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A Shannon-Rugge-Kutta-Gill method for solving convection-diffusion equations is discussed. This approach transforms
convection-diffusion equations into one-dimensional equations at collocations points, whichwe solve byRunge-Kutta-Gillmethod.
A concrete example solved is used to examine the method’s feasibility.

1. Introduction

Most of the physics phenomenon are stated in terms of partial
differential equations (PDEs). Convection-diffusion equation
is a kind of PDE which can be used in many science and
technology fields, especially in image and signal procession
such as image segmentation and the quickly stability of image
processing. The numerical solution of convection-diffusion
equations as an important subject has always attracted the
attentions of the researchers for a long time.

The standard Galerkin finite-element method can solve
the solution of the equations, but it is numerically unstable
for small values of the diffusion parameter. So on the basis
of this method, in [1] King and Krueger investigated the
effect of a stabilized finite-element approximation and drew
a conclusion that the stabilized system can provide accurate
controllers. A novel multilevel particle methods and two
complementary approaches are researched in [2]. In this
paper, a new class of particle based on mapping functions is
introduced, and particle remeshing is used as a key element
in overlapping domains in the particle-AMRmethod. For the
two-dimensional convection-diffusion equation, Gupta et al.
proposed a fourth-order nine-point compact finite-difference
formulae, which is shown to be computationally efficient and
stable and yield highly accurate numerical solutions in [3, 4].
The resulting linear system is solved by classical iterative
methods for large values of the Reynolds number in [4].With

thewaveletmethod, Shi et al. solved the solution of covection-
diffusion equations by Haar wavelet method in [5]. In short,
convection-diffusion equations are studied by scholars via
different methods.

Recently,Wavelet analysis as a new subject has attracted a
lot of attention. As a mathematical tool, it has been widely
used in numerical analysis, signal processing [6, 7], image
processing, and so forth. Many years ago, wavelet methods
were used for numerical analysis, particularly the numerical
solution of PDEs. Up to now, researchers have utilized the
simplest Haar wavelets to solve kinds of PDEs. Chen and
Hsiao, in [8], established an operational matrix of integration
based on Haar wavelets and used a procedure for applying
the matrix to obtain wavelet solution of PDEs. In [9, 10],
Cattani solved Poisson’s problem and Fredholm type integral
equations by Harmonic wavelet method. Other wavelets are
also extensively used to solve the kinds of PDEs, in which
Shannon wavelet is applied in the numerical solution of some
equations, such as [11, 12]. Shannon scaling function and
Sinc function combined with other methods (Galerkin, etc.)
are used to solve some PDEs [13, 14]. In light of the above
description, we are enlightened that Shannon wavelet is a
useful tool to obtain the solution of convection-diffusion
equations, which combined with Rugge-Kutta-Gill method.

In this paper, the content is assigned as follows. In
Section 2, Shannon wavelet is introduced. We elaborate the
concrete method solving convection-diffusion equation in
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Section 3. In Section 4 the viability of Shannon wavelet
collocation is tested by a listed example.

2. Preliminaries

2.1. ShannonWavelet. Wavelets are classified as families with
names, such as Haar wavelet, Meyer wavelet, and Shannon
wavelet. Shannon wavelets are the real part of harmonic
wavelets. They have a slow decay in the time domain but
a very sharp compact support in the frequency (Fourier)
domain.This fact, together with the Parseval’s identity, is used
to compute the inner product and the expansion coefficients
of the Shannon wavelets easily. A set of Shannon scaling
functions in the subspace 𝑉𝑗 is defined as

𝜑𝑗,𝑘 (𝑡) = 2
𝑗/2

sin𝜋 (2
𝑗
𝑡 − 𝑘)

𝜋 (2𝑗𝑡 − 𝑘)
, 𝑘 ∈ Z (1)

and the mother wavelets are

𝜓𝑗,𝑘 (𝑡)

= 2
𝑗/2

sin𝜋 (2
𝑗
𝑡 − 𝑘 − 1/2) − sin 2𝜋 (2

𝑗
𝑡 − 𝑘 − 1/2)

𝜋 (2𝑗𝑡 − 𝑘 − 1/2)
,

𝑘 ∈ Z.

(2)

In (1) and (2), the scaling function and mother wavelet for
𝑗 = 𝑘 = 0 (see Figure 1) are as follows:

𝜑 (𝑡) =
sin𝜋𝑡
𝜋𝑡

=
𝑒
𝜋𝑖𝑡

− 𝑒
−𝜋𝑖𝑡

2𝜋𝑖𝑡
, (3)

𝜓 (𝑡) =
sin𝜋 (𝑡 − 1/2) − sin 2𝜋 (𝑡 − 1/2)

𝜋 (𝑡 − 1/2)
. (4)

To some properties of Shannon scaling and wavelet
functions, Cattani has detailedly researched in [15–18]. So in
this paper, we will not narrate the properties again.

To (3), its Fourier transform �̂�(𝜔) = 𝜒[−1/2,1/2) . It is very
easy to see that

∞

∑

𝑛=−∞

�̂� (𝜔 + 𝑛)


2
= 1. (5)

According to this equation, the sequence of function
{𝜑(𝑥 − 𝑛)}

∞
𝑛=−∞ is orthonormal. A reproducing kernel is

generated [19] as follows:

𝐾(𝑥 − 𝑦) =
sin𝜋 (𝑥 − 𝑦)

𝜋 (𝑥 − 𝑦)
. (6)

Recomposing (6), we obtain a new reproducing kernel

𝑤 (𝑥 − 𝑦) =
sin (𝜋/Δ) (𝑥 − 𝑦)

(𝜋/Δ) (𝑥 − 𝑦)
, (7)

where Δ is the spatial mesh size.

In one-dimensional function 𝑓(𝑥), we make the domain
[𝑎, 𝑏] be discrete and set the grid size

Δ =
𝑏 − 𝑎

2𝑗
(8)

So we obtain collocation points

𝑥𝑖 = 𝑖Δ, 𝑖 = 0, 1, 2, . . . , 2
𝑗
, (9)

where 2𝑗 is a number of nodes, which used in the discretiza-
tion and also is the maximum wavelet index number. Now,
a basis function 𝑤𝑗(𝑥 − 𝑥𝑛) of Shannon wavelet will be
constructed by (7)

𝑤𝑗 (𝑥 − 𝑥𝑛) =
sin (𝜋/Δ) (𝑥 − 𝑥𝑛)

(𝜋/Δ) (𝑥 − 𝑥𝑛)
, 𝑛 = 0, 1, 2, . . . , 2

𝑗
. (10)

It has some properties as follows.

(i) To the random 𝑥𝑘 (𝑘 = 0, 1, 2, . . . , 2
𝑗
), the function

𝑤𝑗(𝑥 − 𝑥𝑛) fulfills interpolation property:

𝑤𝑗 (𝑥𝑘 − 𝑥𝑛) = 𝛿𝑘𝑛 = {
1 𝑘 = 𝑛,

0 𝑘 ̸= 𝑛.
(11)

(ii) We have noticed that the constructed basis functions
are orthogonal to each other as follows:

∫

∞

−∞

𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑤𝑗 (𝑥 − 𝑥𝑛) 𝑑𝑥 = Δ𝛿𝑘𝑛. (12)

(iii) If we make the integral with the basis functions and
their derived functions, we obtain.

∫

∞

−∞

𝑤𝑗 (𝑥 − 𝑥𝑘)

𝑑
𝑚
𝑤𝑗 (𝑥 − 𝑥𝑛)

𝑑𝑥𝑚
𝑑𝑥 = Δ

𝑑
𝑚
𝑤𝑗 (𝑥𝑘 − 𝑥𝑛)

𝑑𝑥𝑚
.

(13)

Both 𝑤𝑗(𝑥 − 𝑥𝑘) and its associated wavelet play an
important part in signal processing. Unfortunately, when
𝑥 → ∞, the reduction of𝑤𝑗(𝑥−𝑥𝑘) is very slow. So our paper
only researches the case which 𝑥 belongs to finite interval.

2.2. Function Approximation. According to Shannon’s sam-
pling theorem, any function 𝑓(𝑥) ∈ 𝐵

2
𝜋 can be denoted as

[19]

𝑓 (𝑥) = ∑

𝑛∈𝑍

𝑓 (𝑥𝑛) 𝑤𝑗 (𝑥 − 𝑥𝑛) , (14)

where the coefficients 𝑓(𝑥𝑛) is the value of the function 𝑓(𝑥)

at the point 𝑥𝑛. 𝐵
2
𝜋 is the Paley-Wiener reproducing kernel

Hilbert space which is a subspace of the Hilbert space 𝐿2(𝑅).
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Shannon scaling function
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Figure 1: Shannon scaling function 𝜑 and mother function 𝜓.
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Figure 2: Comparison of the analytical solution and Shannon wavelet solution.

In 𝑉𝑗, 𝑓(𝑥) can be approximated by 𝑓𝑗(𝑥) ∈ 𝑉𝑗. So we get

𝑓 (𝑥) ≈ 𝑓𝑗 (𝑥) =

2𝑗

∑

𝑛=0

𝑓𝑗 (𝑥𝑛) 𝑤𝑗 (𝑥 − 𝑥𝑛) .
(15)

3. Method of Solution of
Convection-Diffusion Equation

In this section, let us consider the one-dimensional convec-
tion-diffusion equation with constant coefficients:

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕
2
𝑢

𝜕𝑥2
0 < 𝑥 < 2, 0 < 𝑡 < 𝑇 (16)

with initial condition and boundary conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 𝑏,

𝑢 (0, 𝑡) = 𝑔0 (𝑡) , 𝑢 (2, 𝑡) = 𝑔1 (𝑡) , 0 < 𝑡 ≤ 𝑇.

(17)

Like (8) and (9), we will also divide the interval [0, 2] into
𝑁 = 2

𝑗 equal parts of lengthΔ = 2/𝑁 and denote𝑥𝑖 = 𝑖Δ, 𝑖 =

0, 1, 2, . . . , 𝑁. We know that 𝑢(𝑥, 𝑡) can be approximated by
𝑢𝑗(𝑥, 𝑡) ∈ 𝑉𝑗 expanded in terms of the constructed basis
function as formula (15) as follows:

𝑢 (𝑥, 𝑡) ≈ 𝑢𝑗 (𝑥, 𝑡) =

𝑁

∑

𝑛=0

𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤𝑗 (𝑥 − 𝑥𝑛) . (18)
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Wemultiply formula (16) with the constructed basis function
𝑤𝑗(𝑥 − 𝑥𝑘), then we obtain

𝜕𝑢𝑗 (𝑥, 𝑡)

𝜕𝑡
𝑤𝑗 (𝑥 − 𝑥𝑘)

= −𝑎

𝜕𝑢𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑤𝑗 (𝑥 − 𝑥𝑘) + 𝛼

𝜕
2
𝑢𝑗 (𝑥, 𝑡)

𝜕𝑥2
𝑤𝑗 (𝑥 − 𝑥𝑘) .

(19)

Integrate that formula (19) with respect to 𝑥 from −∞ to ∞

as follows:

∫

∞

−∞

𝜕𝑢𝑗 (𝑥, 𝑡)

𝜕𝑡
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

= ∫

∞

−∞

−𝑎

𝜕𝑢𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

+ ∫

∞

−∞

𝛼

𝜕
2
𝑢𝑗 (𝑥, 𝑡)

𝜕𝑥2
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥.

(20)

The left expression of formula (20) is as follows:

∫

∞

−∞

𝜕𝑢𝑗 (𝑥, 𝑡)

𝜕𝑡
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

= ∫

∞

−∞

𝜕∑
𝑁
𝑛=0 𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤𝑗 (𝑥 − 𝑥𝑛)

𝜕𝑡
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

=

𝑁

∑

𝑛=0

𝜕𝑢𝑗 (𝑥𝑛, 𝑡)

𝜕𝑡
∫

∞

−∞

𝑤𝑗 (𝑥 − 𝑥𝑛) 𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

=

𝜕∑
𝑁
𝑛=0 𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤𝑗 (𝑥𝑘 − 𝑥𝑛)

𝜕𝑡
Δ

=

𝜕𝑢𝑗 (𝑥𝑘, 𝑡)

𝜕𝑡
Δ.

(21)

The right expression of formula (20) is as follows:

∫

∞

−∞

−𝑎

𝜕∑
𝑁
𝑛=0 𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤𝑗 (𝑥 − 𝑥𝑛)

𝜕𝑥
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

+ ∫

∞

−∞

𝛼

𝜕
2
∑
𝑁
𝑛=0 𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤𝑗 (𝑥 − 𝑥𝑛)

𝜕𝑥2
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

= −𝑎∑

𝑛=0

𝑁𝑢𝑗 (𝑥𝑛, 𝑡) ∫

∞

−∞

𝜕𝑤𝑗 (𝑥 − 𝑥𝑛)

𝜕𝑥
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

+ 𝛼∑

𝑛=0

𝑁𝑢𝑗 (𝑥𝑛, 𝑡) ∫

∞

−∞

𝜕
2
𝑤𝑗 (𝑥 − 𝑥𝑛)

𝜕𝑥2
𝑤𝑗 (𝑥 − 𝑥𝑘) 𝑑𝑥

= −𝑎Δ∑

𝑛=0

𝑁𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤

𝑗 (𝑥𝑘 − 𝑥𝑛)

+ 𝛼Δ∑

𝑛=0

𝑁𝑢𝑗 (𝑥𝑛, 𝑡) 𝑤

𝑗 (𝑥𝑘 − 𝑥𝑛) .

(22)

Via (21) = (22), we obtain the following expression:

𝜕𝑢𝑗 (𝑥𝑘, 𝑡)

𝜕𝑡
=

𝑁

∑

𝑛=0

𝑢𝑗 (𝑥𝑛, 𝑡) [−𝑎𝑤

𝑗 (𝑥𝑘 − 𝑥𝑛) + 𝛼𝑤


𝑗 (𝑥𝑘 − 𝑥𝑛)]

(23)

To any 𝑥𝑘, we will get one equation. So 𝑁 + 1 equations
will be obtained. In order to simplify the𝑁+1 equations, we
define the matrices 𝑈 and 𝑉 as follows:

𝑈 = [𝑢𝑗 (𝑥0, 𝑡) , 𝑢𝑗 (𝑥1, 𝑡) , 𝑢𝑗 (𝑥2, 𝑡) , . . . , 𝑢𝑗 (𝑥𝑁, 𝑡)]
⊤
,

V𝑘𝑛 = −𝑎𝑤

𝑗 (𝑥𝑘 − 𝑥𝑛) + 𝛼𝑤


𝑗 (𝑥𝑘 − 𝑥𝑛) ,

𝑉 = (V𝑘𝑛)(𝑁+1)×(𝑁+1).

(24)

Combining with (24), the formula (23) is evolved into a
matrix equation:

𝜕𝑈

𝜕𝑡
= 𝑉𝑈. (25)

Now we will use Runge-Kutta-Gill method to solve formula
(25) as follows:

𝑈𝑖+1 = 𝑈𝑖 +
Δ𝑡

6
[𝐾1 + (2 − √2)𝐾2 + (2 + √2)𝐾3 + 𝐾4] ,

𝐾1 = 𝑉𝑈𝑖,

𝐾2 = 𝑉(𝑈𝑖 +
1

2
𝐾1) ,

𝐾3 = 𝑉(𝑈𝑖 +
√2 − 1

2
𝐾1 +

2 − √2

2
𝐾2) ,

𝐾4 = 𝑉(𝑈𝑖 −
√2

2
𝐾2 +

2 + √2

2
𝐾3) ,

(26)

where Δ𝑡 is the time interval. From (9) and (17), the initial
value𝑈0 is obtained, and then we can evaluate the numerical
solution at any collocation point within the different param-
eter 𝑡.

4. Test of Example

A concrete convection-diffusion equation has known exact
solution will be considered, and we observe how well the
Shannon wavelet solution approximates the exact solution.
We assume that 𝛼 = 0.1, 𝑎 = 0.8,

𝑓 (𝑥) = 𝑒
−(𝑥−2)

2
/8
,

𝑔0 (𝑥) =
√

20

20 + 𝑡
𝑒
−(5+4𝑡)

2
/10(𝑡+20)

,

𝑔1 (𝑡) =
√

20

20 + 𝑡
𝑒
−2(5+2𝑡)

2
/5(𝑡+20)

,

(27)
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For which the exact solution is

𝑢 (𝑥, 𝑡) = √
20

20 + 𝑡
𝑒
−(𝑥−2−0.8𝑡)

2
/0.4(𝑡+20)

. (28)

In the course of the experiment, we got 𝑡max = 0.01 and
setted Δ𝑡 = 0.00001. We got the approximate charts in the
case of𝑁 = 32 and𝑁 = 16 and obtained the conclusion that
thewavelet solution is approximate to the exact solutionmore
precisely (see Figure 2).

5. Conclusion

In this paper, the theory of Shannon wavelet combined with
Runge-Kutta-Gill method is used to solve the approximation
of convection-diffusion equations. It has been shown that the
key idea of shannon wavelet collocation method is to trans-
form convection-diffusion equations into one-dimensional
equations at collocations points and to solve the problem via
Rugge-Kutta-Gill method.
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