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ABSTRACT. In recent years the implementation of the electric engine in the automotive industries has been 
increasingly marked. The speed of the electric motors is much higher than the combustion engine ones, 
bringing transmission gears to be subjected to high dynamic loads.  
For this reason the dynamic effects on fatigue life of these components have be taken into account in a more 
careful way respect to what is done with the usual gears. 
In the present work the overload effects due to both speed and meshing in a gear couple of an electric vehicle 
transmission have been analyzed. The electric vehicle is designed for urban people mobility and presents all the 
requirements to be certified as M1 vehicle (a weight less than 600 kg and a maximum speed more than 90 
Km/h). 
To investigate the overload effects of teeth in contact, the reference gear design Standards (ISO 6336) introduce 
a specific multiplicative factor to the applied load called Internal Dynamic Factor (Kv). 
Aim of this work is to evaluate how dynamic overloads may influence the fatigue life of the above quoted gears 
in term of durability.  
To this goal, Kv values have been calculated by means of the analytical equations (ISO 6336 Methods B and C) 
and then they have been compared with the results coming from multibody simulations, involving full rigid and 
rigid-flexible models. 
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INTRODUCTION  
 

n recent years, greater emphasis has been placed on the design of high-speed, lightweight, precision systems. Both 
performance analysis and design of such systems can be greatly enhanced through transient dynamic simulations. The 
need for a better design has made necessary the insertion of many factors that have not been considered in the past. 

Systems such as engines, robotics, machine tools and space structures may operate at high speeds and in very high 
temperature environments.  
In particular, the implementation of the electric engine in the automotive industries has been increasingly marked. The 
speed of the electric motors is much higher than the combustion engine ones, bringing transmission gears to be subjected 
to high dynamic loads.  
For this reason the dynamic effects on fatigue life of these components have be taken into account in a more careful way 
respect to what is done with the usual gears. 
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So, the behaviour of new automotive transmissions may be simulated with specific multibody programs, being these 
systems suitable to be described as a collection of subsystems called bodies and the motion of them is kinematically 
constrained. Basic to any analysis of multibody mechanics is the understanding of the motion of subsystems (bodies or 
components).  
Referring to this environment, a gear is a complex body with a specific geometry, as an example the modulus, the number 
of teeth, the face width and the contact ratio. 
Once a gear is designed as a function of the power to be transmitted, it is necessary to analyse it from both kinematic and 
dynamic point of view [1].  
Some papers have been published about the numerical analysis of the dynamic meshing gears. Most of them are based on 
lumped parameter models [2-5], where the teeth contact is represented by an equivalent mass, a stiffness and damping of 
the teeth.  
Another way to address the contact analysis is related to FEM simulations; this approach is helpful to determine the gear 
contact stiffness and the corresponding strain and stress distributions in the teeth. In particular the multibody kinematic 
approach uses a contact stiffness which depends on parameters that are not yet well understood [6].  
In the present work the overload effects due to both speed and meshing in a gear couple of an electric vehicle 
transmission have been analyzed. The electric vehicle is designed for urban people mobility and presents all the 
requirements to be certified as M1 vehicle (a weight less than 600 kg and a maximum speed more than 90 Km/h). 
The first aim of this research is to evaluate how the dynamic overloads may influence the fatigue life of the above quoted 
gears in term of durability. 
To this goal, a specific multiplicative factor to the applied load, called Internal Dynamic Factor (Kv), involved in ISO 6336 
Standards [7-10]  has been taken into account; Kv values have been calculated by means of the related analytical equations 
(ISO 6336 Methods B and C [7]).Then, the dynamic analysis of the above quoted two gears has been performed by means 
of the multibody software RecurDyn (Functionbay), in order to obtain the real response of the components. The model 
has been developed by tuning step by step the contact parameters of engaging pair of gears and by optimizing the 
integration parameters. 
Forces values obtained by the simulations have been utilised to determine the dynamic factor Kv involved in ISO Standard 
6336 [7] for the calculation of gears load capacity. 
Analytical results in terms of Kv values have been compared with those coming from multibody simulations, involving full 
rigid and rigid-flexible models. 
 
 
GEAR MODEL 
 

bject of this paper consists of two specific gears of a differential architecture for an electric vehicle. Its design 
has been developed in order to keep as low as possible the transmission weight; in this work, a single speed 
stage gearbox has been chosen. 

Transmission is constituted by an ordinary gear system and an epicyclical one named differential (see Fig. 1). The ordinary 
gear system consists of four helical gears, the differential of four bevel gears (two pinions and two suns).  
From the dynamic point of view, only the ordinary gears system have to be taken into account; the transmitted torque 
passes directly to the wheel axes through the pinion and the vehicle has been analysed in a rectilinear motion condition.  
Fig. 1 shows the complete transmission model that has been set up for the simulation. 
 

 
 

Figure 1:  complete transmission model. 
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The main design data of the four helical gears are reported in Tab. 1 (engagement 1, Gears 1 and 2; engagement 2, Gears 3 
and 4). 
All gears have been calculated according to ISO 6336 Standard [7-10]. 
In this work the engagement 2 has been considered (gears 3 and 4). 
 

 
  Gear 1 Gear 2 Gear 3 Gear 4 
Pressure angle α 20 20 20° 20° 
Helix angle β 30 (L.H.) 30 (R.H.) 30° (R.H.) 30° (L.H.) 
Normal module mn 1.5 1.5 2 mm 2 mm 
Number of teeth Z 22 68 34 75 
Face width b 42 42 30 mm 30 mm 

 

Table 1: Main design dimensions of gear’s engagement 1 (input drive) and engagement 2 (final drive) 
 
 
MULTIBODY MODEL 
 

he simulation of meshing gears has been analysed (see Fig. 2). To obtain a correct simulation of this complex 
system, a lot of preliminary tests has been done in order to tune both kinematic and dynamic parameters. The final 
goal is to achieve a good matching between the multibody response and the corresponding theoretical one. 

In this paper two different type of contact have been realized; the first (Fig. 2 on the left) consists of two rigid bodies in 
contact, the second (Fig. 2 on the right) consists of two rigid-flexible bodies, simulating the gears web as a rigid body and 
the rim as flexible. 
Since the system is very complex, the computational time is very high. So, it was necessary to properly calibrate the 
simulation before its starting. The best compromise between  parameter’s calibration and the computational time has been 
searched. 
Contact parameters have been changed from the default ones because the consequent increase in computation time is 
widely justified by the obtained improvement in the quality of the results.  
 

 
 

Figure 2: Multibody automotive transmission system, full-rigid on the left and rigid-flexible on the right. 
 
 
GEARS INTERNAL DYNAMIC FACTOR 
 

tandard design procedures compare the gears strength with a calculated stress value, in both bending and pitting 
cases. The most common approach used in calculation of these stress values, as widely described in ISO Standard 
6336 part 1 [7], involves the use of influence factors, derived from results of research and field service. 

The influence factors may be distinguished between two categories, factors which are determined by gear geometry or 
which have been established by convention and factors which account for several influences and which are dealt with as 
independent of each other; in this last group is included the Internal Dynamic Factor Kv. As a matter of fact, even when 
the input torque and speed are constant, significant vibration of the gear masses and resultant dynamic tooth loads can 
exist. These loads result from the relative displacements between the mating gears as they vibrate in response to an 
excitation known as transmission error. 
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The internal dynamic factor makes allowance for the effects of gear tooth accuracy grade as related to speed and load. 
High accuracy gearing requires less derating than low accuracy gearing.It is generally accepted that the internal dynamic 
load on the gear teeth is influenced by both design and manufacturing. 
“Perfect” gears are defined as having zero quasi-static transmission error at the nominal transmitted (design)mesh torque. 
They can only exist for a single load and, with proper modifications, have zero dynamic effectszero transmission error 
(perfect conjugate action), zero excitation, no fluctuation at tooth mesh frequencyand no fluctuation at rotational 
frequencies. With zero excitation from the gears, there is zero response at any speed [7]. 
The Internal Dynamic Factor Kv takes into account the effects due to the rotating masses; ISO 6336 part 1 [7] suggests 
three methods for calculating this factor.  
Method A (Kv-A) derives from the results of full scale load tests, precise measurements or comprehensive mathematical 
analysis of the transmission system and all gear and loading data shall be available, then this method, in this work, 
corresponds to the dynamic multibody analysis results. Method A generally results the most sophisticated. 
Method B (Kv-B) is suited for all types of transmission, spur and helical gearing with any basic rack profile and any gear 
accuracy grade and, in principle, for all operating conditions.  
Method C (Kv-C) supplies average values which can be used for industrial transmissions and gear systems with similar 
requirements, with restriction in the application field. 
In the present paper Methods B (Kv-B) and C (Kv-C) have been taken into account as the resolution of the corresponding 
equations described in detail in [7].  
Kv-B coefficient has been calculated on the basis of the different operating ranges (subcritical, main resonance, 
intermediate and supercritical ranges) related to the resonance ratio N of the mating gears [7]. 
Firstly, the resonance running speed of the gear pair nE1 has been determined as a function of the reduced gear pair mass 
per unit face width, of the mesh stiffness and of the pinion number of teeth, as indicated in detail in [7]. 
Then the resonance ratio N, where N=n1/nE1, has been calculated, being n1 is the rotational speed of the pinion in rpm. 
Once the resonance ratio N has been obtained, the operating range has been determined as a function of the specific load 
Ft· KA / b, according to [7],where Ft is the tangential load, KA the application factor, b the gear face width and Ns is the 
lower limit of the main resonance range. 
The dynamic factor Kv-B has been computed for the different ranges, following the involved relationships indicated in [7]; 
non-dimensional parameters which take into account the effect of tooth deviations and profile modifications on the 
dynamic load are considered. 
In particular, it has been calculated for: subcritical range N ≤ NS (the majority of industrial gears operate in this range), 
main resonance range NS<N ≤ 1.15 (operation in this range should generally be avoided, especially for spur gears with 
unmodified tooth profile or helical gears of accuracy grade 6 or coarser, because the dynamic forces could be very high), 
supercritical range N ≥ 1.5 (most high precision gears used in turbine and other high speed transmissions operate in this 
range), intermediate range 1.15 <N< 1.5(the dynamic factor is calculated by linear interpolation between Kv at N = 1.15 
and Kv at N = 1.5). 
According to method C [7], the dynamic factor Kv-C has also been obtained as a function of the specific load (as Kv-B), of 
the accuracy grades for spur and helical gears and of the tangential speed, without any attention to the operating ranges. 
 
 
RESULT AND DISCUSSION  
 

btained results are presented in this paper in terms of comparison between KV values related to the different 
calculation methods. 
For as concerns the Methods BISO 6336 [7], specific loads, resonance ratios, lower limits of main resonance 

range and corresponding Kv-B values for each electric motor speed are reported in Tab. 2; in particular, in column one is 
indicated the motor speed in rpm, in the second column is reported the specific loading of the gears, in the third one the 
resonance ration, in the fourth one the resonance ratio in the main resonance range and in the last one the internal 
dynamic factor of gear 4. 
For as concerns Method C ISO 6336[8], since the specific load is always lower than 100 N/mm for each class, the 
dynamic factor is a function of the tangential speed only. So, for the maximum tangential speed v = 12.02 m/s, Kv  is 
equal to 1.21. 
Multibody Simulation allows to determine contact forces involved in the calculation of dynamic parameters. 
The contact force components versus time of Gear 4, obtained by the rigid simulation, are shown in Fig. 3; the forces 
directions are referred to the ground system of the model. 
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The response of the elements (Fig. 3) emphasizes an initial perturbation of the signal, but very quickly the behaviour of 
the system becomes stable and leads to the theoretical values. 
Calculated averaged values are: force in x direction Fx=157.18 N, force in y direction Fy=-198.68 N and force in z 
direction Fz=-134.69 N. 

 

Electric motor rpm Ft·KA/b N NS Kv 

500 71.85 0.02 0.80 1.01 

1000 71.85 0.05 0.80 1.02 

2000 71.85 0.09 0.80 1.05 

3000 71.85 0.14 0.80 1.07 

4000 65.32 0.19 0.78 1.10 

5000 58.79 0.24 0.77 1.14 

6000 45.72 0.30 0.74 1.20 

7000 39.19 0.35 0.72 1.27 

8000 35.93 0.41 0.71 1.33 

9000 29.39 0.47 0.69 1.44 
 

Table 2: Kv values in function of the electric motor speed. 
 
 

 
                                                        (a)                                                                                            (b) 

 
(c) 

 

Figure 3: Forces of the Rigid simulation of Gear 4, (a) contact force in x direction (radial force), (b) contact force in y direction 
(tangential force), (c) contact force in z direction (axial force). 
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Theoretical values of the above quoted forces may be calculated by the analytical combination of tangential, radial and 
axial components; these equilibrium equations are the following: 
 

 x t rF F sinφ F cosφ    =157.18 [N]        (1) 

 y t rF F cosφ F sinφ     =-198.68 [N]        (2) 
 

 x aF F  =-134.69 [N]          (3) 
 

where tF , rF , aF  are respectively tangential, radial, axial forces and φ=15° is the misalignment angle of gears 3 and 4. 
From the analysis of Fig. 3, it may be observed that numerical averaged forces well matches with the analytical ones. 
Fig. 4 shows the Internal Dynamic Factor (Kv) trend of gear 4 during 6 second of the simulation. 
To calculate Kv values, the following equation [7] has been used: 
 

 staticmultibody Fdynamic multibodyTotal
v

static static static static

FF FF
K 1 1

F F F F
            (4) 

 

where staticF  is the static theoretical force of the meshing gears obtained by means of above quoted equations for gears 3 

and 4, while dynamicF  is the force trend obtained by means of the RecurDyn Simulation menus the Static one. 

 

 
 

Figure 4: Dynamic Factor of Gear 4 for Rigid simulation. 
 
By analysing the data reported in Fig. 4, it is possible also to calculate the mean value of the dynamic factor (Eq.(4)), that 
for gear 4 is equal to 1.125. 
This dynamic factor is very important to be determined already in the design phase because the fatigue strength of gears 
depends on it, as indicated in ISO Standard [7]. 
Thanks to multibody simulations, however, it is possible to calculate a well defined value of Kv as in experimental tests, 
even if a high computation time is required for the simulation of the complete model of the transmission (38 to 47 hours). 
The contact force components versus time of Gear 4 obtained by the Rigid-Flexible simulation are shown in Fig. 5; the 
forces directions are referred to the ground system of the model.  
Averaged values are:  
force in x direction Fx=157.2 N,  
force in y direction Fy=-198.69 N  
force in z direction Fz=-134.79 N. 
As it can be seen by Fig. 5, the trend of the forces in the three directions, respect to the rigid simulation (Fig. 3), is quite 
different, but the average values are practically the same. The difference is probably due to the flexibility of the teeth, as 
the Rigid-Flexible simulation results do not present the peaks emphasized in Fig. 3. 
Finally, the trend of Kv factor (Fig. 6) is proposed: the average value for Gear 4 is 1.13, similar to that obtained by the 
rigid simulation. 
The trends of forces and of Kv factor of the Rigid-Flexible simulation is slightly more accurate and do not present peaks 
respect to the rigid one, but a very high computational time has been required for this calculation (384 hours respect to a 
mean of 41 hours of the full rigid simulation). 
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                                                        (a)                                                                                            (b) 

 
(c) 

 

Figure 5: Forces of the Rigid-Flexible simulation of Gear 4, (a) contact force in x direction (radial force), (b) contact force in y 
direction (tangential force), (c) contact force in z direction (axial force). 
 

 
Figure 6: Dynamic Factor of Gear 4 for Rigid-flexible simulation 

 
Finally, Tab. 3 resumes the mean values of the Internal Dynamic Factor calculated respect to the ISO Standard [7] and by 
the Multibody simulation respectively with rigid and Rigid-Flexible approaches: 
 

Method Internal Dynamic Factor (Kv) 

ISO Standard Method B 1.163 

ISO Standard Method C 1.210

Multibody Rigid Simulation 1.125 

Multibody Flexible-Rigid Simulation 1.130
 

Table 3: Kv values for Gear 4. 
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CONCLUSIONS 
 

bject of the present paper is the simulation of the dynamic behaviour of an automotive transmission for electric 
vehicle by means a Multibody approach, performed with the software RecurDyn, so as to obtain some necessary 
information to be involved in the evaluation of the Internal Dynamic Factor. 

The results obtained are very helpful in the evaluation of the dynamic loads. Two different simulations have been done, 
the first has considered the two meshing gears as rigid bodies, the second one has been done with flexible rims and rigid 
webs. 
Forces values have been compared to the corresponding theoretical ones and a very good agreement has been obtained. 
Then, by processing force trends calculated with the Multibody approach, the dynamic factor Kv, involved in a fatigue 
study following the ISO Standard 6336 [10], has been determined for the Gear 4.  
All obtained Kv values match very well, emphasizing a similar dynamic behaviour of the system. 
It may be concluded that the Multibody approach provides a satisfactory information about the dynamic response of the 
system in both instantaneous and averaged condition. 
However, on the basis of the obtained results, it may be observed that the more efficiency in calculation doesn’t justify the 
corresponding increasing in computational time by shifting from rigid (at maximum 47 hours) to flexible-rigid (384 hours) 
simulation, for as concerns the transmission considered in the present work. 
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NOMENCLATURE 
 
α= Pressure Angle, °; 
β= Helix Angle, °; 
mn = Normal module, mm; 
Z = Number of teeth; 
b = Face width, mm; 
Kv = Internal Dynamic Factor; 
Kv-A =Internal Dynamic Factor calculating with Method A of ISO Standard 6336-1 [7]; 
Kv-B =Internal Dynamic Factor calculating with Method B of ISO Standard 6336-1 [7]; 
Kv-C =Internal Dynamic Factor calculating with Method C of ISO Standard 6336-1 [7]; 
N = Resonance ratio; 
Ns = Lower limit of the main resonance range; 
n1 = Rotational speed of the pinion, rpm; 
nE1 = Running speed of the gear pair, rpm; 
Ft, Fr, Fa = Tangential, radial, axial forces, N; 
KA = Application factor; 

t AF K / b  = Specific Load, N/mm; 
Fx ,Fy, Fz = Forces in the main directions, N; 
v = Maximum tangential speed, m/s. 
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