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ABSTRACT

We describe here a PCR-based “direc-
tional genome walking” protocol. The basic
procedure for the amplification consists of
two rounds of PCR. A primary PCR was
performed, on the genomic DNA using a bi-
otinylated primer specific to a known se-
quence in the genome along with four uni-
versal walker primers that were designed
with partial degeneracy. The biotinylated
primary PCR products were immobilized on
streptavidin-linked paramagnetic beads.
This step removed all nonspecific amplifica-
tion products, and the purified template was
used for the second PCR using a nested
primer and the walker primer-2 to increase
specificity. This technique is potentially use-
ful for cloning promoter regions and has
been successfully used to isolate 5′-flanking
genomic regions of many cDNA clones pre-
viously isolated by us.

INTRODUCTION

The traditional approach for “walk-
ing” from regions of known sequence
into flanking DNA sequences involved
the successive probing of libraries with
clones obtained from prior screenings.
This method, besides being laborious,
was also time consuming. Though PCR
is an effective method for selectively
amplifying specific DNA segments,
conventional PCR only allows the am-
plification of sequences within known
boundaries. Therefore, sequence infor-
mation at the extremities of the DNA
fragment to be amplified is a prerequi-
site for selective amplification of spe-
cific DNA, thus posing a major limita-
tion on the use of the PCR in the
amplification and isolation of these un-
known regions.

Numerous modifications have been
made to existing protocols for the am-
plification of an unknown DNA se-
quence that flank regions of known se-
quences, by PCR (5). They include
inverse PCR (13), panhandle PCR (17),
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vectorette PCR (1), anchored PCR
(16), AP-PCR (2,19), capture PCR (9),
and adapter-ligated PCR (6,15,18,20).
In the methods listed above, PCR was
usually carried out using restriction en-
zyme-digested-genomic DNA frag-
ments as template, which was either
circularized by ligation or cloned into a
vector or ligated to double-stranded,
partially double-stranded, or single-
stranded oligonucleotide cassettes. In
other cases, the amplification is carried
out with locus-specific primer(s) and a
vector/oligonucleotide cassette-specific
primer to amplify a fragment contigu-
ous to the known sequence. In this
method, the linear amplification of oth-
er DNA fragments, due to a common
vector (17) or adapter primer, results in
a high background during PCR. To
overcome this problem, known se-
quences attached/created at the ends of
a region of interest were developed
(4,7,11), which then were used as a
template for PCR. Here the template
could be used only to amplify a particu-
lar region of interest—therefore, with
reasonably low noise.

The methodology was further im-
proved to reduce the noise and to allow
the amplification of the flanking region
of any known sequence from that ge-
nomic source (1,8,12). In these meth-
ods, the desired specificity was attained
because of the specific design of the
cassette, which ensured that the cas-
sette-specific primer is not primed in
the first amplification cycle. Thus, the
cassette-specific primer can only take
part in the reaction after the target re-
striction fragment has been extended to
its end in the first cycle by the locus-
specific primer. These methods also
have major drawbacks, the most impor-
tant being the generation of nonspecif-
ic PCR products even after hot-start
PCR or touchdown PCR (3) during pri-
mary amplification. Therefore, one had
to ascertain the authenticity of the PCR
products through Southern analysis or
extensive cloning and sequencing. Be-
sides, the presence of multiple PCR
products complicates matters.

To circumvent these problems, we
have introduced a biotin/streptavidin
system to capture biotinylated frag-
ments of interest before the nested PCR
is carried out (14). The basic feature of
this method is to start a primary PCR

amplification reaction using a locus-
specific biotinylated primer. The intro-
duction of biotin, as a separation label,
into the specific restriction fragment
containing a part of the known locus
and the flanking region helps in the
process of its isolation. The biotinylat-
ed primary PCR fragments are then iso-
lated from the complex genomic mix-
ture using paramagnetic beads coated
with streptavidin. This isolation step is
very important in reducing the com-
plexity of the template and increasing
the concentration of the specific frag-
ment by several orders of magnitude
for the subsequent nested PCR (14).

All the above-mentioned methods
rely on the restriction fragmentation of
genomic DNA before ligation to the
oligonucleotide cassette. Plant genom-
ic DNA initially digested with a restric-
tion enzyme might contain 107–108

(depending on the size of the genome)
different fragments ranging from less
than 300 bp to greater than 10 000 bp
because of the uneven distribution of
the restriction site. Therefore, it is es-
sential that at least one restriction frag-
ment be produced that contains part of
the known locus, without it being too
large to be efficiently amplified in vitro.
In most cases, the information on the
distribution of restriction enzyme sites
in a region of interest is unavailable be-
fore the start of the walking experi-
ment. Therefore, a combination of sev-
eral different enzymes has to be tried to
increase the probability of generating
such convenient fragments. The proto-
col described here avoids the above
limitations by using a specially de-
signed walker primer that has degener-
ate and arbitrary bases towards its 3′-
end. This allows the primer to anneal to
different locations 5′ of the known re-
gion. It is a fast and reliable directional
genome walking protocol that could be
completed in a single working day us-
ing very small amounts of genomic
DNA without any prior processing. We
show here the successful use of this
protocol to isolate 5′-flanking regions
of a number of plant genes.

MATERIALS AND METHODS

Genomic DNA was isolated from
plants of choice using the CTAB
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method (10). Approximately 50 ng ge-
nomic DNA sample were used as a
template to perform PCR amplification
and later to enrich for DNA fragments
of interest from the PCR fragments that
are adjacent to a known sequence. This
is achieved using appropriate 5′-bi-
otinylated locus-specific primer com-
plementary to the known region of the
DNA and along with the walker
primers 1, 2, 3, and 4 (Table 1) in four
individual tubes, one each for each
walker primer. PCR conditions were
94°C for 1 min, 47°C–50°C for 1 min,
and 72°C for 4 min for 30 cycles unless
otherwise specified.

A total of 50 µL streptavidin-linked
paramagnetic beads (Roche Applied Sci-
ence, Mannheim, Germany) was washed
three times in 1× PCR buffer (10 mM
Tris-HCl, pH 8.8, 50 mM KCl, 1.5 mM
MgCl2, 0.01% gelatin, 0.005% Tween®

20, and 0.005% Nonidet P-40), the
amplified biotinylated PCR products
were immobilized on streptavidin-linked
paramagnetic beads, and the non-bi-
otinylated DNA was washed off.

Nested PCR was carried out using 1
µL immobilized primary PCR prod-
ucts, separately purified from the previ-
ous step, as template along with nested
locus-specific primer-2 and the walker
primer-2 (5′-CTAATACGACTCAC-
TATAGGG-3′) in four separate tubes.
The primer concentration and the PCR
cycling conditions were the same as
mentioned earlier. Five microliters of
the amplification product were electro-
phoresed on 1% agarose gel and visual-
ized after ethidium bromide staining.
The amplified nested PCR products
were cloned into a TA cloning vector as
per the manufacturer’s instructions
(Promega, Madison, WI, USA).

RESULTS AND DISCUSSION

In this protocol, the genomic DNA is
used without any further modifications
such as restriction digestion of genomic
DNA and/or ligation of special
adapters. The four universal walker
primers used separately for amplifica-
tion along with the biotinylated locus-
specific primer reduces the complexity
of the primary PCR products. The four
universal walker primers differ from
each other at their 3′-end. The initial

four bases at the 3′-end
were arbitrarily fixed for
each universal walker
primer, and the next four
bases were completely de-
generate (to reduce the per-
mutations and combina-
tions, universal bases can
also be used instead of in-
troducing degeneracy). The remaining
5′ portion of these universal walker
primers is identical and arbitrarily fixed
as (5′-CTAATACGACTCACTATAGG-
G-3′). Theoretically, the four-base se-
quence combination present on the 3′-
end of each of the universal walker
primers can exist once in every 256 bp
in the genomic DNA. The next four
bases being degenerate can also form a
perfect complement on the same tem-
plate DNA. Additional base pairing also
can occur between the 5′ arbitrary se-
quence of the walker primer and the
corresponding region of the genomic
DNA. Overall, these universal walker
primers can anneal to the template at
47°C–55°C in the PCR depending on
the base composition of the template.
The biotinylated locus-specific primer
will determine the position and direc-
tion of the genome walk during the

PCR. The primary PCR may amplify
multiple products because of multiple
priming of the universal walker primer.
The immobilization of the primary PCR
products onto streptavidin-linked para-
magnetic beads will help to remove all
the nonspecific amplification products
and enriches for the biotinylated specif-
ic products. This enrichment step is
very important in reducing the com-
plexity of the template and increasing
the concentration of the specific frag-
ment by several orders of magnitude for
the subsequent nested PCR amplifica-
tion. Thus, the use of the nested locus-
specific primer 2 ensures the selective
amplification of the desired fragment in
the second round of PCR.

To test the efficacy of the methodol-
ogy, we PCR amplified 5′-flanking re-
gions of different genes isolated in our
laboratory. Using gene-specific pri-
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Figure 1. PCR amplification products. (A) Products generated after two rounds of PCR from regions
upstream of the glyoxalase I gene from Brassica juncea. In the first round of PCR, genomic DNA was
amplified using a biotinylated gene-specific primer and four sets of walker primers. Biotinylated strands
of these PCR products were re-amplified using a nested gene-specific primer and a primer that is com-
plementary to the walker primers used in the first round of PCR. The different products generated after
the second round of PCR are shown in lanes 1–4. Note the different product sizes. The reaction that pro-
duced the biggest molecule was further analyzed (arrow). (B) Products of regions upstream of B. juncea
glyoxalase gene (lane 1), Pennisetum Na+/H+ antiporter gene (lane 2), pea tefA (lane 3), Pennisetum
ATPase C subunit (lane 4), Pennisetum phosholipase D (lane 5), and Pennisetum porin gene (lane 6).
Note that these are all PCR products after the second round of PCR as described in part A, and only the
products of one of the four walker reactions, that which yielded the largest product after second round of
PCR for each gene, have been shown. M, molecular weight marker (Invitrogen, Carlsbad, CA, USA).

1. CTAATACGACTCACTATAGGGNNNNATGC

2. CTAATACGACTCACTATAGGGNNNNGATC

3. CTAATACGACTCACTATAGGGNNNNTAGC

4. CTAATACGACTCACTATAGGGNNNNCTAG

Table 1. Walker Primers (5′′ →→ 3′′)



mers synthesized in the antisense ori-
entation towards the 5′-end of the
cDNA(s), we were able to amplify 5′-
flanking regions of all the genes we at-
tempted. Figure 1, A and B, shows that
the PCR amplification products were
discrete fragments in all the cases after
nested PCR. The PCR fragments were
gel-purified and cloned. To verify the
authenticity of the cloned fragments,
the insert DNA was sequenced com-
pletely and compared with the corre-
sponding cDNA sequence for the 5′-
end overlap because the nested
locus-specific primer was synthesized
such that there was at least a 100-bp
overlap with the 5′-end of the known
cDNA sequence. The detailed analysis
of these promoter regions will be pub-
lished elsewhere.

Unlike earlier methods, the method
presented here does not rely on the re-
striction of genomic DNA and therefore
does not suffer because of the uneven
distribution of the restriction enzyme
sites, in the region of interest, to gener-
ate convenient fragments for PCR am-
plification. The utilization of biotinylat-
ed locus-specific primer 1 and the
purification of primary PCR-amplified
products on streptavidin-linked para-
magnetic beads before nested PCR
reduce the template complexity and in-
crease the desired template concentra-
tion by several orders of magnitude. For
the easy, efficient, and reliable direc-
tional genome walking, we have devel-
oped a protocol in which genomic DNA
required is as little as 50 ng and with as
little as 30 bp sequence information to
isolate 5′- and 3′-flanking regions of in-
terest. The effectiveness of the rapid
PCR-based DNA walking method de-
scribed here will be valuable in isolating
promoters and regulatory elements from
sequences obtained from cloned cD-
NAs. This technique can also be used
for directional genome walking from
known regions to unknown regions.
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