3σ , corresponding to T 0ν

1/2 = (0.69–4.18) × 1025 yr (99.73% C.L.) 
and implying |〈m 〉| = (0.1–0.9) eV, is claimed to have been observed in [59], while a later 
analysis [60] reports evidence for (ββ)0ν -decay at 6σ with T 0ν

1/2(
76Ge) = 2.23+0.44

−0.31 × 1025 yr, 

corresponding to |〈m 〉| = 0.32 ± 0.03 eV. The best lower limit on the half-life of 76Ge, 
T 0ν (76Ge) > 2.1 × 1025 yr (90% C.L.), was found in the GERDA 76Ge experiment [61]. By 
1/2
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Fig. 1. The effective Majorana mass |〈m 〉| (including a 2σ uncertainty), as a function of mmin = min(mj ). The figure 
is obtained using the best fit values and the 2σ ranges of allowed values of 	m2

21, sin2 θ12, and |	m2
31| ∼= |	m2

32|
from Ref. [10]. The phases α21,31 are varied in the interval [0, π ], δ is set to 0. The predictions for the NH, IH and 
QD spectra are indicated. The red regions correspond to at least one of the phases α21,31 and (α31 − α21) having a CP 
violating value, while the blue and green areas correspond to α21,31 possessing CP conserving values. (From Ref. [3].) 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

combining the limits obtained in the Heidelberg–Moscow [62], IGEX [63] and GERDA experi-
ments one gets [61] T 0ν

1/2(
76Ge) > 3.0 × 1025 yr (90% C.L.).

Two experiments, NEMO3 [64] with 100Mo and CUORICINO [65] with 130Te, obtained the 
limits: |〈m 〉| < (0.61–1.26) eV [64] and |〈m 〉| < (0.16–0.68) eV [65] (90% C.L.), where esti-
mated uncertainties in the NME are accounted for. The best lower limits on the (ββ)0ν-decay 
half-life of 136Xe were reported by the EXO and KamLAND-Zen collaborations: T 0ν

1/2(
136Xe) >

1.6 × 1025 yr [66] and T 0ν
1/2(

136Xe) > 1.9 × 1025 yr [67] (90% C.L.).
Most importantly, a large number of experiments of a new generation aim at sensitivity 

to |〈m 〉| ∼ (0.01–0.05) eV (see, e.g., Ref. [53,55]): CUORE (130Te), GERDA (76Ge), Su-
perNEMO, EXO (136Xe), MAJORANA (76Ge), AMoRE (100Mo), MOON (100Mo), COBRA 
(116Cd), CANDLES (48Ca), KamLAND-Zen (136Xe), SNO+ (130Te), etc. GERDA, EXO and 
KamLAND-Zen have provided already the best lower limits on the (ββ)0ν-decay half-lives of 
76Ge and 136Xe. The experiments listed above are aiming to probe the QD and IH ranges of 
|〈m 〉|; they will test the positive result claimed in Ref. [60]. If the (ββ)0ν -decay will be observed 
in these experiments, the measurement of the (ββ)0ν-decay half-life might allow to obtain con-
straints on the Majorana phase α21 [47,48,68] (see also Ref. [69]).

Proving that the CP symmetry is violated in the lepton sector due to Majorana CPV phases 
α21,31 is remarkably challenging [48–51]: it requires quite accurate measurements of |〈m 〉| (and 
of m0 for QD spectrum), and holds only for a limited range of values of the relevant parameters. 
For sin2 θ12 = 0.31 in the case of QD spectrum, for example, establishing at 2σ C.L. that the 
relevant phase α21 possesses a CP violating value requires [50,51] a relative error on the mea-
sured value of |〈m 〉| and m0 smaller than 15%, a “theoretical uncertainty” F � 1.5 in the value 
of |〈m 〉| due to an imprecise knowledge of the corresponding NME, and value of α21 typically 
within the ranges of ∼ (π/4–3π/4) and ∼ (5π/4–7π/4).

Obtaining quantitative information on the neutrino mixing parameters from a measurement 
of (ββ)0ν -decay half-life would be impossible without sufficiently precise knowledge of the 
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corresponding NME of the process.5 At present the variation of the values of the different 
(ββ)0ν -decay NMEs calculated using the various currently employed methods is typically by fac-
tors ∼ (2–3) (see, e.g., [71,55]). The observation of (ββ)0ν -decay of one nucleus is likely to lead 
to the searches and observation of the decay of other nuclei. The data on the (ββ)0ν-decay of sev-
eral nuclei might help to solve the problem of sufficiently precise calculation of the (ββ)0ν-decay 
NMEs [48].

If the future (ββ)0ν -decay experiments show that |〈m 〉| < 0.01 eV, both the IH and the QD 
spectrum will be ruled out for massive Majorana neutrinos. If in addition it is established in 
neutrino oscillation experiments that 	m2

31(32) < 0 (IO spectrum), one would be led to conclude 
that either the massive neutrinos νj are Dirac fermions, or that νj are Majorana particles but there 
are additional contributions to the (ββ)0ν-decay amplitude which interfere destructively with that 
due to the exchange of νj . The case of more than one mechanism generating the (ββ)0ν-decay 
was discussed in, e.g., Refs. [72], where the possibility to identify the mechanisms inducing the 
decay was also analysed. If, however, 	m2

31(32) is determined to be positive, the upper limit 
|〈m 〉| < 0.01 eV would be perfectly compatible with massive Majorana neutrinos possessing 
NH mass spectrum, or NO spectrum with partial hierarchy, and the quest for |〈m 〉| would still 
be open [73].

Let us emphasise that determining the nature of massive neutrinos is one of the fundamental, 
most challenging and pressing problems in today’s neutrino physics (see, e.g., [5]).

3. The seesaw mechanism and leptogenesis

The existing data show that neutrino masses are significantly smaller than the masses 
of charged leptons and quarks. Taking as an indicative upper limit mj � 0.5 eV, we have 
mj/ml,q � 10−6, where ml and mq are the charged lepton and quark masses, l = e, μ, τ , 
q = d, s, b, u, c, t . It is natural to suppose that the remarkable smallness of neutrino masses 
is related to the existence of a new fundamental mass scale in particle physics, and thus to new 
physics beyond that predicted by the Standard Theory.

The smallness of neutrino masses finds a natural explanations within the seesaw mechanism 
of neutrino mass generation [44]. The simplest version of this mechanism – the so-called “type I 
see-saw” – contains as an integral part SU(2)L singlet RH neutrinos νlR , l = e, μ, τ . The RH neu-
trinos νlR are assumed to have SU(2)L ×UYw invariant Yukawa type coupling with the Standard 
Theory lepton and Higgs doublets ψlL(x) and �(x), (ψlL(x))T = (νT

lL(x) lTL (x)), l = e, μ, τ , 
(�(x))T = (�(0) �(−)), as well as a Majorana mass term, −0.5νlRMll′C(νl′R)T , C being the 
charge conjugation matrix (C−1γμC = −γ T

μ ). The latter is an SU(2)L × UYw invariant dimen-
sion 3 operator. In the basis in which the Majorana mass matrix of RH neutrinos is diagonal we 
have:

LY,M(x) = −(λkl NkR(x)�†(x)ψlL(x) + h.c.) − 1

2
Mk Nk(x)Nk(x) ,

where λlk is the matrix of neutrino Yukawa couplings and Nk(x) is the heavy (RH) Majorana 
neutrino field possessing a mass Mk > 0, M1 < M2 < M3. The fields Nk(x) satisfy the Majorana 
condition CNk

T
(x) = ξkNk(x), where ξk is a phase. When the neutral component of the Higgs 

5 For discussions of the current status of the calculations of the NMEs for the (ββ)0ν -decay see, e.g., Refs. [53,71,55]. 
A possible test of the NME calculations is suggested in Ref. [48] and is discussed in greater detail in Ref. [70] (see also, 
e.g., Ref. [71]).
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doublet field acquires non-zero vacuum expectation value v = 174 GeV breaking the electroweak 
symmetry spontaneously, the neutrino Yukawa coupling generates a neutrino Dirac mass term: 
mD

kl NkR(x) νlL(x) + h.c., with mD = vλ. In the case when the elements of mD are much smaller 
than Mk , |mD

jl | 
 Mk , j, k = 1, 2, 3, l = e, μ, τ , the interplay between the Dirac mass term and 
the Majorana mass term of the heavy singlets Nk generates an effective Majorana mass (term) 
for the LH flavour neutrino fields νlL(x) [44]:

(mν)l′l ∼= v2(λT M−1 λ)l′l = ((mD)T M−1 mD)l′l = (U∗ mU†)l′l , (20)

where M ≡ Diag(M1, M2, M3) (M1,2,3 > 0), m ≡ Diag(m1, m2, m3), mj ≥ 0 being the mass of 
the light Majorana neutrino νj , and U is the PMNS matrix. The PMNS neutrino mixing matrix 
appears in the charged current weak interaction Lagrangian LCC(x), eq. (1), as a result of the 
diagonalisation of the mass matrix mν .

The Dirac mass mD is typically of the order of the charged fermion masses in grand unified 
theories (GUTs) [44,45]. Taking indicatively mν ∼ 0.05 eV, mD ∼ 10 GeV, one finds Mk ∼
2 × 1012 GeV, which is close to the scale of unification of electroweak and strong interactions, 
MGUT ∼= 2 × 1016 GeV. The heavy singlet neutrinos Nk present in GUTs containing νlR indeed 
acquire naturally masses which are by few to several orders of magnitude smaller than MGUT

(see, e.g., Ref. [45]).
One of the characteristic predictions of the seesaw mechanism is that both the light and heavy 

neutrinos νj and Nk are Majorana particles. As we have discussed, if νj are Majorana particles, 
the (ββ)0ν -decay will be allowed.

An appealing feature of the seesaw mechanism is that it relates via leptogenesis [75,76] the 
generation and smallness of neutrinos masses to the generation of the baryon asymmetry of 
the Universe (BAU) [77] – the observed difference in the present epoch of the evolution of the 
Universe of the number densities of baryons and anti-baryons, nB and nB̄:

YB = nB − nB̄

s0
= (8.67 ± 0.15) × 10−11 , (21)

where s0 is the entropy density in the current epoch.6 The type I see-saw model is the sim-
plest scheme in which the leptogenesis can be implemented. In its minimal version it includes 
the Standard Theory plus two or three heavy (RH) Majorana neutrinos, Nk . Thermal leptogene-
sis (see, e.g., Ref. [78]) can take place, e.g., in the case of hierarchical spectrum of the heavy 
neutrino masses, M1 
 M2 
 M3, which we consider in what follows. Out-of-equilibrium 
lepton number and CP nonconserving decays of the lightest heavy Majorana neutrino, N1, me-
diated by the neutrino Yukawa couplings, λ, generate a lepton asymmetry in the Early Universe. 
(B − L)-conserving but (B + L)-violating sphaleron interactions [76] which exist within the 
Standard Theory and are efficient at temperatures 100 GeV � T � 1012 GeV, convert the lep-
ton asymmetry into a baryon asymmetry. In GUTs the heavy neutrino masses fall typically in 
the range of ∼ (108–1014) GeV (see, e.g., Ref. [45]). This range coincides with the range of 
values of Mk , required for a successful thermal leptogenesis [78]. For hierarchical heavy neu-
trino masses we consider, successful leptogenesis takes place in the Early Universe typically 
at temperatures somewhat smaller than the mass of N1, but not smaller than roughly 109 GeV, 
109 GeV � T < M1.

6 The entropy density s at temperature T is given by s = g∗(2π2/45)T 3, where g∗ is the number of (thermalised) 
degree of freedom at temperature T . In the present epoch of the evolution of the Universe we have s0 = 7.04 nγ 0, nγ 0
being the number density of photons.
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In what follows we will discuss briefly the appealing possibility [19,74] that the CP violation 
necessary for the generation of the baryon asymmetry of the Universe, YB , in the leptogenesis 
scenario can be due exclusively to the Dirac and/or Majorana CPV phases in the PMNS matrix, 
and thus can be directly related to the low energy leptonic CP violation (e.g., in neutrino oscilla-
tions, etc.). It proves convenient to use in our further analysis the “orthogonal parametrisation“ 
of the matrix of neutrino Yukawa couplings [79]:

λ = v−1
√

M R
√

mU†, R RT = RT R = 1, (22)

where R is, in general, a complex matrix. It is parametrised, in general, by 6 real parameters 
(e.g., 3 complex angles), of which 3 parameters can have CP violating values.

In the setting we are considering the only source of CP violation in the lepton sector is the 
matrix of neutrino Yukawa couplings λ. It is clear from eq. (22) that the CP violating parameters 
in λ can have their origin from the CPV phases in the PMNS matrix U , or from the CPV pa-
rameters present in the matrix R, or else from both the CPV parameters in U and in R. The CP 
invariance will hold if [19] the elements of U and R are real and/or purely imaginary such that 
we have:

Pjkml ≡ Rjk Rjm U∗
lk Ulm = P ∗

jkml , Im(Pjkml) = 0 , k �= m. (23)

The realization that the CP violation necessary for the generation of the baryon asymme-
try of the Universe can be due exclusively to the CPV phases in the PMNS matrix, is related 
to the progress made in the understanding of the importance of lepton flavour effects in lep-
togenesis [80,81] (for earlier discussion see Ref. [82]). In the case of hierarchical heavy neu-
trinos Nk , M1 
 M2 
 M3, the flavour effects in leptogenesis can be significant for [80,81]
108 GeV � M1 � (0.5–1.0) × 1012 GeV. If the requisite lepton asymmetry is produced in this 
regime, the CP violation necessary for successful leptogenesis can be fe25 provided entirely by 
the CPV phases in the neutrino mixing matrix [19].

Indeed, suppose that the mass of N1 lies in the interval of interest, 109 GeV � M1 �
1012 GeV. The CP violation necessary for the generation of the baryon asymmetry YB in 
“flavoured” leptogenesis can arise both from the “low energy” neutrino mixing matrix U and/or 
from the “high energy” part of the matrix of neutrino Yukawa couplings λ – the matrix R, which 
can mediate CP violating phenomena only at some high energy scale determined by the masses 
Mk of the heavy Majorana neutrinos Nk . The matrix R does not affect the “low” energy neutrino 
mixing phenomenology. Suppose further that the matrix R has real and/or purely imaginary 
CP-conserving elements: we are interested in the case when the CP violation necessary for lep-
togenesis is due exclusively to the CPV phases in U . Under these assumptions, YB generated via 
leptogenesis can be written as [80,81]

|YB | ∼= 3 × 10−3 |ετ η| , (24)

where ετ is the CPV asymmetry in the τ flavour (lepton charge) produced in N1-decays,7

ετ = − 3M1

16πv2

Im(
∑

jk m
1/2
j m

3/2
k U∗

τjUτkR1jR1k)∑
i mi |R1i |2 , (25)

η is the efficiency factor [80],

7 We have given the expression for YB normalised to the entropy density, see, e.g., Ref. [19].
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Fig. 2. The baryon asymmetry |YB | as a function of the Dirac phase δ varying in the interval δ = [0, 2π ] in the case 
of Dirac CP violation and hierarchical heavy neutrinos. Left panel: NH light neutrino mass spectrum, α32 = 0; 2π , 
M1 = 5 ×1011 GeV, real R12 and R13 satisfying |R12|2 +|R13|2 = 1, |R12| = 0.86, |R13| = 0.51, sign (R12R13) = +1, 
and i) α32 = 0, s13 = 0.2 (red line) and s13 = 0.1 (dark blue line), ii) α32 = 2π , s13 = 0.2 (light blue line). Right panel: 
IH light neutrino mass spectrum, α21 = π , M1 = 2 ×1011 GeV, R11R12 = i κ |R11R12| (|R11|2 −|R12|2 = 1), κ = −1
(red and dark blue lines), κ = +1 (light blue and green lines), s13 = 0.1 (red and green lines), s13 = 0.2 (dark blue and 
light blue lines); values of |R11|, which maximise |YB |, have been used. (From Ref. [19].) (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

|η| ∼= |η(0.71m̃2) − η(0.66m̃τ )| , (26)

m̃2,τ being the wash-out mass parameters which determine the rate of the processes in the Early 
Universe that tend to “erase”, or “wash-out”, the asymmetry,

m̃2 = m̃e + m̃μ , m̃l = |
∑
j

mj R1j U∗
lj |2 , l = e,μ . (27)

Approximate analytic expression for η(m̃) is given in [80,81]. We shall consider next a few 
specific examples.

A. NH Spectrum, m1 
 m2 
 m3 ∼=
√

	m2
31. Assume for simplicity that m1 ∼= 0 and R11 ∼= 0

(N3 decoupling). If R12R13 is real and α32 = 0, the only source of CPV is the Dirac phase δ in U , 
and ετ ∝ sin θ13 sin δ. For R12R13 > 0, s13 = 0.15, δ = 3π/2, and R12 ∼= 0.86 (which maximises 

|YB |), we have [19]: |YB | ∼= 2.7 ×10−13 (
√

	m2
31/0.05 eV) (M1/109 GeV), where we have used 

the best fit values of 	m2
21, sin2 θ12 and sin2 θ23 (see Fig. 2, left panel). For the values of M1 �

5 × 1011 GeV for which the flavour effects in leptogenesis can be significant, the observed value 
of the baryon asymmetry, taken conservatively to lie in the interval |YB | ∼= (8.1–9.3) × 10−11, 
can be reproduced if

| sin θ13 sin δ| � 0.09 . (28)

The ranges of values of | sin θ13 sin δ| we find in the case being considered are comfortably com-
patible with the measured value of sin θ13 and with the hints that δ ∼= 3π/2. Since both YB and 
JCP depend on s13 and δ, for given values of the other relevant parameters there exists a correla-
tion between the values of |YB | and JCP.

As was shown in [19], we can have successful leptogenesis also if the sole source of CP 
violation is the difference of the Majorana phases α32 = α31 − α21 of UPMNS. In this case values 
of M1 � 4 × 1010 GeV are required.

B. IH Spectrum, m3 
 m1,2 ∼=
√

|	m2
32|. Under the simplifying conditions of m3 ∼= 0

and R13 ∼= 0 (N3 decoupling), leptogenesis can be successful for M1 � 1012 GeV only if 
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R11R12 is not real [19,83], so we consider the case of purely imaginary R11R12 = iκ|R11R12|, 
κ = ±1. The requisite CP violation can be due to the i) Dirac phase δ (Fig. 2, right panel), 
and/or ii) Majorana phase α21, in the neutrino mixing matrix U . If, e.g., in the second case 
we set sin δ = 0 (say, δ = π ), the maximum of |YB | for, e.g., κ = −1, is reached for [19]
|R11|2 ∼= 1.4 (|R12|2 = |R11|2 − 1 = 0.4), and α21 ∼= 2π/3; 4π/3, and at the maximum |YB | ∼=
1.5 × 10−12(

√
|	m2

32|/(0.05 eV)(M1/109 GeV). The observed |YB | can be reproduced for 

M1 � 5.4 × 1010 GeV.
Similar results can be obtained [19] in the case of quasi-degenerate in mass heavy Majorana 

neutrinos.
The interplay in “flavoured” leptogenesis between contributions in YB due to the “low energy” 

and “high energy” CP violation, originating from the PMNS matrix U and the R-matrix, respec-
tively, was investigated in Ref. [84]. It was found, in particular, that under certain physically 
plausible conditions (IH spectrum, (− sin θ13 cos δ) � 0.1, etc.), the “high energy” contribution 
in YB due to the R-matrix, can be so strongly suppressed that it would play practically no role in 
the generation of baryon asymmetry compatible with the observations. One would have success-
ful leptogenesis in this case only if the requisite CP violation is provided by the Majorana phases 
in the PMNS matrix U .

4. Predicting the leptonic CP violation

As we have already emphasised, understanding the origin of the patterns of neutrino masses 
and mixing, emerging from the neutrino oscillation, 3H β-decay, cosmological, etc. data is one 
of the most challenging problems in neutrino physics. It is part of the more general fundamental 
problem in particle physics of understanding the origins of flavour, i.e., of the patterns of quark, 
charged lepton and neutrino masses and of the quark and lepton mixing.

4.1. Origins of the pattern of neutrino mixing: the discrete symmetry approach

We believe, and we are not alone in holding this view, that with the observed pattern of neu-
trino mixing Nature is “sending” us a message. The message is encoded in the values of the 
neutrino mixing angles, leptonic CP violation phases and neutrino masses. We do not know at 
present what is the content of Nature’s message. However, on the basis of the current ideas about 
the possible origins of the observed pattern of neutrino mixing, the Nature’s message can have 
two completely different contents: ANARCHY or SYMMETRY. In the ANARCHY approach 
[85] to understanding the pattern of neutrino mixing it is assumed that Nature “threw dice” when 
Nature was “choosing” the values of the neutrino masses, mixing angles and CPV phases. The 
main prediction of the ANARCHY explanation of the pattern of neutrino mixing is the absence 
of whatever correlations between the values of the neutrino masses, between the values of the 
neutrino mixing angles, and between the values of the neutrino mixing angles and the CPV 
phases, all of them being random quantities. In contrast, the most distinctive feature of the SYM-
METRY approach to understanding the pattern of neutrino mixing (and possibly the pattern of 
neutrino masses when it will be uniquely determined) is the prediction of existence of correla-
tions between the values of at least some the neutrino mixing angles and/or between the values 
of the neutrino mixing angles and the Dirac and Majorana CPV phases, as well as other possible 
correlations.

In what follows we will review aspects of the SYMMETRY approach to the understanding 
the form of neutrino mixing, which is based on non-Abelian discrete flavour symmetries and is 
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widely explored at present (see, e.g. [86,87] and references therein). It leads to specific corre-
lations between the values of at least some of the mixing angles of the neutrino mixing matrix 
UPMNS and, either to specific fixed values of CPV phases present in U , which are “trivial” (e.g., 
δ = 0 or π , α21 = α31 = 0), (see, e.g., [88]), or to a correlation between the values of the neutrino 
mixing angles and of the Dirac CPV phase of U [29,30,89–92]. In the case of Majorana massive 
neutrinos one can obtain (under specific conditions) also correlations between the values of the 
two Majorana CPV phases present in UPMNS and of the three neutrino mixing angles and of the 
Dirac CPV phase [29]. As a consequence of the correlation involving the Dirac CPV phase δ, 
cos δ can be expressed in terms of the three neutrino mixing angles of U [29,30,89–91], i.e., one 
obtains a sum rule for cos δ. This sum rule depends on the underlying discrete symmetry used 
to derive the observed pattern of neutrino mixing and on the type of breaking of the symmetry, 
necessary to reproduce the measured values of the neutrino mixing angles. It depends also on the 
assumed status of the CP symmetry before the breaking of the underlying discrete symmetry.

The approach of interest is based on the assumption of existence at some energy scale of a 
(lepton) flavour symmetry corresponding to a non-Abelian discrete group Gf . Groups that have 
been considered in the literature include S4, A4, T ′, A5, Dn (with n = 10, 12) and 	(6n2), to 
name several (see, e.g., Ref. [93] for definitions of these groups and discussion of their proper-
ties8). The choice of these groups is related to the fact that they lead to values of the neutrino 
mixing angles, which can differ from the measured values at most by subleading perturbative cor-
rections. For instance, the groups A4, S4 and T ′ are commonly utilised to generate tri-bimaximal 
(TBM) mixing [94]; the group S4 can also be used to generate bimaximal (BM) mixing9 [95]; 
A5 can be utilised to generate golden ratio type A (GRA) [96] mixing; and the groups D10 and 
D12 can lead to golden ratio type B (GRB) [97] and hexagonal (HG) [98] mixing.

The flavour symmetry group Gf can be broken, in general, to different symmetry subgroups, 
or “residual symmetries”, Ge and Gν of the charged lepton and neutrino mass terms, respectively. 
Given a discrete Gf , there are more than one (but still a finite number of) possible residual 
symmetries Ge and Gν . The subgroup Ge, in particular, can be trivial.

Non-trivial residual symmetries constrain the forms of the 3 × 3 unitary matrices Ue and 
Uν , which diagonalise the charged lepton and neutrino mass matrices, and the product of which 
represents the PMNS matrix:

UPMNS = U†
e Uν . (29)

Thus, the residual symmetries constrain also the form of UPMNS.
In general, there are two cases of residual symmetry Gν for the neutrino Majorana mass term 

when a part of Gf is left unbroken in the neutrino sector (see, e.g., [86]): Gν can either be a 
Z2 × Z2 symmetry or a Z2 symmetry. In models where Gν = Z2, the matrix Uν contains two 
free parameters, i.e., one angle and one phase, as long as the neutrino Majorana mass term does 
not have additional “accidental” symmetries, e.g., the μ − τ symmetry. In the latter case as well 
as in the case of Gν = Z2 × Z2, the matrix Uν is completely determined by symmetries up to 
re-phasing on the right and permutations of columns. The latter can be fixed by considering a 
specific model.

8 S4 is the group of permutations of 4 objects and the symmetry group of the cube. A4 is the group of even permutations 
of 4 objects and the symmetry group of the regular tetrahedron. T ′ is the double covering group of A4. A5 is the 
icosahedron symmetry group of even permutations of five objects, etc.

9 Bimaximal mixing can also be a consequence of the conservation of the lepton charge L′ = Le −Lμ −Lτ (LC) [46], 
supplemented by μ − τ symmetry.
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In the general case of absence of constraints, the PMNS matrix can be parametrised in terms 
of the parameters of Ue and Uν as follows [99]:

U = U†
e Uν = (Ũe)

† �Ũν Q0 . (30)

Here Ũe and Ũν are CKM-like 3 × 3 unitary matrices and � and Q0 are given by:

� = diag
(

1, e−iψ , e−iω
)

, Q0 = diag
(

1, ei
ξ21

2 , ei
ξ31

2

)
, (31)

where ψ , ω, ξ21 and ξ31 are phases which contribute to physical CPV phases. Thus, in general, 
each of the two phase matrices � and Q0 contain two physical CPV phases. The phases in Q0
contribute to the Majorana phases in the PMNS matrix and can appear in eq. (30) as a result of 
the diagonalisation of the neutrino Majorana mass term, while the phases in � can result from the 
charged lepton sector (U†

e = (Ũe)
† �), from the neutrino sector (Uν = �ŨνQ0), or can receive 

contributions from both sectors.

4.2. Predicting the Dirac CPV phase

In the present subsection we will discuss two rather general settings or models in which the 
value of the Dirac CPV phases δ is predicted, while the values of the Majorana phases α21,31
can be predicted provided the phases ξ21,31 in the matrix Q0 in eq. (31) are known [29]. We will 
consider only the predictions for the Dirac phase δ.

Following Ref. [29] we will consider the cases when, as a consequence of underlying and 
residual symmetries, the matrix Uν , and more specifically, the matrix Ũν in eq. (30), has 
the i) TBM, ii) BM, iii) GRA, iv) GRB and v) HG forms. For all these forms we have 
Ũν = R23(θ

ν
23)R12(θ

ν
12) with θν

23 = − π/4, R23 and R12 being 3 × 3 orthogonal matrices de-
scribing rotations in the 2–3 and 1–2 planes:

Ũν = R23
(
θν

23

)
R12

(
θν

12

) =

⎛
⎜⎜⎜⎜⎝

cos θν
12 sin θν

12 0

− sin θν
12√

2

cos θν
12√

2
− 1√

2

− sin θν
12√

2

cos θν
12√

2

1√
2

⎞
⎟⎟⎟⎟⎠ . (32)

The value of the angle θν
12, and thus of sin2 θν

12, depends on the form of Ũν . For the TBM, 
BM, GRA, GRB and HG forms we have: i) sin2 θν

12 = 1/3 (TBM), ii) sin2 θν
12 = 1/2 (BM), 

iii) sin2 θν
12 = (2 + r)−1 ∼= 0.276 (GRA), r being the golden ratio, r = (1 +√

5)/2, iv) sin2 θν
12 =

(3 − r)/4 ∼= 0.345 (GRB), and v) sin2 θν
12 = 1/4 (HG).

The TBM form of Ũν , for example, can be obtained from a Gf = A4 symmetry, when the 
residual symmetry is Gν = Z2. In this case there is an additional accidental μ − τ symmetry, 
which together with the Z2 symmetry leads to the TBM form of Ũν (see, e.g., [100,91]). The 
TBM form can also be derived from Gf = T ′ with Gν = Z2, provided the left-handed (LH) 
charged lepton and neutrino fields each transform as triplets of T ′10 (see, e.g., [91] for details). 
Finally, one can obtain the BM from, e.g., the Gf = S4 symmetry, when Gν = Z2. There is an 
accidental μ − τ symmetry in this case as well [101].

10 When working with 3-dimensional and 1-dimensional representations of T ′ , there is no way to distinguish T ′ from 
A4 [102].
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For all the forms of Ũν considered in [29] and listed above we have i) θν
13 = 0, which should 

be corrected to the measured value of θ13 ∼= 0.15, and ii) sin2 θν
23 = 0.5, which might also need to 

be corrected if it is firmly established that sin2 θ23 deviates significantly from 0.5. In the case of 
the BM and HG forms, the values of sin2 θν

12 lie outside the current 3σ allowed ranges of sin2 θ12
and have also to be corrected.

The requisite corrections are provided by the matrix Ue, or equivalently, by Ũe. The approach 
followed in [29,30,89,90] corresponds to the case of Gf completely broken by the charged lep-
ton mass term. In this case the matrix Ũe is unconstrained and was chosen in [29,30,89] on 
phenomenological grounds to have the following two forms:

A : Ũe = R−1
23 (θe

23)R−1
12 (θe

12) ; B : Ũe = R−1
12 (θe

12) . (33)

These two forms appear in a large class of theoretical models of flavour and studies, in which the 
generation of charged lepton masses is an integral part (see, e.g., [31,103]).

In the setting we are considering with Ũν having one of the five symmetry forms, TBM, BM, 
GRA, GRB and HG, and Ũe given by the form A in eq. (33), the Dirac phase δ of the PMNS 
matrix satisfies the following sum rule [29]:

cos δ = tan θ23

sin 2θ12 sin θ13

[
cos 2θν

12 +
(

sin2 θ12 − cos2 θν
12

) (
1 − cot2 θ23 sin2 θ13

)]
. (34)

Within the approach employed this sum rule is exact. It was shown to hold also for the form B
in [90], where it was found to be valid for any value of the angle θν

23 as well. The difference 
between the cases A and B of forms of Ũe in eq. (33) is, in particular, in the relation between 
sin2 θe

12 and sin2 θ13 and, most importantly, in the correlation between the values of sin2 θ23 and 
sin2 θ13. In case B we have [90]:

sin2 θ13 = |Ue3|2 = sin2 θe
12 sin2 θν

23 , sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = sin2 θν

23 − sin2 θ13

1 − sin2 θ13
(35)

For θν
23 = − π/4 of interest, we get sin2 θ23 = 0.5(1 − 2 sin2 θ13)/(1 − sin2 θ13). Thus, sin2 θ23

can deviate from 0.5 only by ∼ sin2 θ13. In contrast, for the form A of Ũe the values of sin2 θ23
and sin2 θ13 are not correlated and sin2 θ23 can differ significantly from 0.5 [29,89]. The equality 
sin2 θe

12 = sin2 θ13/4 does not have to hold either, although sin2 θe
12 ∝ sin2 θ13.

Qualitatively, the result in eq. (34) for δ can be understood as follows. In the parametrisation 
defined in eq. (30) with Ũν and Ũe given in (32) and, e.g., by form B in (33),

UPMNS = R12(θ
e
12)� R23(θ

ν
23)R12(θ

ν
12)Q0 . (36)

The phase ω in the phase matrix � is unphysical, while the phase ψ serves as a source for the 
Dirac phase δ (and gives a contribution to the Majorana phases α21,31). It follows from eq. (36)
that in the case under discussion, the three angles θ12, θ23, θ13 and the Dirac phase δ of the 
standard parametrisation of UPMNS are expressed in terms of the three parameters θe

12, ψ and θν
12

(θν
23 = −π/4). This suggests that it will be possible to express one of the four parameters θ12, 

θ23, θ13 and δ, namely δ, in terms of the other three, hence eq. (34). Although the case of Ũe

having the form A in eq. (33) is somewhat more complicated, in what concerns cosδ one arrives 
to the same conclusion and result [29,89].

Given the values of sin θ23, sin θ23, sin θ13 and θν
12, cos δ is determined uniquely by the sum 

rule (34). This allows us to determine also | sin δ| uniquely. However, in the absence of addi-
tional information, sgn(sin δ) remains undetermined, which leads to a two-fold ambiguity in the 
determination of the value of δ from the value of cos δ.
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The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity of the sign 
of sin δ) by the values of the three mixing angles θ12, θ23 and θ13 of the PMNS matrix and the 
value of θν

12 of the matrix Ũν , eq. (32), is the most striking prediction of the models considered. 
This result implies that in the schemes under discussion, the rephasing invariant JCP associated 
with the Dirac phase δ, eq. (13), is also a function of the three angles θ12, θ23 and θ13 of the 
PMNS matrix and of θν

12:

JCP = JCP(θ12, θ23, θ13, δ(θ12, θ23, θ13, θ
ν
12)) = JCP(θ12, θ23, θ13, θ

ν
12) . (37)

This allows to obtain predictions for the possible values of JCP for the different symmetry forms 
of Ũν (specified by the value of θν

12) using the current data on θ12, θ23 and θ13.
In [29], by using the sum rule in eq. (34), predictions for cos δ, δ and the JCP factor were ob-

tained in the TBM, BM, GRA, GRB and HG cases for the b.f.v. of sin2 θ12, sin2 θ23 and sin2 θ13. 
It was found that the predictions of cosδ vary significantly with the symmetry form of Ũν . For 
the b.f.v. of sin2 θ12 = 0.308, sin2 θ13 = 0.0234 and sin2 θ23 = 0.437 found in [10], for instance, 
one gets [29] cos δ = (−0.0906), (−1.16), 0.275, (−0.169) and 0.445, for the TBM, BM (LC), 
GRA, GRB and HG forms, respectively. For the TBM, GRA, GRB and HG forms these values 
correspond to δ = ±95.2◦, ±74.0◦, ±99.7◦, ±63.6◦. The unphysical value of cos δ in the BM 
(LC) case is a reflection of the fact that the scheme under discussion with BM (LC) form of 
the matrix Ũν does not provide a good description of the current data on θ12, θ23 and θ13 [89]. 
Physical values of cos δ can be obtained, e.g., for the b.f.v. of sin2 θ13 and sin2 θ23 if sin2 θ12 has 
a larger value [30].11 The results quoted above imply [29] that a measurement of cos δ can allow 
to distinguish between at least some of the different symmetry forms of Ũν , provided θ12, θ13
and θ23 are known, and cos δ is measured, with sufficiently good precision.12 Even determining 
the sign of cos δ will be sufficient to eliminate some of the possible symmetry forms of Ũν . It 
was also concluded in [29] that distinguishing between the TBM, GRA, GRB and HG forms of 
Ũν be measuring JCP would require extremely high precision measurement of the JCP factor.

These conclusions were confirmed by the statistical analyses performed in Ref. [30] where 
predictions of the sum rule (34) for i) δ, cos δ and the rephasing invariant JCP using the “data” 
(best fit values and χ2-distributions) on sin2 θ12, sin2 θ13, sin2 θ23 and δ from [10], and ii) for 
cos δ, using prospective uncertainties on sin2 θ12, sin2 θ13 and sin2 θ23, were derived for the TBM, 
BM (LC), GRA, GRB and HG symmetry forms of the matrix Ũν .

The aim of the first analysis, the results of which are summarised in Table 1, was to derive the 
allowed ranges for cos δ and JCP, predicted on the basis of the current data on the neutrino mixing 
parameters for each of the symmetry forms of Ũν considered. We have found [30], in particular, 
that the CP-conserving value of JCP = 0 is excluded in the cases of the TBM, GRA, GRB and 
HG neutrino mixing symmetry forms, respectively, at approximately 5σ , 4σ , 4σ and 3σ C.L. 
with respect to the C.L. of the corresponding best fit values which all lie in the interval JCP =
(−0.034) − (−0.031) (see Table 1). The best fit value for the BM (LC) form is much smaller 
and close to zero: JCP = (−5 × 10−3). For the TBM, GRA, GRB and HG forms at 3σ we have 
0.020 ≤ |JCP| ≤ 0.039. Thus, for these four forms the CP violating effects in neutrino oscillations 
are predicted to be relatively large and observable in the T2HK and DUNE experiments [36,37].

11 For, e.g., sin2 θ12 = 0.34 allowed at 2σ by the current data, we have cos δ = −0.943. Similarly, for sin2 θ12 = 0.32, 
sin2 θ23 = 0.41 and sin θ13 = 0.158 we have [29]: cos δ = −0.978.
12 Detailed results on the dependence of the predictions for cos δ on sin2 θ12, sin2 θ23 and sin2 θ13 when the latter are 
varied in their respective 3σ experimentally allowed ranges can be found in [30].
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Table 1
Best fit values of JCP and cos δ and corresponding 3σ ranges (found fixing χ2 − χ2

min = 9) for the five symmetry forms, 
TBM, BM, GRA, GRB and HG, and Ũe given by the form A in eq. (33), obtained using the data from [10] for NO 
neutrino mass spectrum. (From Ref. [30], where results for IO spectrum are also given.)

Scheme JCP/10−2 (b.f.v.) JCP/10−2 (3σ range) cos δ (b.f.v.) cos δ (3σ range)

TBM −3.4 [−3.8,−2.8] ∪ [3.1,3.6] −0.07 [−0.47,0.21]
BM (LC) −0.5 [−2.6,2.1] −0.99 [−1.00,−0.72]
GRA −3.3 [−3.7,−2.7] ∪ [3.0,3.5] 0.25 [−0.08,0.69]
GRB −3.4 [−3.9,−2.6] ∪ [3.1,3.6] −0.15 [−0.57,0.13]
HG −3.1 [−3.5,−2.0] ∪ [2.6,3.4] 0.47 [0.16,0.80]

Fig. 3. The likelihood function versus cos δ for NO neutrino mass spectrum after marginalising over sin2 θ13 and sin2 θ23, 
for the TBM, BM (LC), GRA, GRB and HG symmetry forms of the mixing matrix Ũν . Th figure is obtained by using the 
prospective 1σ uncertainties in the determination of sin2 θ12, sin2 θ13 and sin2 θ23 within the Gaussian approximation. 
The three neutrino mixing parameters are fixed to their current best fit values (i.e., sin2 θ12 = 0.308, etc.). See text for 
further details. (From Ref. [30].)

In Fig. 3 we present the results of the statistical analysis of the predictions for cosδ, namely 
the likelihood function versus cos δ within the Gaussian approximation (see [30] for details) 
performed using the current b.f.v. of the mixing angles for NO neutrino mass spectrum given 
in Ref. [10] and the prospective 1σ uncertainties in the determination of sin2 θ12 (0.7% from 
JUNO [104]), sin2 θ13 (3% derived from an expected error on sin2 2θ13 of 3% from Daya Bay, 
see Refs. [5,105]) and sin2 θ23 (5% derived from the potential sensitivity of NOvA and T2K on 
sin2 2θ23 of 2%, see Ref. [5], this sensitivity can also be achieved in planned neutrino experiments 
as T2HK [106]). The BM (LC) case is very sensitive to the b.f.v. of sin2 θ12 and sin2 θ23 and is 
disfavoured at more than 2σ for the current b.f.v. found in [10]. This case might turn out to be 
compatible with the data for larger (smaller) measured values of sin2 θ12 (sin2 θ23). The measure-
ment of sin2 θ12, sin2 θ13 and sin2 θ23 with the quoted precision will open up the possibility to dis-
tinguish between the BM (LC), TBM/GRB, GRA and HG forms of Ũν . Distinguishing between 
the TBM and GRB forms seems to require unrealistically high precision measurement of cosδ. 
Assuming that | cos δ| < 0.93, which means for 76% of values of δ, the error on δ, 	δ, for an error 
on cos δ, 	(cos δ) = 0.10 (0.08), does not exceed 	δ � 	(cos δ)/

√
1 − 0.932 = 16◦ (12◦). This 

accuracy is planned to be reached in the future neutrino experiments like T2HK (ESSνSB) [5]. 
Therefore a measurement of cos δ in the quoted range will allow one to distinguish between the 
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TBM/GRB, BM (LC) and GRA/HG forms at approximately 3σ C.L., if the precision achieved 
on sin2 θ12, sin2 θ13 and sin2 θ23 is the same as in Figs. 3.

The results obtained in the studies performed in Refs. [29,30] (see also [90,91]) show, in 
particular, that the experimental measurement of the Dirac phase δ of the PMNS neutrino mixing 
matrix in the future neutrino experiments, combined with the data on the neutrino mixing angles, 
can provide unique information about the possible discrete symmetry origin of the observed 
pattern of neutrino mixing.

5. Outlook

The program of experimental research in neutrino physics extends beyond 2030 (see, e.g., 
Refs. [5,36,37,107]). It is stimulated by the fact that the existence of nonzero neutrino masses 
and the smallness of the neutrino masses suggest the existence of new fundamental mass scale 
in particle physics, i.e., of New Physics beyond that predicted by the Standard Theory. In the 
coming years we expect a wealth of new data that, it is hoped, will shed light on the fundamental 
aspects of neutrino mixing: the nature – Dirac or Majorana – of massive neutrinos, the status of 
CP symmetry in the lepton sector, the type of spectrum the neutrino masses obey, the absolute 
neutrino mass scale, the origin of the observed patters of the neutrino masses and mixing (new 
fundamental symmetry?), and, eventually, on the mechanism of neutrino mass generation. It is 
hoped that progress in the theory of neutrino mixing will also lead, in particular, to progress 
in the theory of flavour and to a better understanding of the mechanism of generation of the 
baryon asymmetry of the Universe. We are looking forward to the future exciting developments 
in neutrino physics.

I would like to conclude by wishing the Nobel laureates for Physics for the year 2015, 
Dr. T. Kajita and Prof. A. McDonald, further fundamental contributions to the understanding 
of the neutrino properties.
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