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Abstract 

The diffusion of the Unmanned Aerial Vehicles (UAVs) requires a suitable approach to define safe flight operations. In this 
paper, an innovative algorithm able to quantify the risk to the population and to search for the minimum risk path is proposed. 
The method has two main phases: in the former, a risk-map is generated quantifying the risk of a specific area, in the latter, a path 
planning algorithm seeks for the optimal path minimizing the risk. The risk-map is generated with a risk assessment method 
combining layers related to the population density, the sheltering factor, no-fly zones and obstacles. The risk-aware path planning 
is based on the well-known Optimal Rapidly-exploring Random Tree, with the minimization of the risk cost with respect to the 
flight time. Simulation results corroborate the validity of the approach. 
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1. Introduction 

The presence of UAVs in our life is growing up and their extensive use has induced the rapid growth of the 
related research area. They are used in a wide variety of applications, such as surveillance, search and rescue and 
mapping, as discussed by Chmaj and Selvaraj (2015) and by Cai et al. (2014). In particular, according to Mohammed 
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et al. (2014) and Menouar et al. (2017), in the near future, UAVs will be used also in urban environments and they 
will be involved in the so-called smart cities. 

Urban areas are a critical scenario, because they are inhabited environments. For this reason, the flight in urban 
areas is strongly limited by the National aviation agencies, such as ENAC (Ente Nazionale per l’Aviazione Civile) in 
Italy and the FAA (Federal Aviation Administration) in the United States. However, performing flight operations in 
cities is needed, thus a revision of aviation rules is mandatory for a full exploitation of aerial robotics in urban areas. 
As a consequence, flight operations over inhabited area must guarantee a certain level of safety, quantified by the 
risk assessment. A realistic and detailed risk assessment is one of the major challenges, since it is not easy to 
quantify the effective risk of a specific flight operation. There are a lot of factors involved, related to both the drone 
and the environment. This topic is discussed in Washington et al. (2017). In Clothier et al. (2018), the risk is 
modeled with a Barrier Bow Tie Model (BBTM) for risk analyses, evaluation and decision-making activities, in 
order to reduce the risk to people on ground. A real-time risk assessment framework is presented in Ancel et al. 
(2017), in order to perform real-time risk evaluation and tracking. A complete risk assessment process is described in 
Dalamagkidis et al. (2011), where the risk is defined as the probability to cause a casualty expressed in flight hour, a 
classic measure system used in the aviation for decades, as in FAA, Federal Aviation Administration (2000). This is 
a common approach, also used in Clothier et al. (2007), in la Cour-Harbo (2018) and in Guglieri and Ristorto (2016). 
The probabilistic risk assessment is often used to quantify the risk of a specific flight operation. In Bertrand et al. 
(2017), the authors quantify the risk for long-range inspection missions of railways. 

In order to perform a safe flight operation, defining a safe path is mandatory. In Rudnick-Cohen et al. (2016) a 
risk-aware path planning is proposed, where a bi-objective optimization searches for a low risk and flight time 
solutions. In Primatesta et al. (2018) a risk-aware path planning based on dynamic risk-maps is proposed: first an 
offline optimal path is computed by trading off risk and path length, then, based on changes on the map, an online 
path planning algorithm adapts the path to maintain a safe and valid path. In Guglieri et al. (2015), an A* based 
algorithm minimizes the risk for flight operations. The risk-aware path planning is a common problem in robotics 
and it concerns also mobile robots in Feyzabadi and Carpin (2014), and underwater vehicles in Pereira et al. (2011). 

In this paper an innovative algorithm able to compute an optimum risk path for UAVs in urban environments is 
proposed. First, a probabilistic risk assessment procedure is executed in order to generate a risk-map, i.e., a map able 
to quantify the risk to the population over a specified urban area. Then, a risk-aware path planning algorithm seeks 
for the optimum risk path by minimizing the risk values taking into account the flight time. The basic principle of 
this approach is introduced in Primatesta et al. (2017), where a Cloud-based framework for the UAVs’ risk-aware 
intelligent navigation in urban environments is introduced. 

This paper is organized as follows. In Section 2, the proposed approach is introduced with its preliminary 
concepts. In Section 3 the risk-map is described in detail, focusing on the probabilistic risk assessment approach and 
introducing a new formulation to compute the area exposed to the crash. Section 4 defines the risk-aware path 
planning approach, while in Section 5 the simulation results are reported. Our conclusions are drawn in Section 6. 

2. Proposed Method 

In this section the proposed method to estimate risk optimum path is described. The procedure has two main 
phases: first, the risk-map is generated considering the vehicle parameters, thus, the path planner computes an 
optimal path considering the risk-map. The inputs of the risk-map generation are the drone parameters and the 
environment characteristics, such as the population density and the tridimensional model of the urban area. The 
resulting risk-map aims to quantify the risk relating the UAV on the population, defined as the frequency to have a 
casualty expressed in flight hour (h-1). Hence, the risk-map is used to compute the minimum risk path. Since the risk 
depends on the flight time, the path planner seeks for an optimal path that minimizes the risk as a function of the 
flight time. The output of the path planner is a waypoint-based path able to be executed by the aircraft. In next 
sections the risk-map and the risk-aware path planner are described in detail. 
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et al. (2014) and Menouar et al. (2017), in the near future, UAVs will be used also in urban environments and they 
will be involved in the so-called smart cities. 

Urban areas are a critical scenario, because they are inhabited environments. For this reason, the flight in urban 
areas is strongly limited by the National aviation agencies, such as ENAC (Ente Nazionale per l’Aviazione Civile) in 
Italy and the FAA (Federal Aviation Administration) in the United States. However, performing flight operations in 
cities is needed, thus a revision of aviation rules is mandatory for a full exploitation of aerial robotics in urban areas. 
As a consequence, flight operations over inhabited area must guarantee a certain level of safety, quantified by the 
risk assessment. A realistic and detailed risk assessment is one of the major challenges, since it is not easy to 
quantify the effective risk of a specific flight operation. There are a lot of factors involved, related to both the drone 
and the environment. This topic is discussed in Washington et al. (2017). In Clothier et al. (2018), the risk is 
modeled with a Barrier Bow Tie Model (BBTM) for risk analyses, evaluation and decision-making activities, in 
order to reduce the risk to people on ground. A real-time risk assessment framework is presented in Ancel et al. 
(2017), in order to perform real-time risk evaluation and tracking. A complete risk assessment process is described in 
Dalamagkidis et al. (2011), where the risk is defined as the probability to cause a casualty expressed in flight hour, a 
classic measure system used in the aviation for decades, as in FAA, Federal Aviation Administration (2000). This is 
a common approach, also used in Clothier et al. (2007), in la Cour-Harbo (2018) and in Guglieri and Ristorto (2016). 
The probabilistic risk assessment is often used to quantify the risk of a specific flight operation. In Bertrand et al. 
(2017), the authors quantify the risk for long-range inspection missions of railways. 

In order to perform a safe flight operation, defining a safe path is mandatory. In Rudnick-Cohen et al. (2016) a 
risk-aware path planning is proposed, where a bi-objective optimization searches for a low risk and flight time 
solutions. In Primatesta et al. (2018) a risk-aware path planning based on dynamic risk-maps is proposed: first an 
offline optimal path is computed by trading off risk and path length, then, based on changes on the map, an online 
path planning algorithm adapts the path to maintain a safe and valid path. In Guglieri et al. (2015), an A* based 
algorithm minimizes the risk for flight operations. The risk-aware path planning is a common problem in robotics 
and it concerns also mobile robots in Feyzabadi and Carpin (2014), and underwater vehicles in Pereira et al. (2011). 

In this paper an innovative algorithm able to compute an optimum risk path for UAVs in urban environments is 
proposed. First, a probabilistic risk assessment procedure is executed in order to generate a risk-map, i.e., a map able 
to quantify the risk to the population over a specified urban area. Then, a risk-aware path planning algorithm seeks 
for the optimum risk path by minimizing the risk values taking into account the flight time. The basic principle of 
this approach is introduced in Primatesta et al. (2017), where a Cloud-based framework for the UAVs’ risk-aware 
intelligent navigation in urban environments is introduced. 

This paper is organized as follows. In Section 2, the proposed approach is introduced with its preliminary 
concepts. In Section 3 the risk-map is described in detail, focusing on the probabilistic risk assessment approach and 
introducing a new formulation to compute the area exposed to the crash. Section 4 defines the risk-aware path 
planning approach, while in Section 5 the simulation results are reported. Our conclusions are drawn in Section 6. 
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In this section the proposed method to estimate risk optimum path is described. The procedure has two main 
phases: first, the risk-map is generated considering the vehicle parameters, thus, the path planner computes an 
optimal path considering the risk-map. The inputs of the risk-map generation are the drone parameters and the 
environment characteristics, such as the population density and the tridimensional model of the urban area. The 
resulting risk-map aims to quantify the risk relating the UAV on the population, defined as the frequency to have a 
casualty expressed in flight hour (h-1). Hence, the risk-map is used to compute the minimum risk path. Since the risk 
depends on the flight time, the path planner seeks for an optimal path that minimizes the risk as a function of the 
flight time. The output of the path planner is a waypoint-based path able to be executed by the aircraft. In next 
sections the risk-map and the risk-aware path planner are described in detail. 
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Fig. 1. From the left to the right: an example of general layer with UAV positioned on the analyzed cell; the hazardous area is computed 
considering the UAV position; only cells interested by the hazardous area are taken into consideration. 

3. Risk-map 

The risk-map is a two-dimensional georeferenced map divided into cells. For each of them, an on-population 
drone related risk value is associated. The risk-map is generated taking into account both the drone and the ground 
characteristics. The environmental data are stored into proper two-dimensional maps, called layers. In this work, the 
multilayer risk-map framework is composed by the following layers: 

 Obstacle Layer defines the height of both fixed (buildings) and semi-static obstacles (construction sites) on the 
ground; 

 Population Density Layer defines the population density; 
 Sheltering Factor Layer defines the sheltering factor; 
 No Fly-zone Layer defines the areas where the drone flight is not allowed. 
 
All these layers are combined to generate the risk-map. First, with a probabilistic risk assessment approach, the cell 
risk-value is computed, taking into account the population density, the sheltering factor layer and the hazardous 
area, i.e., the area interested by the descent of the UAV. Thus, it is merged with the obstacle and the sheltering 
factor layers with an element by element combination, obtaining the risk-map. This procedure is simple: each 
element of the risk-map        has a value equal to -1 if it is a no-fly zone or if it is occupied by obstacles at the 
flight altitude, otherwise, it has the risk value associated to the risk-map element. 

3.1. Hazardous Area 

In the case of failure, the drone will probably roam several cells before to touch the ground. For this reason, when 
the risk of flying over a cell is computed, all the cells interested by the descent event are taken into account. These 
cells lie in an area, called hazardous area. Since the risk-map is generated before the definition of the flight 
operation, the direction of the aircraft is unknown. For this reason, the area is a circle with a radius defined by the 
maximum traveled distance of the UAV during the descent event. The hazardous area is defined based on the 
vehicle configuration type (Fig. 1). 

3.1.1. Rotary wing aircraft 
With the rotary wing aircraft, the following ballistic descent model is considered: 
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 ,        (1) 

with m the mass of the vehicle, ρ is the air density, S is the vehicle frontal section and CD is the related drag 
coefficient. x and y are the horizontal and vertical upward axis. Solving the Eq. 1, the maximum drone travelled 
distance is calculated, as well as the impact velocities. 
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3.1.2. Fixed wing aircraft 
With the fixed wing aircraft, we consider the worst scenario, i.e., the vehicle starts a descent as a glider with a 

known glide ratio  . The glide ratio defines the ratio between the traveled horizontal distance xdist and the flight 
altitude h. Hence,         . 

3.2. Risk Assessment 

In this section, the method of merging information coming from the various layers in order to obtain the so-called 
risk-map is analyzed. The formulation used in this work is derived from a common probabilistic approach used in 
Dalamagkidis et al. (2011) and Clothier et al. (2007). Hence: 

 
                                     ,      (2) 

 
where fF is the casualty frequency: in this work, it represents the risk to the population on the ground. Aexp is the area 
exposed to the crash, referred to a single person. Dp is the population density. P(fatality|exposure) is the probability 
that a person will suffer fatal injuries given exposure to the accident. fGIA is a rate of ground impact accidents. 

The risk assessment formula is used to compute the risk value for each element of the map considering the 
hazardous area. This implies the use of the average value of population density in the hazardous area. Unlike the 
formulation at the state of the art, in this work different assumptions are considered on the sheltering factor and the 
area exposed to the crash. 

3.2.1. Ground Impact Accidents Rate 
The rate of ground impact accidents quantifies the frequency related to the loss the control of the UAV and the 

resulting impact to the ground. Often, it coincides with the failure rate of the aircraft system, expressed in flight 
hours. In Dalamagkidis et al. (2011), a constant value in the range [10-6 h-1, 10-9 h-1] is used. It comes from the 
average accident rate involving unmanned aircraft. However, the failure rate depends on the vehicle type and 
specifications: the higher the drone price, the lower it is. In la Cour-Harbo (2017), the author estimates the fatality 
rate of Micro Air Vehicles (MAV) using values of 0.5-10 h-1. In Amos et al. (2013), the authors tried to estimate the 
failure rate of the Ultra Stick 120 aircraft with an average value of 2.16 failures per 100 flight hours. 

3.2.2. Area Exposed to the crash 
The area Aexp, also called Casualty Area, is the exposed area to the crash debris referred to a single person on the 

ground. In literature some methods to estimate it are proposed, as in Dalamagkidis et al. (2011). One of the most 
used formulation is presented in Smith (2000): 
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exposed to the crash, referred to a single person. Dp is the population density. P(fatality|exposure) is the probability 
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average accident rate involving unmanned aircraft. However, the failure rate depends on the vehicle type and 
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failure rate of the Ultra Stick 120 aircraft with an average value of 2.16 failures per 100 flight hours. 

3.2.2. Area Exposed to the crash 
The area Aexp, also called Casualty Area, is the exposed area to the crash debris referred to a single person on the 

ground. In literature some methods to estimate it are proposed, as in Dalamagkidis et al. (2011). One of the most 
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Fig. 2. In (a), the comparison between the old (blue line) and new (orange line) formulation considering different 

drone size. In (b), the representation of the exposed area with the old formulation proposed in Smith (2000). In (c), 
the representation of the new formula proposed in this work. 

 
 
where γ is the glide angle, rp and hp are the radius and the height of cylinder idealizing an average person, and ruav is 
the radius of the sphere containing the aircraft. In particular, ruav is equal to the semi-wing span for fixed wing 
configuration, or a half of the maximum occupational length in rotary wing configuration. However, the Eq. (3) 
diverges when γ goes to zero. This happens because the formula is used for commercial space launch and reentry 
missions: it involves high kinetic energy, so the casualty area is overestimated for our purpose. The Eq. (3) is plotted 
in Fig. 2(a) (blue lines). In order to solve the above-mentioned problem, in this work a novel formulation is 
proposed. The hypothesis fulfilled are: 

 The casualty area is very small compared to the area interested by the ground impact event; 
 The casualty area consists in the all involved Aexp. 
 
While in the old formula the exposed area is simply idealized as the man-cylinder shadow on the ground, in the 
proposed method the exposed area is the projection of the man-cylinder on a plane normal to the speed of the UAV. 
In fact, we consider that the UAV is offensive only for the first hit person. In Fig. 2(b) and Fig. 2(c), old and new 
methods are illustrated respectively.  
Hence, the proposed method is defined by the following Equation: 
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The characteristics of the new formula, lead to new advantages. It is finite and has a maximum value (the dashed 
line in Fig. 2(a)): when the glide angle at impact is unknown, the maximum value can be used as casualty area. 

3.2.3. Probability of fatality given exposure 
The P(fatality|exposure) is the probability that the person hit by the aircraft suffers fatality injuries. Depending on 

the aircraft properties and on which part of body is affected, it is hard to estimate it. The available methods are the 
Blunt Criterion (BC) in Bir and Viano (2004) and the Viscous Criterion (VC) in Johannsen and Schindler (2005). 
They are based on the energy absorbed during the impact, but they are not suitable with low impact velocities. In 
this work, the method proposed in Dalamagkidis et al. (2011) is used: 
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α is the impact energy required for a fatality of 50% when     , and β is the impact energy threshold required to 
cause a fatality when ps converges to zero. According to Dalamagkidis et al. (2011), acceptable values of α and β are 
100 kJ and 34 J respectively. In the fixed wing aircraft case, the impact speed is 90% of the cruise speed, while in 
the rotary wings one, the impact velocity can be estimated by the ballistic descent model. 
The sheltering factor quantifies how people on the ground are sheltered by buildings and obstacles. In Dalamagkidis 
et al. (2011), it lies in the range from 0 to +∞. According to Guglieri et al. (2014), it is useless to take into account 
high ps values. In this work, the ps belongs to the range from 0 to 10. In Table 1 is reported the sheltering factor 
criteria used in this work. Moreover, in order to evaluate all the cell interested by the descent of the UAV, the Eq. 
(5) uses the arithmetic mean value of the sheltering factor in the hazardous area. 

             Table 1. Sheltering Factor values. 

Sheltering Factor Typical Area 

0 No obstacles 

2.5 Sparse trees 

5 

7.5 

10 

Trees and low buildings 

High buildings 

Industrial area 

4. Path planning 

Once the risk-map is generated, the path planning aims to compute an optimal path minimizing the risk to the 
population according to the risk values in the risk-map. 

In this work, a risk-aware path planning algorithm based on the well-known Optimal Rapidly-exploring Random 
Tree (RRT*) (Karaman and Frazzoli (2010)) is proposed. RRT* is an enhanced version of the original Rapidly-
exploring Random Tree (RRT) proposed by LaValle (1998). RRT and RRT* are sample-based algorithms that 
explore the search space with an incremental tree. While RRT connects the new sampled state with the nearest one 
in the tree, the RRT* connects it to the branch with the minimum motion cost. Moreover, the rewiring procedure of 
RRT* optimizes the tree construction. Therefore, the RRT* algorithm converges to the optimal solution. 

Since the risk values are expressed per flight hour, in this work we use the concept of Time Reliance: the 
probability of killing someone is proportional to how long the person is exposed to the risk. This assumption derives 
from the complex system failure probability calculation. During the useful life of the aircraft system, the probability 
to have a failure during a period of time t is equal to  (     )    , with ρ is the failure rate during useful life phase 
(depending on the UAV) and t is the considered time. In our approach the failure rate of the vehicle is already 
considered in the risk assessment, as the rate to have a ground impact accident fGIA. As a consequence, the proposed 
risk-aware path planner considers the risk in respect to the flight time. 

Hence, the motion cost of the risk-aware RRT* is defined in the Eq. 6(a): 
 

                ∫       
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              (b),  (6) 

 
where cm(ni-1) is the motion cost of the parent node ni-1, r(n) is the risk function defined by the risk values in the risk-
map. Practically, because of the discrete search space (the risk map), the integral is computed with an approximative 
and incremental method, the Eq. 6(b), where   (ni-1, ni) is the flight time expressed in hour needed to cover two 
adjacent nodes ni-1 and ni. 

5. Simulation results 

The approach proposed in this paper is implemented in C++ as an executable process in ROS (Robot Operating 
System), an open-source meta-operating system for robots, presented in Quigley et al. (2009). 
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In particular, the risk-map is generated using the Grid Map library proposed in Fankhauser and Hutter (2016). 
Grid Map is a C++ library compatible with ROS that is able to generate two-dimensional grid maps with multiple 
data layers. The path planning is implemented using the Open Motion Planning Library (OMPL) in Şucan et al. 
(2012). OMPL is an open source library specialized in sampling-based motion planning and it consists of many 
state-of-the-art algorithms. 

 
Fig. 3. On the left, the screen of the Ground Control Station (GCS), where the Iris+ executes the minimum risk path with SITL simulator.  

On the right, the Iris+ in the simulated environment in Gazebo  

 
Fig. 4. From the left to the right: the map from OSM of the portion of city used to execute the simulation results, the obstacle layer and the 

sheltering factor layer. On the map of Turin is overlighted an imaginary no-fly zone. 
 

In order to demonstrate the effectiveness of the risk-map and the path planning, the simulation results are 
obtained considering a portion of the city of Turin, Italy. The model of city is given by OpenStreetMap (OSM) 
OpenStreetMap contributors (2017), an open source project that distributes geographical data of the world. Thanks 
to it, the 3D model can be extracted, then, the obstacle layer is defined. 

The proposed approach is also tested in a realistic simulation performed with SITL (Software In The Loop) SITL 
contributors (2017) and Gazebo simulator. SITL allows to simulate the autopilot of the vehicle, interfacing with a 
flight simulator, executing the control command and providing sensors data. The flight simulator is performed using 
Gazebo, a robot simulator compatible with ROS presented in Koenig and Howard (2004), while the mavros node 

.  
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provides the communication between ROS and the autopilot, using the MAVLink protocol. Fig. 3 shows the 
simulation, where the Iris+ executes an autonomous mission performing the minimum risk path reported in Fig. 5. 

 

 
Fig. 5. On the left, the risk-map of the Iris+ aircraft. On the right, the risk-map of the Disco aircraft. Both maps are generated considering the 

flight altitude of 30 m. The white line is the minimum risk path computed with our risk-aware path planner. 
 
The sheltering factor layer is determined with a simple method: a value of ps = 7.5 is defined to the element 

occupied by buildings, whereas there is no information about the shelter, a value of ps = 2.5 is set. The last one is an 
appropriate sheltering factor value, because the people in the street are often sheltered by trees, vehicles and low 
buildings. The population density layer is defined with a constant value of 6900 people/km2, the population density 
of Turin. 

In Fig. 4 is illustrated the portion of city from OSM, the obstacle layer at 30 m and the sheltering factor layer. 
Once all layers are defined, the risk-map can be generated. In order to demonstrate the proposed method, two 
aircraft are taken into consideration: the 3DRobotics Iris+ and the Parrot Disco. These are two lightweight 
commercial drones, a quadrotor and a fixed wing aircraft, respectively. The drone specifications are reported in 
Table 2. 

The risk-map is generated following the procedure described in this work and assuming a failure rate equals to 
0.01 h-1. The resulting maps computed with the both vehicles are illustrated in Fig. 5. The risk-maps differ each 
other, because of the different assumption about the vehicle configurations. Due to the smaller hazardous area, the 
conformation of the risk-map of the Iris+ is strongly affected by the sheltering factor layer. In fact, the minimum 
risk is located over buildings, while the maximum risk over the opened areas, such as streets and parks. 

On the contrary, the risk values in the risk-map associated to the Parrot Disco is uniformly distributed on the 
map. The main reason is the large hazardous area that implies mean values of sheltering in respect of the wide 
hazardous area. 

The risk-map is now used to compute the minimum risk path. Given the same start and goal positions on the map, 
two paths are illustrated in Fig. 5, while the numerical results are reported in Table 3. 

The risk-aware path planning algorithm produces interesting results. With the Iris+ aircraft the minimum risk 
path passes over the rooftops of the buildings, because they are the area with the minimum risk. Differently, with the 
Disco aircraft the minimum risk path is practically a straight line. The main reason is the distribution of the risk. In 
the risk-map of the Parrot Disco the variation between the maximum and the minimum risk is small, as a 
consequence the path with the minimum risk in respect to the flight time is the shorter distance path. 

In order to quantify the risk of a flight operation, it is important to evaluate the average risk of the flight mission. 
According to Dalamagkidis et al. (2011), an acceptable Equivalent Level of Safety (ELOS) is 110-6 h-1. In our test, 
the average risk is always lower than the ELOS threshold. 
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Since our risk-aware path planner minimizes the risk in respect to the flight time, it can decide to fly over a zone 
with high risk for few time. This happens with the Iris+ aircraft, where the minimum risk path crosses an area with 
high risk in order to reach the goal position. However, the resulting average risk is acceptable. 

      Table 2. Specification of the aircraft. 

Specific 3DR Iris+ Parrot Disco 

Type Quadrotor Fixed wing 

Mass (kg) 1.282 0.75 

Radius (m) 

Cruise speed (m/s) 

0.35 

10 

0.575 

12.5 

      Table 3. Results of the risk-aware path planning. 

Vehicle Solve time (s) Flight time (s) Path length (m) Motion cost Average risk (h-1) 

Iris+ 5.0 114.237 1142.372 1.16110-8 5.07210-7 

Disco 5.0 80.544 1006.796 1.88310-8 8.41610-7 

 

6. Conclusions 

In this paper an innovative algorithm to compute an optimum risk path for unmanned aerial vehicle in urban 
environments is proposed. The risk-map is able to quantify the risk to the population of a large areas, considering 
the specification of a specified vehicle. It defines the risk level of each element and identifies the areas where the 
flight is not allowed because of the presence of obstacles at the flight altitude or no-fly zones forced by the National 
aviation agencies. 

In order to define safe flight operations, the risk-map is used to compute a minimum risk path. In this paper it is 
proposed a path planning algorithm based on the well-known Optimal Rapidly-exploring Random Tree (RRT*) with 
the minimization of the risk values. Since the risk is expressed in flight hours, the path planner evaluates the risk in 
respect to the flight time. As a consequence, the path planning seeks for an optimal path by trading off the risk and 
the flight time. 

The simulation results corroborate the proposed method. Results are obtained considering two vehicles with 
different specifications. The resulting risk-maps quantify the risk over the entire area and the path planning 
computes the minimum risk path. 

The proposed approach is a very promising tool, because it is able to define safe flight operations. Especially in 
urban environments, where the public safety is the most important element. 

Future works include the improvement of the risk assessment, considering different descent events and a more 
realistic model. Also, the path planning can be improved considering kinodynamic constraints and the adaptation to 
tridimensional environments. 
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Since our risk-aware path planner minimizes the risk in respect to the flight time, it can decide to fly over a zone 
with high risk for few time. This happens with the Iris+ aircraft, where the minimum risk path crosses an area with 
high risk in order to reach the goal position. However, the resulting average risk is acceptable. 

      Table 2. Specification of the aircraft. 

Specific 3DR Iris+ Parrot Disco 

Type Quadrotor Fixed wing 

Mass (kg) 1.282 0.75 

Radius (m) 

Cruise speed (m/s) 

0.35 

10 

0.575 

12.5 

      Table 3. Results of the risk-aware path planning. 

Vehicle Solve time (s) Flight time (s) Path length (m) Motion cost Average risk (h-1) 

Iris+ 5.0 114.237 1142.372 1.16110-8 5.07210-7 

Disco 5.0 80.544 1006.796 1.88310-8 8.41610-7 

 

6. Conclusions 

In this paper an innovative algorithm to compute an optimum risk path for unmanned aerial vehicle in urban 
environments is proposed. The risk-map is able to quantify the risk to the population of a large areas, considering 
the specification of a specified vehicle. It defines the risk level of each element and identifies the areas where the 
flight is not allowed because of the presence of obstacles at the flight altitude or no-fly zones forced by the National 
aviation agencies. 

In order to define safe flight operations, the risk-map is used to compute a minimum risk path. In this paper it is 
proposed a path planning algorithm based on the well-known Optimal Rapidly-exploring Random Tree (RRT*) with 
the minimization of the risk values. Since the risk is expressed in flight hours, the path planner evaluates the risk in 
respect to the flight time. As a consequence, the path planning seeks for an optimal path by trading off the risk and 
the flight time. 

The simulation results corroborate the proposed method. Results are obtained considering two vehicles with 
different specifications. The resulting risk-maps quantify the risk over the entire area and the path planning 
computes the minimum risk path. 

The proposed approach is a very promising tool, because it is able to define safe flight operations. Especially in 
urban environments, where the public safety is the most important element. 

Future works include the improvement of the risk assessment, considering different descent events and a more 
realistic model. Also, the path planning can be improved considering kinodynamic constraints and the adaptation to 
tridimensional environments. 
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