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ABSTRACT

Most of the studies that assess the performance of various calibration techniques have to 
deal with a certain amount of uncertainty in the calibration data. In this study we tested 
HBV model calibration procedures in hypothetically ideal conditions under the assumption 
of no errors in the measured data. This was achieved by creating an artificial time series 
of the flows created by the HBV model using the parameters obtained from calibrating the 
measured flows. The artificial flows were then used to replace the original flows in the 
calibration data, which was then used for testing how calibration procedures can reproduce 
known model parameters. The results showed that in performing one hundred independent 
calibration runs of the HBV model, we did not manage to obtain parameters that were 
almost identical to those used to create the artificial flow data without a certain degree of 
uncertainty. Although the calibration procedure of the model works properly from 
a practical point of view, it can be regarded as a demonstration of the equifinality principle, 
since several parameter sets were obtained which led to equally acceptable or behavioural 
representations of the observed flows. The study demonstrated that this concept for 
assessing how uncertain hydrological predictions can be applied in the further development 
of a model or the choice of calibration method using artificially generated data.
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INTRODUCTION

Conceptual	rainfall-runoff	models	are	simplifications	of	the	complex	
processes	 of	 runoff	 generation	 in	 a	catchment.	 The	 particular	
components	of	these	models	often	have	to	be	described	by	empirical	
functions	based	on	the	observation	of	certain	processes.	The	models	
therefore	 usually	 contain	 a	number	 of	 parameters	 that	 do	 not	
represent	 directly	measurable	 entities	 and	 thus	must	 be	 estimated	

through	 a	process	 known	 as	 model	 calibration.	 In	 the	 calibration	
process	 the	 values	 of	 the	 parameters	 are	 gradually	 changed	 in	
order	to	adjust	the	behaviour	of	the	model	to	mimic	the	behaviour	
of	 a	real	 system.	The	 process	 therefore	 requires	measurements	 of	
a	catchment’s	behaviour,	 usually	 in	 terms	 of	 the	 inputs	 (rainfall)	
and	 the	 outputs	 (e.g.,	 the	 stream	 flow	 at	 the	 catchment’s	outlet).	
Calibration	 is	 a	crucial	 part	 of	 identifying	 a	model;	 therefore,	
a	relatively	 great	 deal	 of	 attention	 is	 dedicated	 to	 this	 problem	 in	
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the	literature,	which		leads	to	the	development	of	many	calibration	
procedures	(see,	e.g.,	Gupta	et	al.,	2005;	Vieux,	2004;	Beven,	2004;	
Wagener,	2004;	Kavetski	et	al.	2006a,b;	Onwubolu	and	Babu,	2004;	
Weise,	2009;	Rao,	2009).
Nowadays	a	hydrological	modeller	can	choose	from	a	large	number	
of	 optimization	 algorithms	 and	 objective	 functions	 (see,	 e.g.,	
Sorooshian	and	Dracup,	1980;	Sorooshian	et	al.,	1983;	Kavetski	et	
al.,	2003)	or	calibration	procedures	(for	a	review,	see	Klemes,	1986).	
The	testing	of	particular	optimization	algorithms	or	procedures	can	
be	peculiar	since	we	do	not	know	whether	 the	found	solution	(the	
set	of	parameters)	 is	a	local	or	global	maximum/minimum.	This	is	
mainly	due	to	the	fact	that	there	is	a	certain	amount	of	uncertainty	
in	 the	measured	 data	 and	model	 itself.	Moreover,	 in	 hydrological	
modelling	it	 is	an	acknowledged	fact	 that	 in	open	systems	a	given	
end	 state	 can	 be	 reached	 by	many	 potential	means	 and	 that	 there	
are	therefore	many	behavioural	models	of	the	same	system	(Beven,	
2004;	Gupta,	Beven	and	Wagener;	2005)	with	different	parameter	
sets	 leading	 to	 equally	 acceptable	 representations	 of	 the	 observed	
flows	(the	equifinality	principle,	Beven,	2004).	
In	 this	 study	 we	 decided	 to	 test	 the	 equifinality	 principle	 in	
idealised	 conditions	 with	 the	 calibration	 of	 a	lumped	 rainfall-
runoff	model.	 In	order	 to	 remove	all	 the	uncertainties	caused	by	
errors	 in	 the	data	and	the	 imperfect	model	structure,	an	artificial	
time	 series	 of	 flows	 was	 created	 with	 the	 model	 with	 a	known	
set	 of	 parameters,	 which	 replaced	 the	 measured	 flows	 in	 the	
calibration.	 By	 doing	 this	 we	 expected	 to	 know	 the	 values	 of	
particular	 parameters	 which	 would	 lead	 to	 a	global	 optimum.	
The	 calibration	 of	 the	 model	 using	 artificial	 data	 was	 then	
performed	using	a	split	 sample	 test	by	splitting	 the	 input	dataset	
into	two	halves,	each	of	them	calibrated	separately.	One	hundred	
calibration	runs	were	performed	with	the	goal	of	recalibrating	the	
model	to	its	own	known	output	and	estimating	the	uncertainties	in	
the	model	parameters.

1. METHODOLOGY

1.1 The rainfall runoff model

The	Hron	 rainfall	 runoff	model,	which	 is	 a	modified	HBV	model,	
was	used	here	in	a	daily	step	(Bergstrom,	1976;	1992).	The	model	
requires	 the	following	 input	data:	daily	 temperatures,	precipitation	
and	daily	potential	evapotranspiration,	which	can	also	be	calculated	
using	an	index	of	the	duration	of	the	sunshine.	The	structure	of	the	
model	can	be	divided	into	the	following	three	components:
•	 snow	submodel,
•	 soil	submodel,
•	 runoff	submodel.

The	main	task	of	the	snow	submodel	is	to	simulate	snow	accumulation	
and	melting	in	the	catchment,	which	is	done	by	using	a	very	simple	
degree-day	 factor	 method.	 This	 method	 does	 not	 require	 a	large	
amount	 of	 input	 data.	 Despite	 this,	 by	 using	 this	method	we	 can	
get	comparable	results	with	those	obtained	using	advanced	energy-
based	models	(Turcan,	1982;	Beven	and	Freer,	2001).
The	soil	submodel	represents	part	of	 the	hydrological	cycle	which	
occurs	 under	 the	 soil’s	surface.	 It	 includes	 various	 parts	 of	 the	
hydrological	cycle,	such	as	the	infiltration	of	precipitation	and	melted	
snow	from	the	soil	surface	to	deeper	soil	layers,	the	distribution	and	
accumulation	 of	 water	 in	 the	 soil	 layers,	 evapotranspiration,	 and	
the	 generation	 of	 the	 surface,	 subsurface	 and	 base	 flows.	 In	 the	
soil	submodel	the	various	soil	layers	are	represented	by	two	fictive	
reservoirs	representing	the	accumulated	soil	and	groundwater.
The	 runoff	 submodel	 is	 used	 to	 transform	 total	 runoff	 from	 the	
catchment	 comprising	 of	 the	 surface	 and	 subsurface	 runoffs	 and	
base	 flow.	As	 a	transformation	 function	 the	 model	 uses	 a	simple	
triangular	weighted	function,	which	can	be	written	as

where	maxbas	is	a	parameter	representing	the	total	number	of	days	
into	which	the	runoff	is	divided,	i={1,	2,	…,	maxbas},	and	q	is	the	
total	 runoff	 from	 the	whole	 catchment	 before	 any	 transformation.	
The	 triangular	 transformation	 function	 used	 in	 this	 study	 divides	
the	 runoff	 according	 to	 an	 equilateral	 triangle,	where	 the	 greatest	
part	 is	 allocated	 to	 the	middle	 day	 (Bergstrom,	 1976;	 1992).	The	
transformation	 function	 redistributes	 the	 total	 runoff	 into	 several	
days,	which	results	in	the	fact	that	a	certain	amount	of	precipitation	
falling	on	a	catchment	in	a	particular	day	affects	the	runoff	from	the	
catchment	for	more	than	one	day.
The	 Hron	 model	 used	 in	 this	 study	 has	 13	 parameters	 that	 are	
described	in	Tab.	1.

1.2 Model calibration of the measured data

The	 model	 parameters	 were	 estimated	 by	 automatic	 calibration	
using	two	approaches:	1)	genetic	algorithm	and	2)	harmony	search.	
Genetic	 algorithms	 (GA)	 belong	 to	 the	 family	 of	 evolutionary	
algorithms	which	are	based	on	techniques	that	imitate	evolutionary	
processes	 such	as	mutation,	natural	 selection,	 crossing	or	heredity	
in	 searching	 for	 the	 best	 result.	 The	 principle	 of	 GA	 is	 the	
gradual	creation	of	parameter	generations	comprising	one	or	more	
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populations	with	 various	 numbers	 of	 different	 individuals	 (in	 our	
case,	the	set	of	parameters).	At	the	beginning	of	the	first	generation	
a	set	of	random	individuals	(sets	of	parameters)	 is	generated	from	
which	some	individuals	(usually	one	or	 two)	are	directly	 included	
into	the	second	generation,	while	some	are	selected	for	mutation	and	
crossing.	The	rest	of	the	individuals	are	then	randomly	generated	to	
fill	the	number	of	individuals	in	the	next	generation.	This	procedure	
is	repeated	until	the	quality	of	the	best	individual	meets	the	required	
criteria	 or	 till	 the	 algorithm	 reaches	 the	 maximum	 amount	 of	
generations.	More	 about	genetic	 algorithms	can	be	 found,	 e.g.,	 in	
Sekaj	(2005)	or	Mitchell	(1996).
Harmony	 search	 methods	 (HS)	 are	 relatively	 new	 optimization	
algorithms	which	also	belong	to	the	group	of	evolutionary	algorithms.	
They	are	phenomenon-mimicking	algorithms	which	are	inspired	by	
the	improvisation	process	of	jazz	musicians.	HS	algorithms	exist	in	
many	specifications	 that	are	 suitable	 for	 solving	various	scientific	
or	 engineering	 problems.	 Here	 we	 give	 only	 the	 description	 of	
the	basic	 structure	of	 the	HS	algorithm.	The	optimization	process	
used	 in	 the	HS	algorithm	can	be	divided	 into	 the	following	steps:	
1)	problem	formulation,	2)	algorithm	parameter	setting,	3)	random	
tuning	 for	 memory	 initialization,	 4)	 harmony	 improvisation,	 5)	
memory	update,	6)	performance	of	termination	and	7)	the	cadenza.	
After	 the	formulation	of	 the	optimization	problem,	 the	parameters	
of	 the	HS	 algorithm	 itself	 have	 to	 be	 set.	The	 algorithm	 includes	
these	parameters:	harmony	memory	size	(HMS),	harmony	memory	
considering	 rate	 (HMCR),	 pitch	 adjusting	 rate	 (PAR),	 maximum	
improvisation	(MI)	and	fret	width	(FW).	In	the	third	step	a	number	
of	random	harmonies	(possible	solutions)	are	generated	from	which	
the	 top	 HMS	 harmonies	 (based	 on	 the	 value	 of	 the	 optimization	

function)	 are	 selected	 to	 fill	 the	 harmony	 memory	 (HM).	 In	 the	
harmony	 improvisation	 process	 new	HMS	harmonies	 are	 created,	
where	a	member	of	a	harmony	is	either	picked	from	within	the	value	
range	or	 is	 taken	from	the	HM	with	 the	probability	of	HMCR.	In	
the	latter	case	the	value	can	also	be	adjusted	(with	the	probability	of	
PAR)	by	adding	a	certain	amount	to	the	value.	If	the	new	harmony	is	
better	in	terms	of	objective	function	than	the	worst	harmony	stored	
in	 the	 HM,	 the	 new	 harmony	 replaces	 the	 worst	 harmony	 in	 the	
HM.	However,	it	is	also	important	to	take	into	account	the	diversity	
of	harmonies	in	HM	as	well	as	 the	maximum	number	of	 identical	
harmonies	 in	HM.	This	 process	 is	 repeated	 until	 the	HS	 satisfies	
the	termination	criteria,	when	the	HS	algorithm	that	returns	the	best	
harmony	is	stored	in	the	HM.	For	further	information	about	the	HS	
algorithm,	see,	Geem	(2009).
In	 both	 cases	 the	 Nash-Sutcliff	 (NS)	 coefficient	 was	 selected	 as	
an	 optimization	 criterion	 (Nash	 and	 Sutcliffe,	 1970).	 The	 NS	
coefficient	was	calculated	using	the	following	formula

where	Qsim	 and	Qobs	 represent	 the	 simulated	 and	 observed	 flows,	
respectively,	and	Qobs	is	the	average	of	the	observed	flow.	The	NS	
coefficient	can	obtain	values	between	-	∞	and	1,	where	1	represents	
an	absolute	compliance	between	the	observed	and	calibrated	data.
Both	 calibration	 methods	 were	 used	 to	 run	 100	 independent	
calibrations	 using	 the	 original	 measured	 input	 data.	 The	 initial	
starting	 values	 of	 the	 parameters	 were	 generated	 randomly	 from	
a	uniform	 distribution	 based	 on	 the	 range	 of	 admissible	 values	

Tab. 1 Description of the Hron model parameters together with their upper and lower limits.
Parameter Description and units Range 

fc field capacity	–	represents	the	maximum	amount	of	water	that	the	upper	part	of	the	soil	can	hold	[mm] 100	-	400
rc coefficient	influencing	the	amount	of	water	contributing	to	the	soil	moisture	and	the	upper	reservoir	[-] 0.1	-	4
uzl upper zone limit	–	threshold	value	determining	the	occurrence	of	surface	runoff	q0	[mm] 10	-	40

tempRain threshold	temperature	above	which	the	entire	precipitation	is	liquid	[°C] 0.5	-	10
tempMelt threshold	temperature	determining	the	start	of	the	snow	melting	[°C] -5	-	2
tempSnow threshold	temperature	under	which	the	entire	precipitation	is	solid	[°C] -10	-	0

ddf degree-day factor	–	determines	the	speed	of	the	snow	melting	[mm] 0	–	3
perc percolation	–	the	amount	of	water	percolating	from	the	upper	to	the	bottom	reservoir	[mm] 0.5	–	4
lpe limit of potential evapotranspiration	–	used	to	estimate	the	potential	evapotranspiration	[-] 0.5	–	1

k0
k1
k2

empirical	parameters	influencing	the	surface	(q0),	subsurface	(q1)	and	base	(q2)	flows	[-]
1	–	50
1	–	30
10	–	100

maxbas parameter	determining	the	amount	of	days	into	which	the	catchment	runoff	is	divided 1	-	6
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(see	Tab.	1).	The	initial	conditions	of	the	model	in	the	terms	of	the	
values	of	 snow	water	 equivalent	 (swe),	 storage	 in	 the	upper	 zone	
(suz),	 storage	 in	 the	 lower	zone	(slz)	and	soil	moisture	 (sm)	were	
set	to	the	following	values:	swe	=	80,	suz	=	15,	slz	=	60	and	sm	=	
40.	In	the	case	when	as	the	calibration	period	was	used	the	second	
half	of	the	data	the	starting	values	were	taken	from	the	previous	day.	
The	values	 in	 the	previous	day	were	calculated	using	 the	best	 set	
of	parameters	when	calibrating	on	the	whole	dataset	using	genetic	
algorithm	 and	 harmony	 search	 optimization	 algorithms.	 The	 NS	
coefficients	 were	 calculated	 for	 each	 calibration	 run	 and	 used	 to	
produce	 box	 plots	 showing	 their	 distribution	 for	 both	 algorithms.	
Based	on	 the	 assessment	 of	 the	 box	plots,	 the	 algorithm	with	 the	
better	overall	performance	was	selected	and	used	in	the	next	stages	
of	the	study.

1.3 Generation of artificial data for testing the model

In	 this	 study	 we	 suggest	 applying	 the	 equifinality	 principle	 for	
evaluating	the	performance	of	the	model	calibration	procedure	with	
respect	to	the	uncertainties	of	the	parameters.	In	order	to	remove	all	
uncertainties	caused	by	errors	in	the	data	and	the	imperfect	model	
structure	from	the	calibration,	an	artificial	time	series	of	flows	was	
created	 with	 the	 Hron	 model	 using	 a	known	 set	 of	 parameters.	
This	 replaced	 the	 measured	 flows	 in	 the	 calibration	 data	 set.	 By	
doing	 this	we	expect	 to	 exactly	know	 the	values	of	 the	particular	
parameters	of	the	system	and	have	the	perfect	model	of	the	system.	
We	also	expect	 that	an	efficient	calibration	procedure	 should	 lead	
to	a	global	optimum	and	arrive	at	the	set	of	the	known	parameters.	
The	best	set	of	parameters	(in	terms	of	the	NS	coefficient)	out	of	the	
set	of	100	calibrations	produced	using	both	optimization	algorithms	
was	 subsequently	 used	 to	 calculate	 the	 simulated	 runoff	 from	 the	
catchment	for	the	artificial	runoff	series.	Hereinafter	this	new	input	
file,	with	the	replaced	observed	and	simulated	flows,	is	referred	to	
as	the	generated	data.

The	 calibration	 of	 the	 model	 using	 the	 generated	 data	 was	 then	
performed	 separately	 on	 the	 two	 halves	 of	 the	 input	 dataset.	One	
hundred	 calibration	 runs	 were	 performed	 on	 both	 sets	 with	 the	
goal	 of	 recalibrating	 the	 model	 to	 its	 own	 known	 output.	 The	
uncertainties	in	the	estimated	model	parameters	were	evaluated.

2. DATA

As	a	pilot	basin	for	the	case	study,	we	used	the	Upper	Hron	River	
catchment	(the	catchment	outlet	at	the	city	of	Banska	Bystrica)	with	
an	area	of	1766.48	km2	and	an	altitude	ranging	from	340	to	2043	
m.a.s.l.	 (the	 average	 altitude	 is	 805	m.a.s.l.).	 The	 average	 annual	
precipitation	rate	for	the	whole	catchment	is	800	mm,	while	in	the	
lower	parts	of	the	catchment	it	is	600	mm,	and	goes	up	to	1600	mm	
in	 the	 upper	 parts.	 The	 average	 annual	 evapotranspiration	 ranges	
from	300	to	600	mm.
Input	data	in	a	daily	step	in	the	period	between	1	January	1981	and	
31	December	2000	was	used	in	this	study.	The	input	data	consisted	
of	 (1)	 average	 daily	 flows	 in	 the	 River	 Hron	 –	 Banska	 Bystrica	
section,	 (2)	 average	 daily	 temperatures	 in	 the	 catchment,	 (3)	 the	
catchment’s	average	daily	precipitation	rate,	and	(4)	an	index	of	the	
duration	 of	 sunshine	 for	 each	month.	 Fig.	 1	 shows	 the	measured	
flows	 together	 with	 the	 corresponding	 precipitation	 during	 the	
whole	period.

3. RESULTS AND DISCUSSION

The	 calibration	 of	 the	 model	 for	 the	 measured	 time	 series	 was	
performed	 using	 two	 optimization	 algorithms:	 HS	 and	 GA	 with	
the	 NS	 coefficient	 as	 the	 optimisation	 criterion.	 One	 hundred	
independent	 calibrations	 were	 performed	 with	 both	 algorithms.	
Fig.	2	shows	a	comparison	of	 the	performance	of	both	algorithms	

Fig. 1 The observed flows together with corresponding average precipitation of the catchment in the Upper Hron River catchment in the 
period between 1981 and 2000.
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in	terms	of	the	variability	of	the	NS	coefficient	values	obtained.	It	
shows	 that	both	algorithms	gave	almost	 identical	 results,	with	 the	
GA	performing	marginally	better	and	also	supplying	the	best	set	of	
parameters	with	the	highest	NS	coefficient.	We	have	also	produced	
box	plots	comparing	variations	in	the	particular	parameters	obtained	
by	the	GA	and	HS	algorithms.	These	plots	are	displayed	in	Fig.	3	
and	show	that	the	variations	of	the	particular	parameters	are	similar	
in	 both	 cases	 (GA	 and	 HS).	 The	 parameters	 with	 relatively	 high	
variations	 such	 as	 k0	 or	 uzl	 are	 those	 that	 are	 not	 very	 sensitive	
and	therefore	do	not	have	a	substantial	effect	on	the	quality	of	the	
simulation.	This	plot	can	also	be	regarded	as	an	illustration	of	 the	
equifinality	principle,	which	not	only	shows,	that	there	is	no	unique	
parameter	 set,	 but	 also	 demonstrates,	 that	 different	 optimisation	
methods	 may	 not	 supply	 equal	 sets	 of	 parameters	 and	 that	 these	
also	differ	in	their	variability	(despite	using	the	same	optimisation	
criterion).	This	 fact	has	consequences	for	 the	practical	application	
of	rainfall-runoff	models	and	the	uncertainties	associated	with	their	
predictions.
Despite	the	fact	that	both	optimization	algorithms	gave	very	similar	
results,	 the	GA	was	preferred	for	further	simulations,	even	though	
it	did	not	prove	to	be	computationally	more	effective	with	the	Hron	
model.	The	best	set	of	parameters,	 in	 terms	of	 the	NS	coefficient,	
was	selected	from	the	set	of	parameters	obtained	by	GA	(the	highest	
NS	was	0.826).	The	values	of	the	parameters	used	to	generate	the	
artificial	flows	are	listed	in	Tab.	2.
In	 the	 next	 part	 of	 this	 study	 the	 observed	 flows	 in	 the	 input	 file	
were	 substituted	 by	 the	 simulated	 flows.	This	 new	 input	 file	was	
then	 used	 to	 test	 the	 performance	 of	 the	 calibration	 algorithm	 of	
the	Hron	model	with	 the	expectation	 that	 the	algorithm	should	be	
able	to	obtain	the	same	set	of	parameters	repeatedly	with	the	values	
of	the	NS	coefficient	very	close	to	1	(a	perfect	fit).	In	order	to	test	
the	influence	of	the	calibration	period	on	the	results,	the	‘generated	
data’	was	split	into	two	parts,	and	each	one	was	separately	used	for	

calibrating	 the	model.	The	 results	 of	 the	 calibration	 are	 shown	 in	
Fig.	4	and	Tab.	3.
Fig.	 4	 illustrates	 the	 variability	 of	 particular	 parameters	 after	
100	calibrations	using	GA,	whereas	black	 the	box	plots	 in	Fig.	
4	 represent	 the	 results	 obtained	when	 calibrating	 the	 first	 half	
of	 the	dataset	and	 the	white	boxes	 the	second	half.	The	figures	
show	 that	 the	 variability	 of	 all	 the	 parameters	 is	 substantially	
higher	 in	 the	 first	 case,	where	 the	 parameters	perc,	 k1,	 k2	 and	
lpe	 especially	 take	 the	 values	 from	 within	 the	 larger	 part	 of	
their	 range.	 The	 large	 degree	 of	 the	 variability	 of	 a	particular	
parameter	usually	indicates	its	insensitivity	and	thus	its	inability	
to	substantially	influence	the	quality	of	the	simulation.	The	black	
box	plots	in	Fig.	4	would	suggest	that	the	insensitive	parameters	
are	perc,	k1,	k2	and	lpe	and	that	the	very	sensitive	ones	are	fc,	rc	
and	ddf.	However,	these	results	could	not	be	confirmed	with	the	
outputs	from	the	calibration	of	the	second	half	of	the	data,	where	
all	of	the	parameters	show	a	very	small	degree	of	the	variability	
(white	box	plots).

Fig. 2 Comparison of the variability of NS coefficients for 100 
calibrations using GA and HS.

Tab. 2 The Hron model parameter set used for generating the 
artificial flows f or the model’s calibration.

Parameter Value

fc 162.6

rc 1.003

uzl 10.174

tempRain 7.422

tempMelt -1.521

tempSnow -8.974

ddf 0.757

perc 2.670

lpe 0.504

k0
k1
k2

48.567
4.192
22.798

maxbas 3
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Fig. 3 Comparison of the variability of the parameters of the Hron model for GA and HS optimization algorithms after 100 calibrations of 
the observed data and period between 1981 and 2000.
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Fig. 4 The variability of the parameters of the Hron model for the GA optimization algorithm after 100 calibrations of the artificial flows. 
The black box plots represent the results of the calibration obtained from the first calibrations period (from 1981 to 1990) and the white 
from the second period (from 1990 to 2000).
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4. CONCLUSIONS

When	calibrating	a	rainfall-runoff	model	most	of	 the	uncertainties	
come	 from	 two	 sources:	 the	model	 itself,	which	 is	 caused	 by	 the	
simplifications	 of	 the	 very	 complex	 runoff	 generating	 process,	
and	 from	 errors	 in	 the	 measured	 data,	 which	 are	 mainly	 caused	
by	 problems	 associated	 with	 the	 temporal	 and	 spatial	 variability	
of	the	measured	variables.	Moreover,	it	has	been	repeatedly	stated	
in	 the	 literature	 that	 the	 potential	 for	multiple	 acceptable	models	
(behavioural	models)	 as	 representations	of	hydrological	 and	other	
environmental	 systems	 (the	 equifinality	 thesis)	 should	 be	 given	
more	serious	consideration	when	calibrating	models	than	has	been	
done	until	the	present	(e.g.,	Beven,	2004).
In	 this	paper,	 a	version	of	a	lumped	HBV	model	developed	at	 the	
Department	 of	 Land	 and	 Water	 Resources	 Management	 at	 the	
Faculty	of	Civil	Engineering	of	the	Slovak	University	of	Technology	
in	 Bratislava	 was	 tested	 in	 order	 to	 assess	 the	 effectiveness	 of	
currently	used	parameter	estimation	techniques.
As	a	case	study	we	used	the	Upper	Hron	catchment	until	the	Banska	
Bystrica	 station,	 which	 gave	 us	 20	 years	 of	 daily	 observed	 data	
between	1	January	1981	and	31	December	2000.
In	the	first	calibration	exercise	the	model	was	calibrated	100	times	
with	the	whole	dataset	using	two	calibration	algorithms:	Harmony	
Search	and	a	Genetic	Algorithm.	The	results	of	 the	calibration	are	
displayed	in	Fig.	2.	These	show	that	both	of	the	calibration	algorithms	
performed	 similarly,	 with	 most	 of	 the	 calibrations	 achieving	 the	
values	of	 the	NS	coefficient	 close	 to	0.82.	Fig.	 3	 also	 shows	 that	
even	though	variations	in	the	parameters	may	look	similar	in	both	
cases,	 there	 are	 differences	 (in	 some	 cases	 significant)	 in	 their	

range.	These	results	can	be	seen	as	a	demonstration	of	equifinality	
across	 the	 optimisation	methods	 applied.	They	 also	 show	 that	 an	
assessment	 of	 the	 uncertainty	 of	 a	parameter	 from	 applying	 this	
principle	 may	 also	 be	 dependent	 on	 the	 particular	 optimisation	
method	 used	 and	 should	 be	 considered	 in	 serious	model	 building	
and	uncertainty	assessment	studies.
Since	the	main	objective	of	this	study	was	to	assess	the	calibration	
procedure	 of	 the	Hron	model,	we	decided	 to	 place	 ourselves	 into	
ideal	 conditions	where	 the	measurement	 errors	 and	 imperfections	
of	 the	model	 are	 not	 present.	 This	 was	 achieved	 by	 constructing	
an	 artificial	 generated	 time	 series	 of	 flows,	which	was	 then	 used	
to	 replace	 the	 observed	 flows	 in	 the	Hron	model’s	input	 file.	The	
artificial	time	series	of	the	simulated	flows	was	constructed	with	the	
Hron	model	using	the	best	parameter	set	from	the	first	calibration	
exercise.	 In	 doing	 this	 we	 expected	 to	 achieve	 the	 same	 set	 of	
parameters	which	were	used	to	generate	the	data	and	hoped	that	we	
could	exactly	reconstruct	these	data.
For	the	second	calibration	experiment,	the	model	was	calibrated	100	
times	using	only	the	GA	alternatively	on	two	equally	long	halves	of	
the	generated	dataset.	The	results	of	these	calibrations	are	displayed	
in	Fig.	 4.	The	best	 sets	 of	parameters	 are	 listed	 in	Tab.	3.,	which	
shows	 the	values	of	 the	NS	coefficient	 a	being	very	 close	 to	1	 in	
both	calibrations.
From	a	theoretical	point	of	view,	the	results	from	both	datasets	again	
exhibited	equifinality	and	also	 indicate	 that	 the	properties	of	both	
calibration	datasets	played	a	significant	role.	The	values	of	the	best	
parameters	are	very	similar	to	those	used	to	construct	the	artificial	
flows	with	 the	 two	 exceptions	of	k0	 and	uzl (moreover,	 it	 can	be	
shown	that	 these	parameters	are	not	very	sensitive).	However,	 the	

Tab. 3 Summary table with the best sets of parameters obtained for the calibration of the original and generated data (for both halves of the 
record). The last two columns show the range in the parameter space in which a particular parameter was searched. 

Parameter Calib. Orig. Calib per. 1 Calib. Per. 2 Lower bound. Upper bound.
fc 162.6 164.585 162.018 100 400
rc 1.003 1.026 1.023 0 4
uzl 10.174 14.432 30.859 10 40

tempRain 7.422 7.197 7.204 1 10
tempMelt -1.521 -1.524 -1.529 -5 2
tempSnow -8.974 -8.765 -8.756 -10 0

ddf 0.757 0.757 0.755 0 3
perc 2.670 2.672 2.713 1 4
lpe 0.504 0.519 0.517 1 1
k0 48.56	7 27.924 18.677 1 50
k1 4.192 4.175 4.017 1 30
k2 22.798 22.808 22.897 10 100

maxbas 3 3 3 1 6
NS 0.826 0.802 0.858
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variability	of	the	two	parameter	sets	is	different:	one	set	is	closer	to	
the	ideal	values	and	has	a	lower	variability,	and	the	second	is	 less	
acceptable.	 This	 indicates	 that	 for	 successful	 model	 calibration,	
much	 more	 attention	 may	 need	 to	 be	 given	 to	 the	 choice	 of	 the	
calibration	period	than	is	generally	expected.	As	a	practical	result,	
we	could	also	say	that	the	calibration	procedure	of	the	Hron	model	
used	would	work	satisfactorily	when	a	conducting	large	number	of	
calibrations;	 in	general,	we	did	not	manage	to	calibrate	 the	model	
on	itself	in	one	run.
This	paper	also	shows	some	of	the	shortcomings	of	the	calibration	
process	 that	 should	 be	 focused	 on	 in	 further	 studies	 and	 in	 the	

development	of	a	model.	The	fact	that	not	all	the	model	parameters	
are	sensitive	could	be	considered,	and	attempts	should	be	undertaken	
to	reduce	the	number	of	calibrated	parameters.	This	could	be	done	
by	doing	a	sensitivity	analysis	of	all	 the	model	parameters,	which	
will	be	the	goal	of	the	next	paper.
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