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Abstract: Redundant robotic manipulators under kinematic control may exhibit unpredictable be-

haviours at joint level, since closed loop trajectories in Cartesian space do not in general map in closed

loop trajectories in joint space. Holonomic kinematic inversion algorithms avoid this problem. In this

paper, we point out some numerical problems that may arise when discretizing a holonomic kinematic

inversion algorithm. It is shown that the knowledge of the additional set of holonomic constraints is

needed in order to overcome such drawbacks. A simple case study that shows the potential effects of

discretization is discussed.
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1. INTRODUCTION

Robotic manipulators are said to be kinematically redundant

when they have more degrees of freedom than those strictly

necessary to perform a given task. Since a general task consists

in following an end-effector trajectory with a specified orienta-

tion, and thus requires six degrees of freedom, it follows that

a manipulator with seven or more joints is redundant. More in

general, let m be the number of required degrees of freedom of

the task and n be the number of joints of the robot: the robot is

thus redundant if n > m.

A redundant manipulator is able to perform a prescribed end-

effector motion in infinite ways, which implies that the inverse

kinematic problem has infinite solutions. This fact can be used

in order to optimize some additional criteria such as singularity

(Seraji and Colbaugh, 1990) or obstacle avoidance (Colbaugh

et al., 1989), torque minimization, (Hollerbach and Suh, 1987b)

and (Hollerbach and Suh, 1987a), and others.

Side effects of the adoption of kinematic redundancy are that

the motion of the robot can be to some extent unpredictable.

During a positioning task, the final configuration of the robot

may depend on the planned end-effector trajectory even when

the motion of the robot starts from the same initial joint config-

uration. Moreover, under a kinematic control strategy a closed

end-effector trajectory can be mapped into an open trajectory on

the configuration space. These facts are highly undesirable and

may represent a limitation in the use of redundant manipulators.

Fortunately, there exists a class of kinematic inversion algo-

rithms that avoid these problems. Such inversion algorithms are

called holonomic, see (Roberts and Maciejewski, 1992), (De

Luca et al., 1992), (Mussa-Ivaldi and Hogan, 1991), (Michellod

et al., 2008) and (Rocco and Zanchettin, 2010).

In this paper, we point out some numerical problems that

may arise when such algorithms are implemented. In partic-
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ular, we show that holonomy can be lost once the algorithm

is discretized, regardless of the discretization time. More pre-

cisely, it will be shown that the non-controllable part of the

resulting discrete time system may turn to be unstable. It is

well known, see (Murray et al., 1994), that the holonomy of

a solution is equivalent to the existence of an additional set

of holonomic constraints. The knowledge of such constraints

can be used to overcome the numerical problems. The proposed

solution is formally equivalent to the so called augmented Ja-

cobian method (Siciliano and Khatib, 2008) and to the post-

stabilization method (Ascher and Petzold, 1998).

The remaining of this paper is organized as follows. In Section

2 some mathematical background is reviewed. In Section 3

the problem of the numerical integration of a holonomic local

control strategy is presented and discussed. Finally, in Section

4 such numerical aspects are discussed on a simple case study.

2. PRELIMINARIES

Consider a robotic manipulator with n joints. If qi (i = 1, . . . ,n)

denotes the variable characterizing the position of the i-th

joint, the configuration of the robot is given by the vector

q = [q1 q2 . . . qn]
T

.

The position of the end-effector is usually characterized by

the vector x = [x1 x2 . . . xm]
T

which describes its position

and/or orientation. The direct kinematic mapping associated to

a manipulator is thus a nonlinear function f : R
n → R

m
:

x = f (q) (1)

A manipulator is said to be redundant if n > m. Solving the

kinematic inversion problem means finding q for a given x
such that the previous equation holds. Usually, this problem

is addressed at velocity level. In other words, the first time

derivative of (1) is taken into account:

ẋ =
∂ f

∂q
q̇ ≡ J (q) q̇ (2)
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where J is a m × n matrix called task-Jacobian, or simply

Jacobian
1

.

Local control strategy Let S be a simply-connected open sub-

set of R
n

where the Jacobian matrix J is full rank and let G be a

n×m matrix such that JG = Im. Then G is called a local control

strategy.

Considering the local control strategy G, a solution of the

inverse kinematic problem is the trajectory of the following

nonlinear input-affine system:

q̇ = Gẋ (3)

Differently from non-redundant manipulators, the motion of

redundant manipulators under a kinematic local control strategy

can be unpredictable (Klein and Huang, 1983). More precisely,

during a task the final configuration in the joint space of the

robot may depend on the end-effector trajectory even when the

motion of the robot starts from the same initial configuration

(Schaufler et al., 2000). In this case the local control strategy

is called non-holonomic (LaValle, 2006). On the other hand,

a local control strategy that maps closed trajectories in the

Cartesian space into closed trajectories in the joint space is

called holonomic. The solution of (3) is holonomic if and only

if there exists a function g(·) : R
n → R

n−m
such that

∂g

∂q
q̇ = 0 (4)

where ∂g/∂q is full rank and equations (2) and (4) are linearly

independent. Equation (4) states that there exists a generally

nonlinear integrable invariant manifold such that the solution

of (3) is subject to the additional constraint g(q) = constant.
Frobenius’ theorem can be used to check the holonomy of a

given local control strategy G. Such theorem is based on the

definition of distribution (associated to a local control strategy)

and involutivity.

Distribution The distribution associated to the local control

strategy G = [G1 . . . Gm] (where Gi denotes the i-th column

of G) is span(G1, . . . ,Gm) = range(G).

Involutivity The distribution associated to the local control

strategy G is said to be involutive if and only if

∀(i, j) : [Gi,G j] ∈ range(G) (5)

where

[A,B] =
∂B

∂q
A−

∂A

∂q
B (6)

denotes the Lie bracket operation (Isidori, 1995).

Theorem 2.1. (Frobenius). A local control strategy G generates

a holonomic behaviour if and only if the underlying distribution

is involutive.

The involutivity of G, and thus the holonomy of the method,

can be checked by computing its Lie brackets. Moreover, in

(Schaufler et al., 2000), a simplified criterion is proposed. In

particular, the following criterion has been proven.

Theorem 2.2. A local control strategy G generates a holonomic

behaviour if and only if

∀(i, j) : [Gi,G j] = 0 (7)

In the literature, many different approaches to design holo-

nomic local control strategies G for a given manipulator can

be found, see e.g. (Klein and Ahmed, 1995), (Schaufler et al.,

1
From now on, the dependence on q will be omitted.

2000). The design of the local control strategy G can be done

using minimization (Roberts and Maciejewski, 1992), with a

proper selection of the null-space velocity (De Luca and Oriolo,

1997). Finally a holonomic control strategy can be designed

using a weighted pseudo-inverse (Rocco and Zanchettin, 2010).

Using this method the robotic programmer, instead of the robot

manufacturer, might directly select the redundancy resolution

criterion, namely the weight matrix, according to the require-

ments of his/her application.

From the control theory point of view, the issue to check

whether a local control strategy G is holonomic or not is strictly

related to the notion of controllability (Sastry, 1999), (Isidori,

1995). Let us consider the nonlinear input-affine drift-less dy-

namical system:

q̇ = Gu (8)

The system (8) is small-time locally controllable if and only if

rank (C) = n, where

C =
[

G1, . . . ,Gm, [Gi,G j] , . . . ,
(

adk
Gi

,G j

)

, . . .
]

(9)

is called the controllability distribution, k = 2, . . . ,n − 1 and
(

adk
Gi

,G j

)

denotes the repeated Lie bracket operation defined

as follows:
(
ad1

A,B
)

= [A,B]
(
adk

A,B
)

=
[
A,

(
adk−1

A ,B
)]

(10)

In view of Theorem 2.2, it is straightforward to notice that a

holonomic local control strategy does not define a controllable

system. In fact, if G is holonomic, there exists a consistent

change of variables x = f (q) and y = g(q) such that the system

(8) is equivalent to the following one:

ẋ = u ẏ = 0 (11)

Equation (11) points out that there exists a part of the system,

related to the variable y, that does not depend on the input u.

Notice that, since the system is marginally stable, a closed loop

inversion technique is needed. In the remaining of this work, we

consider the following closed-loop inverse kinematic (CLIK)

system:

q̇ = G(ẋ+ Ke) e = x− f (q) (12)

where −K is any m×m Hurwitz matrix.

Since the system is not controllable, the proposed feedback

stabilization (12) acts only on the controllable part of the

system. In particular, applying to (12) the change of variables

e = x− f (q) and y = g(q), the system (12) is equivalent to the

following one:

ė = −Ke ẏ = 0 (13)

3. NUMERICAL ASPECTS

3.1 Position of the problem

In order to be implemented on a robotic controller, the CLIK

system (12) has to be discretized. Due to the hard-real time

fashion of this application, numerical methods that require a

high computational demand are not considered in this work. For

this reason, we will analyze single-step Runge-Kutta methods

that require only one evaluation of the matrix G. Moreover,

since explicit methods are not able to preserve the asymptotic

stability of stable linear systems, implicit methods will be

analyzed only.

Let φ∆t (·) be a single step discretizing method (e.g. backward

Euler, midpoint rule, etc.) where ∆t denotes the discretizing
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time interval. Then the discrete-time system obtained from (12)

takes the following expression
2

:

qk = φ∆t

(

qk−1

)

(14)

Although the system to be discretized is linear with respect to a

proper change of variables, depending on φ∆t (·) (i.e. depending

on the chosen discretizing method), the exact solution of the

equation ẏ = 0 is not guaranteed. In particular, (∆y)k = yk −
yk−1 = g

(
qk

)
− g

(
qk−1

)
might converge to zero, but also di-

verge. In general, once the system is discretized, the holonomy,

which implies that (∆y)k = yk − yk−1 = 0, might be lost or

achieved only asymptotically. If the asymptotic convergence

might be acceptable, the divergence of (∆y)k
is obviously unde-

sirable, since it implies that the discretized inverse kinematics

algorithm no longer satisfies the holonomic constraint g(q) =
const.

3.2 Using different discretizing methods

In the following, the problem is addressed computing the Taylor

expansion of ∆y at time instant k.

Assume that G is holonomic and consider the implicit (or

backward) Euler method
3

applied to the system (8):

qk = qk−1 + ∆tG
(

qk
)

u
(

tk
)

(16)

Applying the Taylor series expansion to (∆y)k
centered in qk

,

one obtains:

(∆y)k = g

(

qk
)

−g

(

qk
)

+
∂g

∂q

∣
∣
∣
∣
qk

γ +
1

2
γT ∂ 2g

∂q2

∣
∣
∣
∣
qk

γ + · · · (17)

where γ = qk −qk−1 = ∆tG
(
qk

)
u
(
tk

)
. Therefore

(∆y)k =
1

2
γT ∂ 2g

∂q2

∣
∣
∣
∣
qk

γ + · · · (18)

which means that only linear constraints are exactly preserved.

Consider now the implicit midpoint method (Ascher and Pet-

zold, 1998):

qk = qk−1 + ∆tG
(

qk−1/2

)

u
(

tk−1/2

)

(19)

where qk−1/2 =
(
qk + qk−1

)
/2 and tk−1/2 =

(
tk + tk−1

)
/2. Ap-

plying the Taylor expansion to (∆y)k
centered in qk−1/2

one

obtains the expression (15), where δ =
(
qk −qk−1

)
/2. When

computing (∆y)k
the first two terms and the quadratic terms

vanish. Moreover, since ∂g/∂qG = 0 and

δ =
∆t

2
G

(

qk−1/2

)

u
(

tk−1/2

)

(20)

the two linear terms in the Taylor series vanish, as well. How-

ever, nothing can be said for the third order terms. This fact

implies that the implicit midpoint rule preserves, in general,

quadratic constraints only.

3.3 Possible remedies

The use of holonomic local control strategies G that enforce

quadratic constraints only is very restrictive. In practical appli-

cations, the adoption of simple discretizing methods (e.g. the

2
This formula denotes the solution of the implicit equation in the unknown qk

that can be obtained using the Newton-Raphson method.
3

Here and in the following, the symbol u will denote the feedforward term ẋ

or the mixed feedback/feedforward term ẋ+Ke, without distinction.

backward Euler or the midpoint rule) is often the only way

to implement a kinematic inversion algorithm. Therefore, the

drawbacks mentioned before have to be taken into account

explicitly.

In the literature on numerical integration of dynamical systems,

many approaches to solve this problem (which is usually called

constraint drift) exist, see (Ascher, 1997) for an overview. In

particular:

• integration methods for constrained mechanical systems

(Baumgarte, 1972), (Ascher and Petzold, 1998);

• stabilization of ordinary differential equations on invariant

manifolds (Hairer, 2001);

• post-stabilization methods (Ascher and Petzold, 1998).

Unfortunately, to the best of the authors’ knowledge, there is no

integration method that avoid the constraint drift which can be

applied without the knowledge of the constraint itself. Notice

that a holonomic local control strategy G does not provide any

information on the underlying holonomic constraint except the

fact that range(G) = null (∂g/∂q), see (Rocco and Zanchettin,

2010).

In (Baillieul, 1985) and (Rocco and Zanchettin, 2010) it has

been shown that any holonomic local control strategy G can

be written in terms of an augmented Jacobian (Siciliano and

Khatib, 2008). In particular, q̇ = Gẋ is the solution of the

following problem:





J
∂g

∂q



 q̇ = JAq̇ =

[
ẋ
0

]

(21)

where the augmented Jacobian JA is non singular and ∂g/∂q is

such that ∂g/∂qG = 0. If the function g(·) is known, the dy-

namical system (21) can be stabilized, leading to the following

CLIK algorithm:

q̇ = J−1

A

([
ẋ
0

]

+ KA

[
x− f (q)

g(q0)−g(q)

])

(22)

where −KA is any n × n Hurwitz matrix and q0 = q(0) is

the initial configuration of the robot. This solution is well

known and has been proposed originally in (Egeland, 1987).

Differently from (12), the joint variables are generated through

an asymptotically stable system. In fact, applying to (22) the

following change of variables ex = x− f (q), ey = g(q0)−g(q)
which is consistent away from singularities of JA, it can be

easily proven, computing their time derivative, that both ex

and ey tend to zero. Therefore, (22) can be discretized without

running into the numerical problems mentioned before.

Finally, it can be proven that, under simple assumptions, the

augmented Jacobian method is a particular application of the

post-stabilization approach. In fact

J−1

A =

[

G N

(
∂g

∂q
N

)−1
]

(23)

where N is any null-space base of the Jacobian matrix J.

Therefore, under the assumption that KA is block diagonal, i.e.

KA = diag(K, K̄), (22) can be rewritten as follows:

q̇ = J−1

A

([
ẋ
0

]

+ KA

[
x− f (q)

g(q0)−g(q)

])

=

= G(ẋ + Ke)+ N

(
∂g

∂q
N

)−1

K̄ (g(q0)−g(q)) =

= G(ẋ + Ke)+ F (g(q0)−g(q))

(24)
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(∆y)k = g
(

qk−1/2

)

−g
(

qk−1/2

)

+
∂g

∂q

∣
∣
∣
∣
∣
qk−1/2

δ +
∂g

∂q

∣
∣
∣
∣
∣
qk−1/2

δ +
1

2
δ T

∂ 2g

∂q2

∣
∣
∣
∣
∣
qk−1/2

δ −
1

2
(−δ )T ∂ 2g

∂q2

∣
∣
∣
∣
∣
qk−1/2

(−δ )+ · · · (15)

where F = N (∂g/∂qN)−1
K̄ is the so called projection matrix.

Notice that, following the general formulation of the projection

method, the stabilizing factor F (g(q0)−q(q)) might modify

the end-effector tracking performance. Using the proposed for-

mulation, i.e. the augmented Jacobian method, the two com-

ponents of the right hand side of (24) are orthogonal. In other

words, the second term does not affect the end-effector motion.

4. A CASE STUDY

Consider the planar PPR manipulator sketched in Fig. 1. The

robot is redundant for the task of positioning the end-effector

(point p, in Fig. 1) with unspecified orientation (n = 3 > m = 2).

The Jacobian matrix of this manipulator (the length of the third

link is unitary) is expressed as:

J =

[
1 0 −s3

0 1 c3

]

(25)

where c3 = cos(q3), s3 = sin(q3). Consider the following

Fig. 1. A planar PPR manipulator

holonomic local control strategy:

G =

[
1− s3c3 − s3q1 (q2 + s3)s3

(q1 + c3)c3 1− s3c3 − c3q2

−q1 − c3 q2 + s3

]

(26)

Letting g(q) = 1/2(q1 + c3)
2 − 1/2(q2 + s3)

2 + q3, it can be

shown that ∂g/∂qG = 0.

The CLIK system of equation (12) with K = diag(1000,1000)
has been discretized using the backward Euler method, with

∆t = 1 ms. Time histories of the norm of the kinematic error,

‖x− f (q)‖2, and of the constraint, g(q), are shown in Figs. 2

and 3, respectively. Despite the norm of the kinematic error,

‖x− f (q)‖
2
, is bounded, Fig. 3 shows that the discretized sys-

tem is no longer stable and the resulting motion is no longer

holonomic.

The same system has been discretized with the implicit mid-

point rule. Time histories of the norm of the kinematic error,

‖x− f (q)‖2, and of the constraint, g(q), are shown in Figs.

4 and 5, respectively. It can be noticed that, even using a

more accurate discretizing method, the exact integration of the

constraint equation is not achieved, again. This fact results in a

drift, as shown in Fig. 5.

Finally, Figs. 6 and 7 show the time history of the norm of

the kinematic error and of the constraint, respectively, when

the augmented Jacobian method of equation (22) with KA =
diag(1000,1000,1000) is discretized with the backward Euler

method with ∆t = 1 ms. As one can see, the augmented Jacobian

Fig. 2. Backward Euler - error norm ‖x− f (q)‖
2

0 5 10 15 20 25 30

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

C
o
n
s
tr
a
in
t

Fig. 3. Backward Euler - constraint g(q)−g(q0)

Fig. 4. Implicit midpoint - error norm ‖x− f (q)‖
2

method is able to preserve the constraint even when discretized

with the simplest implicit discretizing method. In addition, the

efficiency of the kinematic inversion is comparable with the one
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Fig. 5. Implicit midpoint - constraint g(q)−g(q0)

Fig. 6. Augmented Jacobian, backward Euler - error norm

‖x− f (q)‖
2

Fig. 7. Augmented Jacobian, backward Euler - constraint

g(q)−g(q0)

obtained using the local control strategy G in (26) discretized

with the backward Euler method.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we have pointed out some numerical problems

that might arise when implementing a holonomic kinematic

inversion algorithm for redundant manipulators. In particular,

we have shown that using simple discretizing methods, which

is common for most practical applications, the holonomy of the

discrete-time system is not guaranteed, in general. It has been

shown that, even in a simple case study, the discretized system

may easily turn to be unstable. This fact is clearly undesirable

in a typical long-time integration problem as the kinematic

inversion is.

An example has shown that the augmented Jacobian method

preserves the holonomic constraint even when the discretized

with a simple backward Euler algorithm.

However, according to the existing methodologies to enforce

holonomy, the knowledge of the additional holonomic con-

straint is needed to avoid numerical problems. Since the stabi-

lization method strictly depends on the redundancy resolution

criterion, the existing methods are not suited for a user-oriented

point of view. Future research is thus needed to address this

problem.
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