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a b s t r a c t

Wireless sensor networks (WSNs) are becoming fundamental components of modern control systems
due to their flexibility, ease of deployment and low cost. However, the energy-constrained nature of
WSNs poses new issues in control design; in particular the discharge of batteries of sensor nodes, which
is mainly due to radio communications, must be taken into account. In this paper we present a novel
transmission strategy for communication between controller and sensors which is intended to minimize
the data exchange over the wireless channel. Moreover, we propose an energy-aware control technique
for constrained linear systems based on explicit model predictive control (MPC), providing closed-loop
stability in the presence of disturbances. The presented control schemes are compared to traditional MPC
techniques. The results show the effectiveness of the proposed energy-aware approach, which achieves
a profitable trade-off between energy savings and closed-loop performance.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The wireless sensor network (WSN) is an emerging technology
for collecting large amounts of measurement data that were
previously cost prohibitive. By deploying a large number of
cheap, small, and low-consumption sensors equipped with radios,
wireless sensing in automation aims at reducing the costs of
cabling and their maintenance due to wear and tear. Another
advantage of WSNs is the possibility of rapidly reconfiguring the
communication infrastructure in case of failures or additions of
new components (Akyildiz, Su, Sankarasubramaniam, & Cayirci,
2002).

On the other hand, compared to standard wired sensors WSNs
pose new challenges for control design, such as energy consump-
tion and channel reliability issues. While some interesting work
has been done for the latter, such as modeling packet dropouts
and addressing time delays (Antsaklis & Baillieul, 2004; Kumar,
2001; Sinopoli, Sharp, Schenato, Schaffert, & Sastry, 2003), energy-
aware control is still a rather openproblem. Energy budget is highly
constrained tomaximize the expected lifetime of battery-operated
sensor nodes, therefore preventing frequent cumbersome and ex-
pensive maintenance for replacing batteries. These considerations
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motivate the need of developing new control techniques that,
aware of communication and power consumption aspects of the
wireless nodes, ensure an optimized controller-sensor operation.

In a wireless device the radio chip is the primary source of
energy consumption, hence radio usage must be minimized to
achieve a satisfactory network lifetime (Raghunathan, Schurgers,
Park, & Srivastava, 2002; Schurgers, 2002). In recent years some
work was done for addressing the energy problem from the point
of view of both the communication network and the system archi-
tecture, i.e., by proposing consumption-efficient routing protocols
(Jones, Sivalingam, Agrawal, & Chen, 2004; Rajendran, Obraczka, &
Garcia-Luna-Aceves, 2006) or dynamic power management tech-
niques (Akkaya & Younis, 2005; Raghunathan, Pereira, Srivastava,
& Gupta, 2005).

In this paper we address the issue from the complementary
angle of control design. We focus on control systems where
feedback is provided by a WSN. Previous works related to this
topic include (Walsh & Hayes, 2007), where a properly tuned
control law is designed to achieve real-time regulation of the
network transmission rate, and (Quevedo, Ahlén, & Goodwin,
2008), where a predictive controller is proposed to optimize the
trade-off between power transmission and systemperformance, as
a function of the wireless channel estimated reliability. Moreover,
communication between controller, sensors and actuators under
nominal conditions is addressed in Zhang, Chen, and Chen (2007),
where the authors present a network transmission strategy,
model the networked plant as a mixed logical dynamical (MLD)
system (Bemporad & Morari, 1999), and formulate a nominal
control problem based on mixed-integer programming (MIP).
With respect to this work, we wish to avoid the need of on-
line MIP solver to avoid excessive computation complexity, and
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to improve system performance by exploiting two-way channel
communications.

We take into account a few key aspects to obtain effective
energy savings. First, we consider the energy costs of both
transmitting and receiving packets, which are usually very similar
(Feeney & Nilsson, 2001; Moteiv Corporation, 2006). Second, we
avoid idle listening as much as possible, i.e., the radio chip of
the sensor is completely turned off when no incoming packet
is expected (Raghunathan et al., 2002). Finally, as common
wireless protocols have a relatively large fixed cost due to
communication overheads (Feeney & Nilsson, 2001), although a
single measurement acquisition can be stored in few bytes, the
transmission of small packets has a disproportionately high energy
price compared to transmitting entire sets of measurements. As
a consequence, transmitting n measurements, for small n, costs
almost as transmitting a single measurement.

By considering the above aspects, we address the energy
problem of WSNs together with the optimal control of the global
networked process. The main idea is to develop a network
transmission strategy wheremeasurements are transmitted to the
controller only when necessary, and to design a control scheme
aware of that transmission strategy, in order to allow a substantial
reduction of radio usage without excessively sacrificing closed-
loop performance. In our framework we assume the use of
wireless sensorswithin ‘‘Class 2—Closed-loop supervisory control’’
of the taxonomy of the ISA-SP100 standard2 where information
availability is often not safety-critical. Accordingly, we idealize
the wireless communication channel, neglecting packet dropouts
and delays, under the assumption that latency and jitter issues
(due for instance to packet retransmission after a dropout) are not
critical. Taking into account such practical aspects of real wireless
networks is beyond the scope of this work; a discussion on the
extension of the presented results to the case of real networks
with delays and packet loss is given in Section 4.1. A preliminary
version of this paper has appeared in Bernardini and Bemporad
(2008, 2009).

The paper is organized as follows. We start in Section 2
by describing the wireless communication strategy intended
to minimize transmissions. Two cases are addressed: first, in
Section 2.1, we consider noiseless state feedback, where a single
wireless node, possibly embedding several on-board sensors, is
in charge of closing the control loop. Then, in Section 2.2, we
extend the approach to the case of uncertain state measurements,
where feedback is provided by a wireless network formed by a
remote controller and a short range WSN, where several sensors
measure the same physical quantities to improve disturbance
rejection. For this case, in Section 3 we propose a control solution
based on explicit MPC that accounts for the transmission strategy
and guarantees convergence and constraints satisfaction. Finally,
results of closed-loop simulations are reported in Section 4, and
conclusions are drawn in Section 5.

Notation

In this manuscript, In is the n × n identity matrix and 0n is the
null vector of Rn. Given a vector x ∈ Rn and a matrix Q ∈ Rn×n, xT
denotes the transpose of x, λi(Q ), i = 1, . . . , n, are the eigenvalues
of Q , and ‖Qx‖∞ , maxi∈{1,...,n} |(Qx)i|, where (Qx)i denotes the i-
th element ofQx. Given two setsA andB, hull{A, B} is the convex
hull of A ∪ B, A ⊕ B , {a + b : a ∈ A, b ∈ B} is the Minkowski
sum of A and B, and d(x, A) , infy∈A ‖x − y‖ is the distance of x
form A. N is the set of natural numbers including zero.

2 ISA-SP100.14 Wireless Networks Optimized for Industrial Monitoring, 2006,
http://www.isa.org/filestore/ISASP100_14_CFP_14Jul06_Final(2).pdf.
Fig. 1. Control loop scheme with feedback from a single wireless node.

2. Energy-aware transmission strategy

2.1. Exact feedback from a single wireless node

Consider a control loop where a single node, which possibly
embeds several sensors, collects and transmits measurements to a
controller through awireless channel. The controller computes the
input signals and delivers them to the actuation device through a
wired channel (see Fig. 1). The controlled process ismodeled by the
discrete-time linear system

x(k + 1) = Ax(k) + Bu(k) + w(k) (1)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the input, w(k) ∈ W is
an additive disturbance, and k ∈ N is the time index. W ⊂ Rnx is
a given polytope containing the origin. State and input vectors are
subject to the constraints

x ∈ X, u ∈ U, (2)

where X, U are polyhedra containing the origin in their interior.
We assume that full state measurements are collected at every
time step by nx sensors embedded in a single wireless node. We
define the following transmission strategy: At time step k, the
wireless sensor node transmits the measurement

x(k) = [x1(k), x2(k), . . . , xnx(k)]
T

to the controller if and only if

∃i ∈ {1, 2, . . . , nx} : |xi(k) − x̂i(k)| > εi (3)

where ε = [ε1, ε2, . . . , εnx ]
T is a vector of threshold values εi ≥ 0

for every component of the state x. More compactly, condition (3)
can be expressed by using a binary variable δ(k)

[δ(k) = 1] ↔ [x(k) − x̂(k) ∉ E]

where E , {x ∈ Rnx : |xi| ≤ εi, i = 1, 2, . . . , nx} is the
box defined by the threshold vector ε, and x̂(k) is a prediction
of the measured value x(k) precalculated by the controller and
transmitted beforehand to the wireless node. Predictions are
updated in a two-way communication, as follows: when δ(k) = 1
the sensor transmits themeasurement x(k) to the controller,which
computes a set ofM updated predictions

{x̂(k + j)}Mj=1 = {x̂(k + 1), x̂(k + 2), . . . , x̂(k + M)},

and transmits them to the sensor. Moreover, if the controller does
not receive any measurement forM time steps, i.e.,

δ(k) = δ(k − 1) = · · · = δ(k − M + 1) = 0,

a one-way communication from controller to sensor node takes
place to sendM updated predictions {x̂(k+ j)}Mj=1, computed using
x̂(k) as an estimation of the current state x(k). We refer toM as the
estimation horizon and to {x̂(k + j)}Mj=1 as the prediction buffer.

Although the above network transmission strategy is intro-
duced here for linear systems, it is very general and can be im-
plemented in a wide set of scenarios, since the predictions x̂ can
be calculated with any estimation technique depending on the ap-
plication at hand. The threshold ε is an important tuning knob of

http://www.isa.org/filestore/ISASP100_14_CFP_14Jul06_Final(2).pdf
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Fig. 2. Control loop scheme with feedback from multiple wireless nodes.

the approach, as it trades off closed-loop performance versus traf-
fic over the wireless channel. Note that the threshold logic (3) al-
lows one to gather information on measured variables even when
no measurement is received: if δ(k) = 0, then x(k) ∈ E ⊕

{x̂(k)}. In other words, from the controller’s point of view a non-
measurement is a set-valuedmeasurement and,with an opportune
choice of ε, this can be usefully exploited in set-membership esti-
mation algorithms, as detailed in Section 2.2.1.

The value of the estimation horizon M must be chosen accord-
ing to a trade-off between energy consumption and reliability of
predictions. In fact, due to the presence of disturbances, the ac-
curacy of the predicted state values decreases with the horizon
length, i.e., if δ(k) = δ(k + 1) = · · · = δ(k + j) = 0, the dif-
ference |xi(k + j) − x̂i(k + j)|, in general, is likely to grow with
j ∈ {0, 1, . . . ,M − 1}. Hence, an overly largeM will lead to unnec-
essary transmissions of useless far-in-the-future predictions, that
will be discarded by the sensor node because of (3).

A notable consequence of the proposed transmission strategy is
that idle listening is almost completely avoided. In fact, assuming
clock synchronization between the sensor node and the remote
controller, the sensor node can wake up its radio chip only when a
communication (of updated predictions) is expected to come.

2.2. Noisy feedback from multiple wireless nodes

In this section we extend the results of Section 2.1 to the case
of noisy state measurements. We consider a control loop where
feedback is provided by a wireless network with several sensor
nodes, where every node collects a noisy measurement of the
state vector (see Fig. 2). Redundancy is exploited here in order to
mitigate output measurement errors. Sensor nodes communicate
among them using low power (short-range) transmissions, and
determine whether to send the measurement to the remote
controller (and which value to send) by means of an estimation
algorithm.

In the following we consider a system of the form (1) subject to
state and input constraints (2), where we remove the hypothesis
of exact state feedback. Instead, we assume thatmeasurements are
provided by a localWSN ofm nodes, indexed by i = 1, . . . ,m, each
one measuring the state vector x(k). The current measurement
given by the i-th node is defined as

yi(k) = x(k) + vi(k) (4)

where vi
∈ V i is an unknown but bounded disturbance, and

V i
= {v ∈ Rnx : |vj| ≤ vi

j,max, j = 1, . . . , nx}. (5)
The vectors vi
max = [vi

1,max, . . . , v
i
nx,max], i = 1, . . . ,m, are

assumed to be known to every node. We define the transmission
strategy as follows.

At time step k let h = 1 +
 k

n


mod m


. We refer to the

h-th node as the master node. The positive integer parameter
n represents the number of consecutive time steps for which
the master node does not change. A short range communication
transmitting the value yi(k) takes place from all the nodes i ≠ h,
called slave nodes, to the master node. Once all the measurements
are delivered, the master node performs a simple set-membership
estimation by computing the box set

Y(k) =

m
i=1

Yi(k)

= {x : bj,min ≤ xj ≤ bj,max, j = 1, . . . , nx} (6)

where

bj,min = max
i∈{1,...,m}

yij(k) − vi
j,max (7a)

bj,max = min
i∈{1,...,m}

yij(k) + vi
j,max (7b)

and

Yi(k) = {x : |yi(k) − x| ≤ vi
max}, i = 1, . . . ,m, (8)

are all the feasible sets of states according to each node’s
measurements. Finally, the master node transmits Y(k) to the
controller through a long range wireless communication if and
only if there exists j ∈ {1, . . . , nx} such that

[bj,min − x̂j(k) < −εj] ∨ [bj,max − x̂j(k) > εj] (9)

where x̂(k) ∈ Rnx is a prediction of the current state value x(k), as
in Section 2.1. Condition (9) is equivalent to

Y(k) ⊈ E ⊕ {x̂(k)} (10)

where E = {x : |xj| ≤ εj, j = 1, . . . , nx}. We represent the
transmission condition (10) with [δ(k) = 1], where δ is a binary
variable.

Note that the predictions x̂ are exploited only by the current
master node. Let hk = 1 +

 k
n


mod m


and hk−1 = 1 + k−1

n


mod m


. At time k, if hk ≠ hk−1, then the hk−1-th node

(the previous master) is required to transmit, along with the
measurement, also the prediction buffer to the hk-th node (the
current master). We adopt a time-varying master node in order to
distribute long-range transmissions among all the sensor nodes, so
to have uniform battery discharge. Other scheduling policies may
be possible, for instance in case only one node is equipped with a
communication device for the wide-area network.

Here we assume that the m nodes are spatially close to each
other, so that the energy cost for a short range transmission is
very small with respect to a wide-area transmission, and the
communication activity between sensor nodes can be neglected.
However, it is easy to extend the approach by using a threshold
logic also for local transmissions, and having slave sensor nodes
send the measurements to the master only when they are
sufficiently far from a predicted value.

2.2.1. State estimation algorithm
Since the additive disturbance v affects the output (4) at every

time step, an exact state measurement is unavailable either if the
measurements have been transmitted or not. In the following we
present an algorithm to obtain an estimation of the true state value,
needed to compute the control action.
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Due to the transmission strategy (3), the state x(k) is always
subject to a known set-membership relation, regardless of the
master node’s decision to forward the data. In particular, we have

x(k) ∈


Y(k) if δ(k) = 1
E ⊕ {x̂(k)} otherwise. (11)

Hence, in the absence of packet dropouts, information on the
measured variables is gathered evenwhen no feedback is provided
(i.e., when δ(k) = 0). We propose to use an algorithm based on
set-membership estimation (Milanese&Vicino, 1991),which takes
into consideration (11) to reduce the uncertainty on the state.

Let Z(k|k) and Z(k + 1|k) be the sets of all the possible values
of the state x at time k and k + 1, respectively, given the feedback
information at time k. The setZ(k+1|k) is defined by the prediction
step
Z(k + 1|k) = AZ(k|k) ⊕ B{u(k)} ⊕ W (12)
and the set Z(k|k) is obtained with the correction step

Z(k|k) =


Z(k|k − 1) ∩ Y(k) if δ(k) = 1
Z(k|k − 1) ∩ (E ⊕ {x̂(k)}) otherwise. (13)

The estimation x̄(k|k) of the actual state x(k), given the feedback
information at time k, is defined as the centroid c of Z(k|k),
computed as

x̄(k|k) = c(Z(k|k)) ,
1
nz

nz−
i=1

zi (14)

where nz is the number of the vertices z1, z2, . . . , znz of Z(k|k).
This set-membership algorithm can lead to very complex rep-

resentations of Z (i.e., a high number of vertices). In order to
lower the computational burden and preserve the implementabil-
ity of the control scheme, in the simulations presented in Section 4
we use a sub-optimal estimation algorithm derived from Chisci,
Garulli, and Zappa (1996), where outbounding parallelotopes are
used to approximate the actual state set Z(k|k).

3. MPC control design

In this section we present a robust control scheme based on
explicit MPC and min–max optimization, suitable for handling
the wireless transmission strategy proposed in Section 2. We
focus on the multiple-node setup addressed in Section 2.2 for
brevity reasons, providing in Remark 6 comments on how to derive
analogous results for the single node case.

Motivated by the search for a good trade-off between closed-
loop performance and network transmission rate, we want to
design a robust controller for system (1), which guarantees
convergence of the state to the origin despite the disturbances
affecting the system. In the case of noisy state measurements
we have to deal with three sources of uncertainty: the additive
disturbancew, the feedback error due to the transmission strategy
(9), and the measurement noise vi, i = 1, . . . ,m. Due to the
presence of these persistent disturbances the state cannot be
directly regulated to the origin. Therefore, following the idea of
dual mode MPC (Scokaert & Mayne, 1998), we set up an outer
control mode, which drives the state x to a given set X0, and an
inner control mode which robustly keeps the state in X0. The set
X0 is assumed to be robust positively invariant with respect to
additive disturbances, as from the following definition (Blanchini,
1999; Blanchini & Miani, 2008).

Definition 1. The set X0 ⊆ Rn is robust positively invariant (RPI)
for a system of the form (1) if and only if ∀x(0) ∈ X0 and ∀w(k) ∈

W the solution x(k) ∈ X0, ∀k ∈ N.

3.1. Inner mode

The inner controlmode is based on a switching feedback control
law, defined in the following lemma.
Lemma 2. Let K ∈ Rnu×nx and Ac , A + BK be such that |λi(Ac)| <
1, ∀i = 1, . . . , nx. Let f (k) be an unknown but bounded disturbance
such that

f (k) ∈ W ⊕ {−BKhull{E, V}} (15)

with V ,
m

i=1 V i. Let X0 ⊆ X be an RPI set for the system

x(k + 1) = Acx(k) + f (k) (16)

such that KX0 ⊆ U. Let x be the state of (1)–(2) and (4) receiving
feedback according to (9), in closed-loop with

u(k) = Kx̄(k|k) (17)

where x̄(k|k) is defined as in (14). If x(k) ∈ X0, then x(k + t) ∈ X0,
for all t ∈ N.

Proof. By substituting (17) in (1) we obtain

x(k + 1) = Ax(k) + BK x̄(k|k) + w(k). (18)

The combination of (4) and (5) with the transmission logic (9) and
with the state estimation equations (12)–(14) imply

x(k) − x̄(k|k) ∈


V if δ(k) = 1
E otherwise (19)

and, conservatively,

x(k) − x̄(k|k) ∈ hull{E, V} (20)

for all δ(k) ∈ {0, 1}. Combining (18) and (20) we have

x(k + 1) ∈ {Acx(k)} ⊕ W ⊕ {−BK(x(k) − x̄(k|k))}
∈ {Acx(k)} ⊕ W ⊕ {−BKhull{E, V}}. (21)

Using (21) and (15), we have that system (18) is overapproximated
by (16), which is nominally stable by hypothesis. Being X0 RPI for
(16), it is RPI also for (18). Fulfillment of constraints (2) follows by
X0 ⊆ X and KX0 ⊆ U. �

We can use known results on RPI sets for linear systems to
design X0, see e.g. (Blanchini, 1999; Blanchini & Miani, 2008;
Kolmanovsky & Gilbert, 1998; Scokaert & Mayne, 1998).

3.2. Outer mode

To design the outer control mode we propose an algorithm
based on explicit model predictive control. MPC is widely spread
in industry for control design of highly complex multivariable
processes under constraints on input and state variables (Camacho
& Bordons, 2004; Maciejowski, 2002; Qin & Badgwell, 2003). The
idea behind MPC is to solve at each sampling time an open-loop
finite-horizon optimal control problembased on a given prediction
model of the process, by taking the current state of the process
as the initial state. Only the first sample of the sequence of future
optimal control moves is applied to the process. At the next time
step, the remainingmoves are discarded and a newoptimal control
problem based on new measurements is solved over a shifted
prediction horizon.

An alternative approach to evaluate the MPC lawwas proposed
in Bemporad, Morari, Dua, and Pistikopoulos (2002): rather then
solving the optimization problem on-line for the current state
vector, by employing techniques of multiparametric programming
the problem is solved off-line for all state vectors within a given
range, providing the explicit dependence of the control input on
the state and reference, which is piecewise affine (PWA) and
continuous (for a survey on explicit MPC the reader is referred to
Alessio & Bemporad, 2008; for industrial applications see, e.g., Di
Cairano & Tseng, 2010).
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In our framework, an explicit formulation of MPC is a natural
choice for many reasons: primarily, it can handle constraints and
can be formulated to achieve robust control in the presence of
disturbances. Moreover, it allows the cheap computation of the
prediction buffer {x̂(k + j)}Mj=1, by evaluating the future evolution
of a simple closed-loop PWA system.We present a scheme derived
frommin–max MPC (Bemporad, Borrelli, & Morari, 2003; Kerrigan
& Maciejowski, 2003; Scokaert & Mayne, 1998), where the goal is
to steer the state to a target set while minimizing a performance
index over the worst-case disturbance realization. The basic idea
of our approach is to include the knowledge of the transmission
strategy (9) in theMPC optimization problem, so that the dynamics
of the predicted state x̂ can be coherently modeled into the
optimizer.

Let {wℓ
k+j|k}

N−1
j=0 denote the ℓ-th sequence of disturbance

realizations over a prediction horizon of N steps given the state
estimation at time k, with ℓ ∈ L (for simplicity of notation, since
nowonwewill drop the subscript j=0 and superscript N−1). Further,
let {uℓ

k+j|k} denote the sequence of control moves associated with
the ℓ-th realization, and {xℓ

k+j|k} the corresponding predicted state
sequence. By ignoring the transmission strategy and assuming
exact state feedback at every sampling instant, the min–max MPC
problem at time k is expressed as in Scokaert and Mayne (1998)

min
{uℓ

k+j|k}
max
ℓ∈L

N−1−
j=0

L(xℓ
k+j|k, u

ℓ
k+j|k) (22a)

s.t. xℓ
k+j+1|k = Axℓ

k+j|k + Buℓ
k+j|k + wℓ

k+j|k, (22b)

xℓ
k+j|k ∈ X, (22c)

uℓ
k+j|k ∈ U, (22d)

xℓ
k+N|k ∈ XT , (22e)

xℓ1
k+j|k = xℓ2

k+j|k ⇒ uℓ1
k+j|k = uℓ2

k+j|k, (22f)

j = 0, . . . ,N − 1, ∀ℓ, ℓ1, ℓ2 ∈ L,

where N is the control horizon, (22b) is the dynamics equation,
(22c)–(22d) are the state and input constraints, (22e) is the target
set constraint, and (22f) is the causality constraint, which enforces
a single control input for each state, reducing the freedom on the
control sequence and making the control law independent of the
path taken to reach that state.

Assumption 3. The stage cost L(x, u) is convex over X × U and
such that

L(x, Kx) ≤ L(y, u), ∀x ∈ XT , ∀y ∉ XT , ∀u ∈ U (23a)

L(x, u) ≥ α(d(x, XT )), ∀x ∉ XT , ∀u ∈ U (23b)

where α is a K-function.

The following lemma shows constructively how Assumption 3
can be satisfied.

Lemma 4. Let X0 = {x ∈ Rnx : A0x ≤ b0}, A0 ∈ Rnr×nx , b0 ∈ Rnr .
For i = 1, 2, . . . , nr , let

c0,i = min
x,s

s (24a)

s.t. s ≥ ‖Qxx‖∞, (24b)

Ai
0x = bi0, (24c)

and define

c0 = min
i∈{1,2,...,nr }

c0,i (25)
with Ai
0 the i-th row of A0 and bi0 the i-th element of b0. Then the set

XT ,


x ∈ Rnx :

[
Qx

−Qx

]
x ≤ c0

[
1
1

]
(26)

is such that XT ⊆ X0, and the stage cost

L(x, u) = ‖Qxx‖∞ (27)

satisfies Assumption 3.

Proof. By (24)–(26) it follows that XT is the largest level set of
‖Qxx‖∞ such that XT ⊆ X0. By construction, ∀y ∉ XT , ‖Qxy‖∞ >
c0, since

∃i ∈ {1, 2, . . . , nx} : (Q i
xy > c0) ∨ (Q i

xy < −c0)

whereQ i
x is the i-th row ofQx, which proves (23a). Take d(y, XT ) =

infx∈XT ‖Qx(y − x)‖∞. As 0 ∈ XT , by definition of inf, d(y, XT ) ≤

‖Qx(y − 0)‖∞. By letting α(φ) = φ, (23b) follows. Hence,
Assumption 3 is satisfied. �

Note that the stage cost (27) is only used in the outer mode:
as soon as x(k) enters X0, a constant feedback control loop of the
form u(k) = Kx̄(k) is applied, where the gain K can be designed
with arbitrary (yet stabilizing) performance criteria.

Under the hypothesis of exact state feedback, the input
sequence resulting from the receding horizon solution of problem
(22) ensures the asymptotical convergence of the state x of (1) to
the target set XT (see Scokaert & Mayne, 1998). By solving N mp-
LPs as in Bemporad et al. (2003), and by using L(x, u) = ‖Qxx‖∞,
this solution is obtained in state-feedback piecewise affine form

u∗(x) = Fix + gi if x ∈ Ri (28)

where Fi ∈ Rnu×nx , gi ∈ Rnu and Ri = {x ∈ Rnx : Cix ≤ di}, with
i ∈ I , {1, 2, . . . , r}.

Now we need to reintroduce the proposed transmission
strategy (9) and the output noise (4). In order to do so, consider
the feedback control law derived from (28) and computed on the
estimated state x̄(k|k) rather than on the true state x(k), that is

u(k) = Fjx̄(k|k) + gj (29)

where x̄(k|k) ∈ Rj. Now, let x(k) ∈ Ri. The difference between the
optimal input obtained by (28) with full state knowledge and the
input (29) actually applied to the system is

u(k) − u∗(x(k)) = Fjx̄(k|k) + gj − Fix(k) − gi.

Hence, the dynamics of system (1)–(4) in closed-loopwith (29) can
be recast as

x(k + 1) = (A + BFi)x(k) + Bgi + w(k) + q(k) (30)

where

q(k) = B(Fjx̄(k|k) + gj − Fix(k) − gi). (31)

The quantity q(k) models the input error made with respect to
the optimal trajectory obtained with (28), caused by the nonlinear
transmission policy and the measurement noise. We consider q(k)
as an additional unknown but bounded disturbancewithin a setQ,
with

Q , {q ∈ Rnx : q = B(Fjx̄ + gj − Fix − gi),

x, x̄ ∈ Rnx , x − x̄ ∈ hull{E, V}}. (32)

Our goal is to obtain a robust control law with respect to both w
and q. We cannot directly set up a multiparametric optimization
problem including q, since the polytope Q is dependent on {Fi}i∈I

and {gi}i∈I which are nonlinear functions of x. To overcome this
issue, we propose an iterative algorithm: At every step h of the
algorithm, the estimated set Qh, the gains {Fi}hi∈I, {gi}

h
i∈I and the



D. Bernardini, A. Bemporad / Automatica 48 (2012) 36–44 41
partition {Ri}
h
i∈I are computed as a function of the previous

set Qh−1. This procedure, to be executed off-line, is defined in
Algorithm 1 and is based on the linear system

x(k + 1) = Ax(k) + Bu(k) + w(k) + q(k) (33)

and the associated min–max MPC problem

min
{uℓ

k+j|k}
max
ℓ∈L

N−1−
j=0

L(xℓ
k+j|k, u

ℓ
k+j|k) (34a)

s.t. (22c), (22d), (22e), (22f), (33), (34b)

together with its explicit solution in state feedback form.

Algorithm 1 Iterative explicit min–max MPC, multiple node case
1: set h = 1, Q0

= ∅, Q1
= {0nx};

2: while Qh
⊈ Qh−1 do

3: solve (34) with q ∈ Qh;
4: get the explicit solution data {Fi, gi, Ri}

h, ∀i;
5: set Qh+1

= hull{Qh+1
ij , ∀i, j ∈ I}, where

Qh+1
ij , {q ∈ Rnx : q = B(F h

j x̄ + gh
j − F h

i x − gh
i )},

x ∈ Rh
i , x̄ ∈ Rh

j , x − x̄ ∈ hull{E, V}};
6: set h = h + 1;
7: end while
8: set {Fi, gi, Ri} = {Fi, gi, Ri}

h−1, ∀i ∈ I;
9: set h∗

= h.

The computation of Q may be conservative, in the sense
that it may return a set larger than necessary. In particular, the
controller obtained with Algorithm 1 is robust with respect to all
disturbances in Qh∗

−1, but the actual disturbance realizations are
q(k) ∈ Qh∗

⊆ Qh∗
−1. Indeed, this does not have any impact

on the communication side (and on transmissions savings), and
may only affect performance of the control action in the outer
control mode. In Section 4 we provide numerical details about the
overapproximation of Q computed on the presented example.

Note that since the actual value of the state x(k) is not known,
at time k the controller is required to switch from outer mode to
inner mode if and only if

Z(k|k) ⊆ X0 (35)

which ensures that x(k) ∈ X0. Moreover, since the terminal setX0
is constructed to be RPI with respect to the closed-loop system, we
can reduce conservativeness in the estimation algorithm by using
the prediction step

Z(k + 1|k) = (AZ(k|k) ⊕ B{u(k)} ⊕ W) ∩ X0 (36)

instead of (12), if at time k the inner control mode is active.
We can finally define the Robust Energy-AwareMPCwith Noisy

measurements (REAN-MPC) control scheme in Algorithm 2 and
state its properties in the following theorem.

Theorem 5. Let Algorithm 1 admit a solution. Then the state x of
(1)–(4) receiving feedback according to (9) and controlled by REAN-
MPC converges asymptotically to the target set XT while satisfying
constraints (2). If Z(k|k) ⊆ X0 at any time step k, then x(k+t) ∈ X0
for all t ∈ N.

Proof. The outer mode explicit control law defined by Algorithms
1–2 is designed to be robust with respect to the additive distur-
bance w and the feedback error q, induced by the measurement
noise (4) and the transmission strategy (9). Moreover, by Lemma 4,
x ∈ XT if and only if ‖Qxx‖∞ ≤ c0. Then, ∀x(k) ∉ XT , ∀ℓ ∈

L, ‖Qxxℓ
k|k‖∞ − ‖Qxxℓ

k+N|k‖∞ ≥ 0. Hence, the outer mode stage
cost can be shown to be non-increasing in time, and the proof of
Algorithm2 Robust Energy-AwareMPCwithNoisymeasurements
(REAN-MPC)
1: Off-line:
2: run Algorithm 1 and get {Fi, gi, Ri}, ∀i ∈ I;
3: compute K , X0 and XT as in Section 3.1–3.2.
4: At k = 0:
5: receive Y(0) from the master node;
6: set Z(0|0) = Y(0);
7: set x̄(0|0) = c(Z(0|0));
8: set u(0) = B(Fix̄(0|0) + gi), x̄(0|0) ∈ Ri;
9: set Z(1|0) = AZ(0|0) ⊕ B {u(0)} ⊕ W ;

10: set x̂(0) = x̄(0|0);
11: set x̂(j + 1) = (A + BFi)x̂(j) + Bgi, x̂(j) ∈ Ri,

j = 0, . . . ,M − 1;
12: transmit ε and {x̂(j)}Mj=1 to the master node.
13: for all k > 0 do
14: if Y(k) is received (because (9) is satisfied) then
15: set δ(k) = 1, otherwise δ(k) = 0;
16: end if
17: set Z(k|k) =


Z(k|k − 1) ∩ Y(k) if δ(k) = 1,
Z(k|k − 1) ∩ (E ⊕ {x̂(k)}) otherwise;

18: set x̄(k|k) = c(Z(k|k));
19: if Z(k|k) ⊆ X0 then
20: set u(k) = Kx̄(k|k);
21: set Z(k + 1|k)=(AZ(k|k) ⊕ B {u(k)} ⊕ W) ∩ X0;
22: else
23: set u(k) = B(Fix̄(k|k) + gi), x̄(k|k) ∈ Ri;
24: set Z(k + 1|k) = AZ(k|k) ⊕ B {u(k)} ⊕ W ;
25: end if
26: if δ(k) = 1 or x̂(k + 1) has not yet been computed, then
27: set x̂(k) = x̄(k|k);
28: if Z(k|k) ⊆ X0, then
29: set x̂(k + j + 1) = (A + BK)x̂(k + j),

j = 0, . . . ,M − 1;
30: else
31: set x̂(k + j + 1) = (A + BFi)x̂(k + j) + Bgi,

x̂(k + j) ∈ Ri, j = 0, . . . ,M − 1;
32: end if
33: transmit {x̂(k + j)}Mj=1 to the master node.
34: end if
35: end for

asymptotical convergence toXT follows in a similar fashion of The-
orem in Scokaert and Mayne (1998). Once the controller switches
to the inner control mode, because (35) is satisfied, robust in-
variance of closed-loop trajectories with respect to X0 follows by
Lemma 2. �

Remark 6. An energy-aware controller for the case of exact state
feedback described in Section 2.1 can be derived in a similar
fashion, by taking the output noise set V = ∅ and the estimated
state

x̄(k|k) =


x(k) if δ(k) = 1
x̂(k) otherwise.

The transmission strategy for the single node case needs to be
slightly modified in order to deal with the proposed dual mode
MPC. In addition to (3), the sensor node is required to transmit
the measurements when the state x(k) and its prediction x̂(k) lie
in different control mode sets, i.e.,

[δ(k) = 0] ↔ [x(k) − x̂(k) ∈ E]

∧[[x(k) ∈ X0, x̂(k) ∈ X0] ∨ [x(k) ∉ X0, x̂(k) ∉ X0]] (37)

to avoid erroneous switches from outer to inner mode. This
controller, referred to as Robust Energy-Aware MPC (REA-MPC),
will be considered for comparison purposes in Section 4.
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4. Simulation results

To evaluate the performance of the proposed techniques we
consider the open-loop unstable system given by (1) and (2), with

A =

[
0.21 −0.39

−0.39 0.82

]
, B =

[
0
1

]
,

X = {x ∈ R2
: |xi| ≤ 2, i = 1, 2}, U = {u ∈ R : |u| ≤

1}, W = {w ∈ R2
: |wi| ≤ 0.08, i = 1, 2}, and threshold vector

ε = [0.1, 0.1]T . We assume that the output noise is defined by
(4)–(5) with vi

max = [0.06, 0.06]T , ∀i.
The presented energy-aware control schemes have been

compared to ‘‘traditional’’ robust MPCs, which do not take into
account the minimization of transmissions over the wireless
channel. In this case, no predictions are sent to the sensor nodes
and the collected measurements are simply transmitted to the
controller at every time step, regardless of the threshold logic. We
refer to R-MPC as the robust MPC controller in the exact state
feedback framework, and to RN-MPC as the robust MPC controller
in the case of noisy measurements. Note that R-MPC and RN-
MPC algorithms are special cases of REA-MPC and REAN-MPC,
respectively, where E = ∅ and M = 0.

We have run Ns = 100 simulations of T = 10 time steps
each, randomly choosing the initial states x(0) ∈ X. The weight
matrices used to compute the outer and the inner controllers are
Qx = I2,Qu = 0.1. The control horizon isN = 5 and the estimation
horizon is M = 10. By running Algorithm 1, we have obtained
an explicit control law for the outer controller, defined over 7
polyhedral partitions of the state space. This procedure yielded a
slightly overapproximated set Q, being

Qh∗

= {q ∈ R2
: q1 = 0, |q2| ≤ 0.1533},

Qh∗
−1

= {q ∈ R2
: q1 = 0, |q2| ≤ 0.1695}.

We consider two quantities to compare the performance of
the energy-aware schemes: the rate of data transmission over
the wireless channel, assuming equal power consumption in
transmitting and receiving packets as usual for short rangewireless
nodes (Moteiv Corporation, 2006), and the cumulated cost function

J iexp ,

T−
k=1

(‖Qxxi(k)‖∞ + ‖Quui(k)‖∞)

where i indexes the i-th simulation. Simulation results are detailed
in Table 1, where

Javg ,
1
Ns

Ns−
i=1

J iexp

is the average experimental performance and Tx is the overall
transmission rate. REA and REAN controllers achieve a good trade-
off between performance and transmission rate: in the presented
simulations REA-MPC grants a reduction in radio utilization by
49.2%, with a 2.5% loss in the experimental cost function with
respect to R-MPC. Six-nodeREAN-MPCobtains similar results,with
a 57.9% saving in transmissions and a loss of 2.6% in performance
compared to RN-MPC.

In order to further evaluate the sensitivity to noise of the REAN-
MPC setup, Table 1 also reports numerical results for varying
number of sensor nodes m ∈ {3, 6, 9, 12}. As expected, using
more nodes increases transmission savings, at the cost of some
performance deterioration.

Moreover, we included in the tests a formulation of R-MPC
and of RN-MPC where the sampling time is twice as large. These
controllers, referred to in the table as half-rate MPCs, involve
50% less communications between nodes by simply running at
half speed. Results show that the energy-aware controllers obtain
Table 1
Energy-aware MPC: simulation results.

Javg Tx (%)

Exact measurements
R-MPC 2.4027 100.0
Half-rate R-MPC 2.5852 50.0
REA-MPC 2.4626 50.8
Noisy measurements
RN-MPC with 6 nodes 2.5025 100.0
Half-rate RN-MPC with 6 nodes 2.6787 50.0
REAN-MPC with 3 nodes 2.5331 77.6
REAN-MPC with 6 nodes 2.5514 51.8
REAN-MPC with 9 nodes 2.5665 45.4
REAN-MPC with 12 nodes 2.5682 43.0

Fig. 3. Average traffic over the wireless channel.

transmission savings comparable to half rate MPCs, providing in
addition a better performance and constraints handling (note that
half-rate schemes enforce robust constraints only at half time
steps).

A comparison of the average data exchange over the wireless
channel for the different control schemes is shown in Fig. 3.
We can see that with the proposed energy-aware approach a
relevant part (50%–70%) of the total wireless communications
is spent to deliver updated predictions to the sensor nodes. In
some frameworks, e.g. when the calculation of the control law
does not require external information and nodes have sufficient
computation capabilities, it could be possible to let the predictions
be computed locally by the sensor nodes. In this way one would
avoid the need of having transmissions from the controller,
dramatically cutting the overall radio power consumption further.

All the tested energy-aware control schemes provide satisfac-
tion of state and input constraints at all time steps. As expected,
the input command often saturates to the limit values {−1, 1} but
constraints are always fulfilled, as shown in Fig. 4 for the case of
REAN-MPC with 6 sensor nodes. Analogous plots related to other
controllers are similar and are omitted for brevity reasons.

Robust control schemes based on min–max optimization prob-
lems like those presented in this paper can lead to conservative
control action sometimes, since stabilitywith respect to every pos-
sible disturbance realization sequence is required. In such cases
nominal controllers can be adopted, which in general provide less
conservative system performance at the expenses of lack of sta-
bility and constraint fulfillment properties. In particular, in the
energy-aware framework of this paper, it is easy to derive a nomi-
nal counterpart of REAN-MPC by solving (34) withW = Q = {0nx}

and XT = Rnx . Simulations involving nominal energy-aware con-
trol schemes are omitted here and are reported in Bernardini and
Bemporad (2008, 2009).

4.1. Discussion on network model

In the following we revise the assumptions made on the
wireless network model (i.e., no delay nor packet loss can occur)
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Fig. 4. Envelope of state and input trajectories over 100 simulations for REAN-MPC
with 6 sensor nodes. Dashed lines denote upper and lower bounds.

and present considerations on how to extended the previous
results if these assumptions are removed.

Asmentioned in Section 1, the presence of delays in thenetwork
is not a crucial aspect to be explicitly considered in our framework,
as they are often negligible if the sampling time is sufficiently
large. Moreover, common delay compensation techniques can
be implemented independently of the higher-level energy-aware
control scheme, e.g., by augmenting the process model with the
maximum estimated delay (Bemporad, 1998; Trimboli, Di Cairano,
Bemporad, & Kolmanovsky, 2009).

On the contrary, the presence of packet loss in the controller-
sensors wireless link needs to be properly addressed. Dropouts
can occur in the forward channel (transmission of predictions from
controller to sensors), or in the backward channel (transmission of
measurements from sensors to controller). Data loss in the forward
channel can be handled safely with minor modifications to the
proposed control scheme. Namely, if at time k the sensor nodes do
not receive an updated prediction buffer as expected, they simply
transmit the new measurements to the controller at the next
time step k + 1, regardless of the threshold logic. Hence, forward
dropouts only affect the transmission rate over the wireless link,
preserving convergence of the closed-loop system. Instead, packet
dropouts in the backward channel may introduce stability issues if
not properly managed. Let us focus on the case of feedback from
multiple noisy sensors (exact state feedback can be handled with
similar arguments). The absence of packet loss is assumed in the
inner mode design (namely in (19)), in the outer mode design
(definition of Q in (32)), and in the state estimation algorithm
(correction step (13)). In particular, if transmitted measurements
can be lost, then in general x(k) − x̄(k|k) ∈ E does not hold, and
it is necessary to obtain an analogous relation in order to preserve
the control scheme functioning. Assuming a maximum number of
consecutive packet dropouts p, this can be done by imposing a
communication horizon C , defined as the maximum allowed time
interval between a correctly delivered measurement transmission
and the next sensors transmission: If the controller receives the
last measurements packet at time k, then the sensors are required
to transmit updated measurements at time k+ C regardless of the
threshold logic. Then, C+p is themaximum time interval between
two consecutive measurements acknowledged by the controller.
Based on this time bound, it is possible to compute a set Ẽ such
that x(k)−x̄(k|k) ∈ Ẽ , bymeans of an iterative algorithmwhere the
closed-loop system is considered to receive feedback every C + p
time steps.
5. Conclusions

This paper presented an energy-aware design approach for
control systems based on feedback from battery-operatedwireless
sensors. We investigated both a single-node scenario where exact
state measurements are available, and a multiple-node scenario
where measurements are affected by noise and a set of wireless
nodes are used tomitigate the effects of disturbance. We proposed
a novel WSN transmission strategy intended to save sensors
battery by minimizing the communications over the wireless
channel. This strategy is based on a threshold logic where the
value of the threshold can be opportunely designed to tune
the trade-off between closed-loop performance and transmission
rate. Moreover, we presented a robust control scheme based on
explicit model predictive control with guaranteed convergence
and constraint fulfillment properties. A stronger condition of
asymptotic stability, based on the results of (Lazar, Mun noz
de la Pe na, Heemels, & Alamo, 2008), is a topic that deserves
further investigations. Simulation results have shown that a
substantial reduction in radio utilization (40%–60%, which roughly
corresponds to doubling the life of the wireless nodes) can be
achieved with a narrow loss in system performance (<3%).
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