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This paper describes open source software (available at https://github.com/robotology/
natural-speech) to build automatic speech recognition (ASR) systems and run them 
within the YARP platform. The toolkit is designed (i) to allow non-ASR experts to easily 
create their own ASR system and run it on iCub and (ii) to build deep learning-based 
models specifically addressing the main challenges an ASR system faces in the context 
of verbal human–iCub interactions. The toolkit mostly consists of Python, C++ code 
and shell scripts integrated in YARP. As additional contribution, a second codebase 
(written in Matlab) is provided for more expert ASR users who want to experiment with 
bio-inspired and developmental learning-inspired ASR systems. Specifically, we provide 
code for two distinct kinds of speech recognition: “articulatory” and “unsupervised” 
speech recognition. The first is largely inspired by influential neurobiological theories of 
speech perception which assume speech perception to be mediated by brain motor 
cortex activities. Our articulatory systems have been shown to outperform strong deep 
learning-based baselines. The second type of recognition systems, the “unsupervised” 
systems, do not use any supervised information (contrary to most ASR systems, includ-
ing our articulatory systems). To some extent, they mimic an infant who has to discover 
the basic speech units of a language by herself. In addition, we provide resources 
consisting of pre-trained deep learning models for ASR, and a 2.5-h speech dataset of 
spoken commands, the VoCub dataset, which can be used to adapt an ASR system to 
the typical acoustic environments in which iCub operates.

Keywords: automatic speech recognition, yarp, tensorflow, code:python, code:matlab, code:C++

1. INTRodUCTIoN

Several applications use speech to give instructions to iCub, often relying on proprietary software. 
However, the robot operates in specific conditions where those systems may perform poorly. An 
open and easy-to-use system that would reliably recognize commands in this context would thus be 
a very desirable tool. We present here a first codebase, henceforth iCubRec, which has been built to 
provide such services to the community of iCub users. It allows to train and run state-of-the-art deep 
neural network (DNN)-based automatic speech recognition (ASR).

As an additional contribution, a second codebase, henceforth bioRec, allows to experiment with 
novel DNN-based recognition systems that share the same bio-inspired and developmental learning 
view that gave birth to iCub (Lungarella et al., 2003). bioRec is self-contained and independent of 
iCubRec, however its DNN-based acoustic models can effortlessly be used within iCubRec.
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Finally, in addition to the code, we are also providing resources 
to facilitate the implementation of a command recognizer: (i) the 
VoCub dataset, a dataset of registered vocal commands and (ii) 
pre-trained Gaussian Mixture Model (GMM)- and DNN-based 
acoustic models to perform recognition.

Our code, as well as the resources, is released under GPLv3 
license. The code is available at https://github.com/robotology/
natural-speech (doi: 10.5281/zenodo.1064043).

2. iCubRec

2.1. Application and Utility
An ASR system for iCub typically operates in challenging condi-
tions. We have identified three specific factors which we want the 
system to be robust to:

•	 noise; the robot often operates in noisy environments  
(e.g., noisy servers and computers running, concurrent speak-
ers, the robot itself generating noise).

•	 accents; the teams working with iCub are international and 
the robot needs to recognize spoken commands uttered with a 
wide variety of foreign accents.

•	 distance and movement; distant speech recognition is an 
important research topic in ASR and has been the focus of 
many recent challenges (e.g., the Chime4 challenge1). When 
the speaker–microphone distance increases, the speech 
signal-to-noise ratio decreases and signal distortions due to 
reverberation (in indoor environments) increases. A non-fixed 
distance, due to a moving speaker and/or microphone, adds 
further complexity to the task.

Although deep learning has recently produced excellent results 
in ASR, it still suffers the training-testing mismatched conditions 
problem. Proprietary ASR systems may perform poorly in the 
aforementioned acoustic/speech conditions mainly because 
such conditions are not well covered by their training datasets. 
We have addressed this problem by building a dataset (VoCub 
dataset) that covers such conditions and by providing tools to 
easily adapt a DNN to it.

Other than robust, an ASR system for iCub should be easy-to-
use, open, and modular. Usability is necessary to allow all iCub 
mindware developers, who mostly have no ASR background, 
to train and run ASR on iCub. For this reason, we provide pre-
trained GMM- and DNN-based acoustic models that can be used 
out of the box with the existing code. At the same time, we want 
more advanced users to easily modify and adapt the code to their 
own needs. This can only be done if everything is open and well 
modularized.

2.2. Methods
To facilitate the understanding of the iCubRec module for non-ASR 
experts we provide here the definition of few basic ASR terms.  
A standard ASR system consists of 4 main parts: an acoustic fea-
ture extraction step which extracts spectral features from the input 
acoustic waveform; an acoustic model which relates the extracted 

1 http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/.

features to sub-words (e.g., phonemes, such as consonants and 
vowels) and then words (i.e., computes the likelihood that vectors 
of features are generated by a candidate word); a language model, 
which is independent of the acoustic signals and incorporates 
prior knowledge about a specific language (e.g., the probability 
that the word “barks” follows the word “dog”); and a speech 
decoder which performs word recognition by computing the most 
probable sequence of words of the utterance, given: (a) the acoustic 
model; (b) the language model; (c) the dictionary, which consists 
of all words the system has to recognize along with their phoneme 
transcriptions. Acoustic modeling is usually done using a Hidden 
Markov Model (HMM) which is well suited for sequential data 
like speech. HMMs combine transition probabilities (i.e., p(st | st–1) 
where st is a phone label at time t) with observation probabilities 
(i.e., p(ot | st), where ot is the input vector of acoustic feature at  
time t). The core difference between classical GMM-HMM vs. 
hybrid DNN-HMM acoustic models simply resides on whether 
GMMs or DNNs are used to compute the observation probabilities.

2.3. Code description
iCubRec code is based on the Hidden Markov Model Toolkit (HTK) 
(Young et al., 2015). However, as the training capabilities for DNNs 
are still quite limited in HTK, we also consider the alternative pos-
sibility to train a network with Tensorflow (Abadi et al., 2015) and 
convert it to HTK format for use in decoding. Although in the later 
case the DNN is still restricted to the architectures recognized by 
HTK (for now, only feedforward networks with a limited set of 
activation functions), this gives more flexibility and control over 
the training process. Additionally, the use of Tensorflow allows to 
easily adapt a pre-trained DNN to new adaptation data.

The code consists of scripts for:

•	 acoustic model training with GMMs
•	 acoustic model training with DNNs
•	 speech decoding
•	 integration within YARP for online speech decoding.

iCubRec is a combination of Python 3, Perl and shell scripts, 
and was written for HTK 3.5 and Tensorflow 1.0.

2.3.1. GMM-Based Acoustic Modeling
Before the advent of DNNs, GMM-HMM systems were state-of-
the-art for acoustic modeling in speech recognition. Although 
they are significantly outperformed by neural networks (Dahl 
et al., 2012; Seltzer et al., 2013), GMMs are still widely used if only 
to compute the phone labels/speech segments alignments needed 
to train a DNN (Dahl et al., 2012). The folder gmm_training 
provides a set of scripts to train GMM-HMMs using HTK. These 
scripts are based on Keith Vertanen’s code (Vertanen, 2006) and 
allow to build models similar to the ones described by Woodland 
et al. (1994). The recipe is originally intended for TIMIT (Garofolo 
et  al., 1993a) and Wall Street Journal (WSJ) (Garofolo et  al., 
1993b) datasets and has been adapted for the Chime4 challenge 
(Vincent et al., 2016) and VoCub datasets.

2.3.2. DNN-Based Acoustic Modeling
Once the speech signal has been aligned (presumably using 
GMM-HMMs), a DNN-based model can be trained. Two 
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TABLe 1 | Examples of the commands used in the VoCub dataset.

I will teach you a new object.
This is an octopus.
What is this?
Let me show you how to reach the car with your left arm.
Let me show you how to reach the turtle with your right arm.
There you go.
Grasp the ladybug.
Where is the car?
No, here it is.
See you soon.
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alternatives are available: (i) using the scripts in dnn_train-
ing/htk to train a model with HTK or (ii) using the code under 
dnn_training/tf to train the net with Tensorflow. The 
scripts proposed here are currently restricted to TIMIT and WSJ, 
but support for additional datasets will be added soon.

2.3.3. Speech Decoding
With a model trained with HTK (GMM-based or DNN-based), 
it is then straightforward to perform recognition on a new utter-
ance. The folder offline_decoding provides an example of 
decoding on pre-recorded data with HTK. Additionally, export 
for_htk.py shows how to easily extract the parameters of a 
net trained with Tensorflow and convert them into HTK format.

2.3.4. Integration with YARP
All the code presented so far is meant to train and test a system 
offline. yarp_decoding folder provides the modules neces-
sary to use an existing model within YARP and perform online 
recognition. A streaming service based on yarp.js2 allows to 
record sound from any device equipped with a microphone and 
a web browser. Two other modules are provided: rctrld_yar-
phear_asr which saves the recorded data in a file, and the 
decoder (based on HVite tool from HTK) for feature extraction 
and command decoding. The application speechrec.xml is 
available to easily run and connect all the modules.

2.4. Resources
2.4.1. The VoCub Dataset
Recording a dataset has two main advantages: (i) it allows to 
easily test the recognition system and to reliably estimate its 
performance in real conditions and (ii) can be used to adapt the 
system in order to reduce the training/testing mismatch problem. 
For this reasons, we have recorded examples of the commands 
we want to recognize within real-usage scenarios. That resulted 
in the VoCub dataset.3

The recordings consist of spoken English commands addressed 
to iCub. There are 103 unique commands (see Table 1 for some 
examples), composed of 62 different words. We recorded 29 
speakers, 16 males and 13 females, 28 of them are non-native 
English speakers. We finally obtained 118 recordings from each 
speaker: of the 103 unique commands, 88 were recorded once, 

2 https://github.com/robotology/yarp.js.
3 Freely available at https://robotology.github.io/natural-speech/vocub/.

and 15 twice (corresponding to sentences containing rare words). 
This results in about 2 h and 30 min of recording in total.

A split of the speakers into training, validation, and test sets is 
proposed with 21, 4, and 4 speakers per set, respectively. The files 
are organized with the following convention setid/spkrid/
spkrid_cond_recid.wav, where:

•	 setid identifies the set: tr for training, dt for validation and 
et for testing.

•	 spkrid identifies the speaker: from 001 to 021 for training, 
101 to 104 for validation and 201 to 204 for testing.

•	 cond identifies the condition (see below).
•	 recid identifies the record within the condition (starting 

from 0 and increasing).

The commands were recorded in two different conditions, a 
non-static (cond = 1) and a static condition (cond = 2), with an 
equal number of recorded utterances per condition.

In the static condition, the speaker sat in front of two screens 
where the sentences to read were displayed. In the non-static 
condition, the commands were provided to the subject verbally 
through a speech synthesis system, and the subject had to repeat 
them while performing a secondary manual task. This secondary 
task was designed to be simple enough to not impede the utter-
ance repetition task, while requiring people to move around the 
robot. The distance between the speaker and the microphone in 
this last condition ranges from 50 cm to 3 m.

We also registered a set of additional sentences for the test-
ing group (same structure but different vocabulary) to test the 
recognition system for new commands not seen during training. 
The sentences consist of 20 new commands, pronounced by 
each speaker of the test set twice: once in non-static condition 
(cond = 3) and once in static condition (cond = 4).

2.4.2. Trained Models
As not all the datasets used in our scripts are freely available, and 
in order to ease the use of our system, we provide pre-trained 
acoustic models that can be used out of the box. The models/
README.md file contains links to download GMM-based mod-
els trained on WSJ, Chime4 and VoCub datasets, and DNN-based 
models trained on TIMIT and WSJ. Additional DNN-based 
models will be added in the future. Further details about the 
different models and the precise training procedure can be found 
in the same file.

2.5. example of Use
A good demonstration of the capabilities of the code presented so 
far is given in the file icubrec/DEMO.md. In a few simple steps, 
the user is shown how to perform offline decoding on the VoCub 
dataset with a pre-trained model. This example is accessible to 
novice ASR users and does not require any proprietary dataset.

A more in-depth example is given in icubrec/TUTORIAL.
md, which provides detailed instruction on how to train a full 
ASR system on the WSJ dataset. This tutorial goes through all 
the main steps: training of a GMM-based acoustic model, com-
putation of the alignments, training of a DNN-based acoustic 
model using those alignments, and finally decoding of the test 
sentences.
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FIGURe 1 | An example of articulatory phone recognition. Here, the simplest strategy available in phonerec is shown. ot is a vector of acoustic features, while st is 
a phone state.
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3. bioRec

3.1. Application and Utility
Our module for bio- and cognitive science-inspired ASR is com-
posed of two distinct parts serving different purposes: Articulatory 
Phone Recognition and Unsupervised/Developmental ASR.

3.1.1. Articulatory Phone Recognition
This part includes modules phonerec and pce_phonerec, 
which build articulatory phone recognition systems. A phone 
recognition system recognizes the sequence of phones of 
an utterance. It can roughly be identified as an ASR system 
without language model and dictionary. Articulatory phone 
recognition uses prior information about how the vocal tract 
moves when producing speech sounds. This articulatory view 
is strongly motivated by influential neurobiological theories 
of speech perception that assume a contribution of the brain 
motor cortex to speech perception (Pulvermüller and Fadiga, 
2010) and have been shown to outperform strong DNN-based 
baselines where no prior articulatory information is used (see, 
e.g., Badino et al. (2016)).

3.1.2. Unsupervised/Developmental ASR
The second part of bioRec, zerorchallenge, builds “unsu-
pervised” ASR systems. Most recognition systems, including 
the articulatory systems, are trained on supervised data, where 
training utterances are associated to phonetic transcriptions, and 
the inventory of phones is given. This learning setting is far easier 
than the learning setting of an infant who has to acquire her native 
language and has to discover the basic units of the language on her 
own. In order to better understand how an infant can acquire the 
phone inventory during development from raw “unsupervised” 

utterances, we have created “unsupervised” ASR systems that 
were submitted and evaluated at the 1st Zero Resource Speech 
Challenge (ZRS challenge) (Versteegh et al., 2015).

3.2. Methods
3.2.1. Articulatory Phone Recognition
The articulatory phone recognition module consists of 2 parts 
depending on how speech production information is represented:

•	 phonerec; speech production is represented in the form 
of actual measurements of vocal tract movements, collected 
through instruments such as the electromagnetic articulo-
graph (Richmond et al., 2011);

•	 pce_phonerec; vocal tract movements are initially 
described by discrete linguistic features and actual measure-
ments are not used.

phonerec: in this module, prior information of speech 
production is built by learning, during training, an acoustic-to-
articulatory mapping that allows to recover vocal tract move-
ments, i.e., reconstructed articulatory features (AFs), from the 
acoustic signal (Badino et  al., 2012, 2016). The reconstructed 
AFs are then appended to the usual input acoustic vector of the 
DNN that computes phone state posterior probabilities, i.e., the 
acoustic model DNN (see Figure  1, which shows the simplest 
strategy). Additionally, our code allows to apply autoencoder 
(AE)-based transformations to the original AFs in order to 
improve performance. AEs are a special kind of DNN that attempts 
to reconstruct its input after encoding it, typically through a lossy 
encoding. More details and evaluation results can be found in 
Badino et al. (2016).

pce_phonerec: in this module, AFs are derived (through 
a DNN) from linguistic discrete features (referred to as phonetic 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FIGURe 2 | Overview of the AE-based approach to sub-word learning.
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context embedding). They are used as secondary target for the 
acoustic model DNN within a multi-task learning (MTL) strategy 
(Caruana, 1997). This strategy forces the DNN to learn a motor 
representation without the need for time-consuming collection 
of actual articulatory data. Our approach outperforms strong 
alternative MTL-based approaches (Badino, 2016).

3.2.2. Unsupervised/Developmental ASR
zerorchallenge is the module building the unsupervised/
developmental ASR systems we submitted to Task1 of the ZRS 
challenge at Interspeech 2015 (Versteegh et al., 2015). The goal 
of the challenge was to compare systems that create new acoustic 
representations that can discriminate examples of minimal pairs, 
i.e., words differing only in one phoneme (e.g., “hat” vs. “had”), 
while identifying as a single entity different examples of a same 
word. Specifically, we focused on extracting discrete/symbolic 
representations, which equals to automatically discovering the 
inventory of (phone-like) sub-words of a language. Our core 
strategy is based on AEs (Badino et  al., 2014), as shown in 
Figure 2. The provided scripts build 2 novel systems, one based 
on binarized AEs and one on Hidden Markov Model Encoders 
(HMM-Encoders) (Badino et al., 2015).

A binarized AE is an AE whose encoding layer nodes are 
binary. At each time step, it transforms a vector of real-valued 
acoustic features into a vector of binary units which in turn is 
associated to a positive integer corresponding to a discovered 
specific sub-word.

The HMM-Encoder combines an AE with a HMM.4 An 
approach solely based on AEs ignores the sequential nature of 
speech and inter-sub-word dependencies. The HMM-Encoder 
was proposed to specifically address these potential weaknesses.

3.3. Code description and example of Use
All code is written in Matlab and uses the Parallel Processing 
Toolbox to allow fast DNN training with GPUs. All modules were 
tested in Matlab 2013a and 2015a.

4 Our HMM training code is a modified version of code from K. Murphy’s 
BayesianNet toolbox, available at https://github.com/bayesnet/bnt.

3.3.1. Articulatory Phone Recognition
phonerec: the file ploclassify.m allows to train and 
test articulatory phone recognition systems. It requires the 
inivar.m configuration file where it is possible to define,  
e.g., the type of AFs through cmotortype (e.g., AE-transformed 
AFs or “plain” AFs), the hyperparameters of the acoustic model 
DNN (parnet_classifier), and of the acoustic-to-articula-
tory mapping DNN (parnet_regress).

The folder demo contains 2 examples to build and evaluate a 
baseline (audio1_motor0_rec0) and an articulatory phone 
recognition system (audio1_motor3_rec1) on the mngu0 
dataset (Richmond et al., 2011). The dataset used here (available 
at https://zenodo.org/record/836692/files/bioRec_Resources.tar.
gz, under /bioRec_Resources/phonerec_mngu0/) is a 
preprocessed version of the mngu0 dataset.

pce_phonerec: this articulatory phone recognition sys-
tem is trained and evaluated by running mtkpr_pce.m. It can 
be compared with an alternative MTL-based strategy proposed 
by Microsoft researchers (Seltzer and Droppo, 2013), by running 
the script mtkpr_baseline.m. All systems are trained and 
tested on the TIMIT dataset, which unfortunately is not freely 
available. Training on different datasets would require some small 
dataset-dependent modifications to the look-up table used to 
extract discrete linguistic features from phone names.

We have created a Python  +  Tensorflow implementation the 
DNN training proposed in this module which will be soon available.

3.3.2. Unsupervised/Developmental ASR
We provide scripts that receive as input one of the datasets provided  
by the ZRS challenge, train one of the unsupervised ASR systems 
(on the training utterances), and return the testing utterances in 
a new discrete representation with a positive integer at each time 
step. We additionally provide the 3 datasets from the ZRS chal-
lenge already transformed to be processed by our scripts (avail-
able at https://zenodo.org/record/836692/files/bioRec_Resources. 
tar.gz, under /bioRec_Resources/zerochallenge/). The 
output format allows to evaluate the output file with the tools 
provided for the challenge (Versteegh et al., 2015).

3.3.3. Utilities
All utilities used by the phonerec, pce_phonerec, and 
zerorchallenge are in:

•	 netutils: contains functions to train and run DNNs,  
e.g., standard DNN training, Deep Belief Network-based DNN 
pretraining (Hinton et al., 2006), MTL training, DNN forward 
pass (i.e., to evaluate a DNN), deep autoencoder training, 
including training of some AEs we have recently proposed 
specifically for speech.

•	 utils: this folder contains all utilities that do not pertain to 
DNNs. These include: data loading and normalization, phone 
language models computation, Viterbi-based phone decoding, 
phone error rate computation, and analysis of error.

4. CoNCLUSIoN

In this paper, we have described the codebase that allows to 
easily train deep neural network-based automatic speech 
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recognition systems and run them within YARP. As an addi-
tional contribution, we provide tools to experiment with rec-
ognition systems that are inspired by recent influential theories 
of speech perception and with systems that partly mimic the 
learning setting of an infant who has to learn the basic speech 
units of a language.
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