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ABSTRACT

Most of the studies that assess the performance of various calibration techniques have to 
deal with a certain amount of uncertainty in the calibration data. In this study we tested 
HBV model calibration procedures in hypothetically ideal conditions under the assumption 
of no errors in the measured data. This was achieved by creating an artificial time series 
of the flows created by the HBV model using the parameters obtained from calibrating the 
measured flows. The artificial flows were then used to replace the original flows in the 
calibration data, which was then used for testing how calibration procedures can reproduce 
known model parameters. The results showed that in performing one hundred independent 
calibration runs of the HBV model, we did not manage to obtain parameters that were 
almost identical to those used to create the artificial flow data without a certain degree of 
uncertainty. Although the calibration procedure of the model works properly from 
a practical point of view, it can be regarded as a demonstration of the equifinality principle, 
since several parameter sets were obtained which led to equally acceptable or behavioural 
representations of the observed flows. The study demonstrated that this concept for 
assessing how uncertain hydrological predictions can be applied in the further development 
of a model or the choice of calibration method using artificially generated data.
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Introduction

Conceptual rainfall-runoff models are simplifications of the complex 
processes of runoff generation in a catchment. The particular 
components of these models often have to be described by empirical 
functions based on the observation of certain processes. The models 
therefore usually contain a number of parameters that do not 
represent directly measurable entities and thus must be estimated 

through a process known as model calibration. In the calibration 
process the values of the parameters are gradually changed in 
order to adjust the behaviour of the model to mimic the behaviour 
of a real system. The process therefore requires measurements of 
a catchment’s behaviour, usually in terms of the inputs (rainfall) 
and the outputs (e.g., the stream flow at the catchment’s outlet). 
Calibration is a crucial part of identifying a model; therefore, 
a relatively great deal of attention is dedicated to this problem in 

2012 SLOVAK UNIVERSITY OF TECHNOLOGY 35



36 ASSESSMENT OF THE UNCERTAINTIES OF A CONCEPTUAL HYDROLOGIC MODEL ...

2012/4 PAGES 35 — 43

the literature, which  leads to the development of many calibration 
procedures (see, e.g., Gupta et al., 2005; Vieux, 2004; Beven, 2004; 
Wagener, 2004; Kavetski et al. 2006a,b; Onwubolu and Babu, 2004; 
Weise, 2009; Rao, 2009).
Nowadays a hydrological modeller can choose from a large number 
of optimization algorithms and objective functions (see, e.g., 
Sorooshian and Dracup, 1980; Sorooshian et al., 1983; Kavetski et 
al., 2003) or calibration procedures (for a review, see Klemes, 1986). 
The testing of particular optimization algorithms or procedures can 
be peculiar since we do not know whether the found solution (the 
set of parameters) is a local or global maximum/minimum. This is 
mainly due to the fact that there is a certain amount of uncertainty 
in the measured data and model itself. Moreover, in hydrological 
modelling it is an acknowledged fact that in open systems a given 
end state can be reached by many potential means and that there 
are therefore many behavioural models of the same system (Beven, 
2004; Gupta, Beven and Wagener; 2005) with different parameter 
sets leading to equally acceptable representations of the observed 
flows (the equifinality principle, Beven, 2004). 
In this study we decided to test the equifinality principle in 
idealised conditions with the calibration of a lumped rainfall-
runoff model. In order to remove all the uncertainties caused by 
errors in the data and the imperfect model structure, an artificial 
time series of flows was created with the model with a known 
set of parameters, which replaced the measured flows in the 
calibration. By doing this we expected to know the values of 
particular parameters which would lead to a global optimum. 
The calibration of the model using artificial data was then 
performed using a split sample test by splitting the input dataset 
into two halves, each of them calibrated separately. One hundred 
calibration runs were performed with the goal of recalibrating the 
model to its own known output and estimating the uncertainties in 
the model parameters.

1.	 Methodology

1.1	 The rainfall runoff model

The Hron rainfall runoff model, which is a modified HBV model, 
was used here in a daily step (Bergstrom, 1976; 1992). The model 
requires the following input data: daily temperatures, precipitation 
and daily potential evapotranspiration, which can also be calculated 
using an index of the duration of the sunshine. The structure of the 
model can be divided into the following three components:
•	 snow submodel,
•	 soil submodel,
•	 runoff submodel.

The main task of the snow submodel is to simulate snow accumulation 
and melting in the catchment, which is done by using a very simple 
degree-day factor method. This method does not require a large 
amount of input data. Despite this, by using this method we can 
get comparable results with those obtained using advanced energy-
based models (Turcan, 1982; Beven and Freer, 2001).
The soil submodel represents part of the hydrological cycle which 
occurs under the soil’s surface. It includes various parts of the 
hydrological cycle, such as the infiltration of precipitation and melted 
snow from the soil surface to deeper soil layers, the distribution and 
accumulation of water in the soil layers, evapotranspiration, and 
the generation of the surface, subsurface and base flows. In the 
soil submodel the various soil layers are represented by two fictive 
reservoirs representing the accumulated soil and groundwater.
The runoff submodel is used to transform total runoff from the 
catchment comprising of the surface and subsurface runoffs and 
base flow. As a transformation function the model uses a simple 
triangular weighted function, which can be written as

where maxbas is a parameter representing the total number of days 
into which the runoff is divided, i={1, 2, …, maxbas}, and q is the 
total runoff from the whole catchment before any transformation. 
The triangular transformation function used in this study divides 
the runoff according to an equilateral triangle, where the greatest 
part is allocated to the middle day (Bergstrom, 1976; 1992). The 
transformation function redistributes the total runoff into several 
days, which results in the fact that a certain amount of precipitation 
falling on a catchment in a particular day affects the runoff from the 
catchment for more than one day.
The Hron model used in this study has 13 parameters that are 
described in Tab. 1.

1.2	 Model calibration of the measured data

The model parameters were estimated by automatic calibration 
using two approaches: 1) genetic algorithm and 2) harmony search. 
Genetic algorithms (GA) belong to the family of evolutionary 
algorithms which are based on techniques that imitate evolutionary 
processes such as mutation, natural selection, crossing or heredity 
in searching for the best result. The principle of GA is the 
gradual creation of parameter generations comprising one or more 
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populations with various numbers of different individuals (in our 
case, the set of parameters). At the beginning of the first generation 
a set of random individuals (sets of parameters) is generated from 
which some individuals (usually one or two) are directly included 
into the second generation, while some are selected for mutation and 
crossing. The rest of the individuals are then randomly generated to 
fill the number of individuals in the next generation. This procedure 
is repeated until the quality of the best individual meets the required 
criteria or till the algorithm reaches the maximum amount of 
generations. More about genetic algorithms can be found, e.g., in 
Sekaj (2005) or Mitchell (1996).
Harmony search methods (HS) are relatively new optimization 
algorithms which also belong to the group of evolutionary algorithms. 
They are phenomenon-mimicking algorithms which are inspired by 
the improvisation process of jazz musicians. HS algorithms exist in 
many specifications that are suitable for solving various scientific 
or engineering problems. Here we give only the description of 
the basic structure of the HS algorithm. The optimization process 
used in the HS algorithm can be divided into the following steps: 
1) problem formulation, 2) algorithm parameter setting, 3) random 
tuning for memory initialization, 4) harmony improvisation, 5) 
memory update, 6) performance of termination and 7) the cadenza. 
After the formulation of the optimization problem, the parameters 
of the HS algorithm itself have to be set. The algorithm includes 
these parameters: harmony memory size (HMS), harmony memory 
considering rate (HMCR), pitch adjusting rate (PAR), maximum 
improvisation (MI) and fret width (FW). In the third step a number 
of random harmonies (possible solutions) are generated from which 
the top HMS harmonies (based on the value of the optimization 

function) are selected to fill the harmony memory (HM). In the 
harmony improvisation process new HMS harmonies are created, 
where a member of a harmony is either picked from within the value 
range or is taken from the HM with the probability of HMCR. In 
the latter case the value can also be adjusted (with the probability of 
PAR) by adding a certain amount to the value. If the new harmony is 
better in terms of objective function than the worst harmony stored 
in the HM, the new harmony replaces the worst harmony in the 
HM. However, it is also important to take into account the diversity 
of harmonies in HM as well as the maximum number of identical 
harmonies in HM. This process is repeated until the HS satisfies 
the termination criteria, when the HS algorithm that returns the best 
harmony is stored in the HM. For further information about the HS 
algorithm, see, Geem (2009).
In both cases the Nash-Sutcliff (NS) coefficient was selected as 
an optimization criterion (Nash and Sutcliffe, 1970). The NS 
coefficient was calculated using the following formula

where Qsim and Qobs represent the simulated and observed flows, 
respectively, and Qobs is the average of the observed flow. The NS 
coefficient can obtain values between - ∞ and 1, where 1 represents 
an absolute compliance between the observed and calibrated data.
Both calibration methods were used to run 100 independent 
calibrations using the original measured input data. The initial 
starting values of the parameters were generated randomly from 
a uniform distribution based on the range of admissible values 

Tab. 1 Description of the Hron model parameters together with their upper and lower limits.
Parameter Description and units Range 

fc field capacity – represents the maximum amount of water that the upper part of the soil can hold [mm] 100 - 400
rc coefficient influencing the amount of water contributing to the soil moisture and the upper reservoir [-] 0.1 - 4
uzl upper zone limit – threshold value determining the occurrence of surface runoff q0 [mm] 10 - 40

tempRain threshold temperature above which the entire precipitation is liquid [°C] 0.5 - 10
tempMelt threshold temperature determining the start of the snow melting [°C] -5 - 2
tempSnow threshold temperature under which the entire precipitation is solid [°C] -10 - 0

ddf degree-day factor – determines the speed of the snow melting [mm] 0 – 3
perc percolation – the amount of water percolating from the upper to the bottom reservoir [mm] 0.5 – 4
lpe limit of potential evapotranspiration – used to estimate the potential evapotranspiration [-] 0.5 – 1

k0
k1
k2

empirical parameters influencing the surface (q0), subsurface (q1) and base (q2) flows [-]
1 – 50
1 – 30
10 – 100

maxbas parameter determining the amount of days into which the catchment runoff is divided 1 - 6
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(see Tab. 1). The initial conditions of the model in the terms of the 
values of snow water equivalent (swe), storage in the upper zone 
(suz), storage in the lower zone (slz) and soil moisture (sm) were 
set to the following values: swe = 80, suz = 15, slz = 60 and sm = 
40. In the case when as the calibration period was used the second 
half of the data the starting values were taken from the previous day. 
The values in the previous day were calculated using the best set 
of parameters when calibrating on the whole dataset using genetic 
algorithm and harmony search optimization algorithms. The NS 
coefficients were calculated for each calibration run and used to 
produce box plots showing their distribution for both algorithms. 
Based on the assessment of the box plots, the algorithm with the 
better overall performance was selected and used in the next stages 
of the study.

1.3	 Generation of artificial data for testing the model

In this study we suggest applying the equifinality principle for 
evaluating the performance of the model calibration procedure with 
respect to the uncertainties of the parameters. In order to remove all 
uncertainties caused by errors in the data and the imperfect model 
structure from the calibration, an artificial time series of flows was 
created with the Hron model using a known set of parameters. 
This replaced the measured flows in the calibration data set. By 
doing this we expect to exactly know the values of the particular 
parameters of the system and have the perfect model of the system. 
We also expect that an efficient calibration procedure should lead 
to a global optimum and arrive at the set of the known parameters. 
The best set of parameters (in terms of the NS coefficient) out of the 
set of 100 calibrations produced using both optimization algorithms 
was subsequently used to calculate the simulated runoff from the 
catchment for the artificial runoff series. Hereinafter this new input 
file, with the replaced observed and simulated flows, is referred to 
as the generated data.

The calibration of the model using the generated data was then 
performed separately on the two halves of the input dataset. One 
hundred calibration runs were performed on both sets with the 
goal of recalibrating the model to its own known output. The 
uncertainties in the estimated model parameters were evaluated.

2.	 Data

As a pilot basin for the case study, we used the Upper Hron River 
catchment (the catchment outlet at the city of Banska Bystrica) with 
an area of 1766.48 km2 and an altitude ranging from 340 to 2043 
m.a.s.l. (the average altitude is 805 m.a.s.l.). The average annual 
precipitation rate for the whole catchment is 800 mm, while in the 
lower parts of the catchment it is 600 mm, and goes up to 1600 mm 
in the upper parts. The average annual evapotranspiration ranges 
from 300 to 600 mm.
Input data in a daily step in the period between 1 January 1981 and 
31 December 2000 was used in this study. The input data consisted 
of (1) average daily flows in the River Hron – Banska Bystrica 
section, (2) average daily temperatures in the catchment, (3) the 
catchment’s average daily precipitation rate, and (4) an index of the 
duration of sunshine for each month. Fig. 1 shows the measured 
flows together with the corresponding precipitation during the 
whole period.

3.	 Results and discussion

The calibration of the model for the measured time series was 
performed using two optimization algorithms: HS and GA with 
the NS coefficient as the optimisation criterion. One hundred 
independent calibrations were performed with both algorithms. 
Fig. 2 shows a comparison of the performance of both algorithms 

Fig. 1 The observed flows together with corresponding average precipitation of the catchment in the Upper Hron River catchment in the 
period between 1981 and 2000.
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in terms of the variability of the NS coefficient values obtained. It 
shows that both algorithms gave almost identical results, with the 
GA performing marginally better and also supplying the best set of 
parameters with the highest NS coefficient. We have also produced 
box plots comparing variations in the particular parameters obtained 
by the GA and HS algorithms. These plots are displayed in Fig. 3 
and show that the variations of the particular parameters are similar 
in both cases (GA and HS). The parameters with relatively high 
variations such as k0 or uzl are those that are not very sensitive 
and therefore do not have a substantial effect on the quality of the 
simulation. This plot can also be regarded as an illustration of the 
equifinality principle, which not only shows, that there is no unique 
parameter set, but also demonstrates, that different optimisation 
methods may not supply equal sets of parameters and that these 
also differ in their variability (despite using the same optimisation 
criterion). This fact has consequences for the practical application 
of rainfall-runoff models and the uncertainties associated with their 
predictions.
Despite the fact that both optimization algorithms gave very similar 
results, the GA was preferred for further simulations, even though 
it did not prove to be computationally more effective with the Hron 
model. The best set of parameters, in terms of the NS coefficient, 
was selected from the set of parameters obtained by GA (the highest 
NS was 0.826). The values of the parameters used to generate the 
artificial flows are listed in Tab. 2.
In the next part of this study the observed flows in the input file 
were substituted by the simulated flows. This new input file was 
then used to test the performance of the calibration algorithm of 
the Hron model with the expectation that the algorithm should be 
able to obtain the same set of parameters repeatedly with the values 
of the NS coefficient very close to 1 (a perfect fit). In order to test 
the influence of the calibration period on the results, the ‘generated 
data’ was split into two parts, and each one was separately used for 

calibrating the model. The results of the calibration are shown in 
Fig. 4 and Tab. 3.
Fig. 4 illustrates the variability of particular parameters after 
100 calibrations using GA, whereas black the box plots in Fig. 
4 represent the results obtained when calibrating the first half 
of the dataset and the white boxes the second half. The figures 
show that the variability of all the parameters is substantially 
higher in the first case, where the parameters perc, k1, k2 and 
lpe especially take the values from within the larger part of 
their range. The large degree of the variability of a particular 
parameter usually indicates its insensitivity and thus its inability 
to substantially influence the quality of the simulation. The black 
box plots in Fig. 4 would suggest that the insensitive parameters 
are perc, k1, k2 and lpe and that the very sensitive ones are fc, rc 
and ddf. However, these results could not be confirmed with the 
outputs from the calibration of the second half of the data, where 
all of the parameters show a very small degree of the variability 
(white box plots).

Fig. 2 Comparison of the variability of NS coefficients for 100 
calibrations using GA and HS.

Tab. 2 The Hron model parameter set used for generating the 
artificial flows f or the model’s calibration.

Parameter Value

fc 162.6

rc 1.003

uzl 10.174

tempRain 7.422

tempMelt -1.521

tempSnow -8.974

ddf 0.757

perc 2.670

lpe 0.504

k0
k1
k2

48.567
4.192
22.798

maxbas 3
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Fig. 3 Comparison of the variability of the parameters of the Hron model for GA and HS optimization algorithms after 100 calibrations of 
the observed data and period between 1981 and 2000.
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Fig. 4 The variability of the parameters of the Hron model for the GA optimization algorithm after 100 calibrations of the artificial flows. 
The black box plots represent the results of the calibration obtained from the first calibrations period (from 1981 to 1990) and the white 
from the second period (from 1990 to 2000).
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4.	 Conclusions

When calibrating a rainfall-runoff model most of the uncertainties 
come from two sources: the model itself, which is caused by the 
simplifications of the very complex runoff generating process, 
and from errors in the measured data, which are mainly caused 
by problems associated with the temporal and spatial variability 
of the measured variables. Moreover, it has been repeatedly stated 
in the literature that the potential for multiple acceptable models 
(behavioural models) as representations of hydrological and other 
environmental systems (the equifinality thesis) should be given 
more serious consideration when calibrating models than has been 
done until the present (e.g., Beven, 2004).
In this paper, a version of a lumped HBV model developed at the 
Department of Land and Water Resources Management at the 
Faculty of Civil Engineering of the Slovak University of Technology 
in Bratislava was tested in order to assess the effectiveness of 
currently used parameter estimation techniques.
As a case study we used the Upper Hron catchment until the Banska 
Bystrica station, which gave us 20 years of daily observed data 
between 1 January 1981 and 31 December 2000.
In the first calibration exercise the model was calibrated 100 times 
with the whole dataset using two calibration algorithms: Harmony 
Search and a Genetic Algorithm. The results of the calibration are 
displayed in Fig. 2. These show that both of the calibration algorithms 
performed similarly, with most of the calibrations achieving the 
values of the NS coefficient close to 0.82. Fig. 3 also shows that 
even though variations in the parameters may look similar in both 
cases, there are differences (in some cases significant) in their 

range. These results can be seen as a demonstration of equifinality 
across the optimisation methods applied. They also show that an 
assessment of the uncertainty of a parameter from applying this 
principle may also be dependent on the particular optimisation 
method used and should be considered in serious model building 
and uncertainty assessment studies.
Since the main objective of this study was to assess the calibration 
procedure of the Hron model, we decided to place ourselves into 
ideal conditions where the measurement errors and imperfections 
of the model are not present. This was achieved by constructing 
an artificial generated time series of flows, which was then used 
to replace the observed flows in the Hron model’s input file. The 
artificial time series of the simulated flows was constructed with the 
Hron model using the best parameter set from the first calibration 
exercise. In doing this we expected to achieve the same set of 
parameters which were used to generate the data and hoped that we 
could exactly reconstruct these data.
For the second calibration experiment, the model was calibrated 100 
times using only the GA alternatively on two equally long halves of 
the generated dataset. The results of these calibrations are displayed 
in Fig. 4. The best sets of parameters are listed in Tab. 3., which 
shows the values of the NS coefficient a being very close to 1 in 
both calibrations.
From a theoretical point of view, the results from both datasets again 
exhibited equifinality and also indicate that the properties of both 
calibration datasets played a significant role. The values of the best 
parameters are very similar to those used to construct the artificial 
flows with the two exceptions of k0 and uzl (moreover, it can be 
shown that these parameters are not very sensitive). However, the 

Tab. 3 Summary table with the best sets of parameters obtained for the calibration of the original and generated data (for both halves of the 
record). The last two columns show the range in the parameter space in which a particular parameter was searched. 

Parameter Calib. Orig. Calib per. 1 Calib. Per. 2 Lower bound. Upper bound.
fc 162.6 164.585 162.018 100 400
rc 1.003 1.026 1.023 0 4
uzl 10.174 14.432 30.859 10 40

tempRain 7.422 7.197 7.204 1 10
tempMelt -1.521 -1.524 -1.529 -5 2
tempSnow -8.974 -8.765 -8.756 -10 0

ddf 0.757 0.757 0.755 0 3
perc 2.670 2.672 2.713 1 4
lpe 0.504 0.519 0.517 1 1
k0 48.56 7 27.924 18.677 1 50
k1 4.192 4.175 4.017 1 30
k2 22.798 22.808 22.897 10 100

maxbas 3 3 3 1 6
NS 0.826 0.802 0.858
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variability of the two parameter sets is different: one set is closer to 
the ideal values and has a lower variability, and the second is less 
acceptable. This indicates that for successful model calibration, 
much more attention may need to be given to the choice of the 
calibration period than is generally expected. As a practical result, 
we could also say that the calibration procedure of the Hron model 
used would work satisfactorily when a conducting large number of 
calibrations; in general, we did not manage to calibrate the model 
on itself in one run.
This paper also shows some of the shortcomings of the calibration 
process that should be focused on in further studies and in the 

development of a model. The fact that not all the model parameters 
are sensitive could be considered, and attempts should be undertaken 
to reduce the number of calibrated parameters. This could be done 
by doing a sensitivity analysis of all the model parameters, which 
will be the goal of the next paper.
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