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Abstract

Possibility is considered as a promising mathemat-
ical tool to represent that particular case of incom-
plete information given by a measurement result. A
measurement result can be affected by systematic
and random effects. The combination of random
contributions in the possibility theory returns only
approximated results, and it is important to identify
an optimal combination method to obtain accept-
able uncertainty evaluations. This paper considers
the generalized Dombi operator as a promising tool
to obtain satisfying results.
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1. Introduction

It is now universally recognized [1,2] that the re-
sult of a measurement provides only a finite amount
of information about the measurand. Therefore, a
measurement result is useless unless some additional
relevant information [3] can be associated to the re-
sult itself, aimed at quantifying how complete this
information is. Today, measurement uncertainty
represents this additional relevant information.
The present practice of measurement, encom-
passed in two official documents issued by the Bu-
reau International des Poids et Mesures (BIPM),
the International Vocabulary of Metrology (VIM)
[3] and the Guide to the expression of Uncertainty in
Measurement (GUM) [1], prescribes that all signifi-
cant systematic effects are recognized and compen-
sated for, so that only random effects are assumed
to affect the measurement process and contribute to
measurement uncertainty. Under this assumption,
probability is the most effective mathematical tool
to represent the incomplete information provided by
a measurement result, that is therefore represented
by a probability distribution, characterized by its
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first two moments, the mean (measured value) and
its standard deviation (standard uncertainty) [1].

However, in many industrial processes, the iden-
tification and compensation of the systematic ef-
fects may become a too expensive task, so that it
is important to take into account also the system-
atic contributions to uncertainty and combine them
with all other contributions, to evaluate the overall
measurement uncertainty and assess whether these
effects can be tolerated or have to be compensated.

For this reason, the possibility theory has been
recently investigated as a more general tool than
probability to express measurement results together
with the related measurement uncertainty (2,4, 5],
and Random-Fuzzy Variables (RFVs) have been de-
fined [6,7] as a promising tool for representing and
combining measurement results and related uncer-
tainty.

While possibility allows one to represent and com-
bine systematic contributions in a strict way, when
used to combine random contributions it can only
provide approximate solutions [2, 8] to the strict
ones obtained in the probability domain. To keep
the advantages of a unique approach to measure-
ment uncertainty, capable of representing and pro-
cessing all contributions to uncertainty, it is then
important to define an optimal way to combine ran-
dom contributions in the possibility domain.

This paper considers the generalized Dombi op-
erator [9] and shows that it can provide satisfac-
tory approximations in many cases of interest in
the measurement field, much better than the ones
previously obtained by the same authors employing
single-parameter t-norm families [8].

2. Uncertainty representation

Within the RFV approach [2,6,7], the RFV itself
is capable of representing the result of a measure-
ment, i.e. the best measurand estimate together
with the associated estimate of measurement un-
certainty. An example of RFV is shown in the last
plot of Fig. 1. This variable is composed by two dif-
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Figure 1: Internal PD ri* (blue line), random PD
2" (red line) and resulting RFV of X (blue and
magenta lines).

ferent possibility distributions (PDs): an “internal
PD” rin* (blue line in Fig. 1), which represents the
non-random contributions to uncertainty (e.g. the
contribution of uncompensated systematic effects),
and an “external PD” r**' (magenta line in Fig. 1),
which represents all contributions to uncertainty.
The external PD is obtained by combining r"* with
a “random PD” 7' (red line in Fig. 1), which repre-
sents only the random contributions to uncertainty
(e.g. the contribution of random noise).

According to [10], the available metrological in-
formation about a measured quantity X leads to the
construction of ri#® and 72", In particular, the PD
ri3t is generally obtained directly as a PD starting
from the available evidence [11]. On the other hand,
since the available evidence about random contribu-
tions is commonly represented by means of a prob-
ability density function (PDF) px, 2" is often ob-
tained by means of a probability-possibility trans-
formation [12,13] applied to px. Starting from rizt
and 2", the external PD r$* can be derived [14],

as:
r$(z) = sup T [rﬂ?”(w —a + m*),riX“t(x’)] (1)

where z* is the mode of r{" and T}, is the min
t-norm [15]. Equation (1) can be interpreted as
follows: the external possibility r&* is, for each z
value, the sup of *" centered on a new mode value
z', limited by the possibility that x’ represents a

new mode value (rig®(z')).

According to [2,7], the cuts at level o (a-cuts)
of r$¥* generalize the probabilistic concept of confi-
dence intervals. Their confidence level can be sim-

ply obtained as v =1 — a.
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3. Uncertainty combination

Within the RFV approach [2,7], uncertainty is prop-
agated through the combination of PDs. In general,
PDs can be combined by means of the Zadeh’s ex-
tension principle (ZEP) [16]:

rz(2) rx,v (T,Y) (2)

sup
z=f(z,y)

From the measurement point of view, this principle
can be interpreted as follows: starting from the joint
PD rx y associated with the measured variables X
and Y, the ZEP provides the PD r; associated with
measurand Z = f(X,Y). Therefore, f represents a
generic measurement function.

To obtain rz, the joint PD rx y has to be first
evaluated starting from the available metrological
information [8,11]. In most cases, the available
metrological information concerns the possible val-
ues of the measured variables and their relation and
leads, as shown in [17], to the construction of the
marginal PD rx and the conditional PD ry | x, al-
ready defined in [18]. Once the distributions rx and
ry|x are obtained, the joint PD can be found as:

3)

T being a t-norm [15,19]. Of course, if evidence
about the independence of the measured variables
X and Y is available, (3) simplifies to:

rx,y(z,y) =T [rx(z),ry x(y|z)]

(4)

The choice of the specific t-norm to be applied in
(3) and (4) represents the most critical point in the
definition of the uncertainty combination method
within the RFV approach. In fact, two different ¢-
norms can lead to two significantly different joint
PDs, and, therefore, two different PDs associated
with measurand Z are obtained by means of (2). For
this reason, a criterion has been identified in [8,11]
to find the optimal ¢-norm for the combination of
measurement uncertainty.

The referenced papers state that the choice of
a specific t-norm depends on the nature of the
uncertainty contributions represented by the PDs,
i.e. that two different ¢-norms have to be consid-
ered for the combination of internal PDs and ran-
dom PDs. The fact that internal PDs represent the
uncertainty contributions due to all kinds of non-
random effects led, in [11], to the conclusion that
a minimum specificity principle (or maximum en-
tropy principle) should be followed for the deter-
mination of the specific t-norm for their aggrega-
tion. Of course, the maximum entropy in their ag-
gregation is obtained by selecting the least specific
t-norm, i.e. the min t-norm 7,, [15,19].

On the other hand, the fact that random PDs rep-
resent the uncertainty contributions due to the sole
random effects led, in [8], to the conclusion that a
maximum specificity principle (or minimum entropy

rxyv(z,y) =T [rx(z),ry(y)]



principle) should be followed for the determination
of the specific t-norm for their aggregation. The
minimum entropy in their aggregation can be ob-
tained by selecting a t-norm among the Frank para-
metric family [19,20]:

Tf [r1,7m2] =
T [1,72) ifvy=0
_ T, [r1,72] ify=1 5)
Ty, [r1,72] if v=o00
log,, (H—%) else

where 7T, is the product t¢-norm, 77, is the
Lukasiewicz’s ¢-norm [15,19] and + is the param-
eter value.

While the criterion identified in [11] for the inter-
nal PDs leads to a single t-norm, the criterion iden-
tified in [8] for the random PDs leads to a t-norm
parametric family. This means that an optimum
parameter value has to be identified for the combi-
nation of random PDs, i.e. for the combination of
random contributions to uncertainty.

A numerical method has been devised in [8] to
identify the optimum parameter value, comparing
the combination of the random contributions that
is obtained in the possibility domain for a given pa-
rameter v with the combination of the same contri-
butions in their natural domain: the probability do-
main. According to this method, when random con-
tributions are assumed to be normally distributed,
quite similar result are obtained in the two domains
for v = 0.05.

The application of this -norm to particular cases
[14,21] yielded good results, but also showed that,
even considering the optimum parameter value v =
0.05, small differences appear between the final un-
certainty estimate obtained in the two domains. In
other words, the approach devised for the combina-
tion of random contributions in the possibility do-
main is only a numerical approximation of the (cor-
rect) combination of the same contributions in the
probability domain. This numerical approximation
shows it weakness when several random contribu-
tions have to be combined [21]. In fact, in this case,
the final uncertainty value obtained in the possi-
bility domain may result in a underestimate of the
correct uncertainty value provided by the probabil-
ity domain.

Therefore, when several random contributions
have to be combined, the simplicity of a single pa-
rameter t-norm family has to be abandoned, and
more complex and flexible ¢-norms have to be in-
vestigated. A good candidate for the combination
of multiple random PDs appears to be the general-
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ized Dombi operator (GDO) [9]:

[x] =

GDO
V1,72

1

T (G (T (1 (2)7) - 1))1/72

(6)

where r is a vector of IV possibility distributions
ri. As shown by (6), TSP9 is a two-parameter t-
norm family, i.e. it shows an additional freedom de-
gree with respect to the Frank family. Therefore,
it is worth checking here if this operator can lead
to a more accurate combination of random contri-
butions to uncertainty. In the next Sections, the
procedure for the identification of the best t-norm
for the combination of random PDs and the optimal
t-norm parameters will be briefly recalled.

3.1. Identification of the optimal t-norm

The t-norm selection procedure is based on the
the availability of a specifically designed 2-D
probability-possibility transformation. This trans-
formation has been introduced in [13] in order to
preserve the maximum possible amount of metrolog-
ical information in the transformation from a joint
PDF to a joint PD. In particular, [13] has proved
that the maximum amount of information about the
marginal distributions of the joint distributions and
their possible correlation is preserved in the trans-
formation. Moreover, [13] has proved that also the
information about a variable Z derived from X and
Y is preserved.

To clarify this point, let us consider a bivariate
standard normal PDF pxy = N>(0,I) and a vari-
able Z derived from X and Y, as Z = X +Y. Ac-
cording to [13], if a joint PD 7x y is derived from
px,y by means of the 2-D probability-possibility
transformation defined in [13], pz obtained from
the joint PDF px y and rz obtained from the joint
PD #x y through (2) provide the same information
about Z.

According to the above discussion, the joint PD
7x,y provided by this transformation can serve as
a reference joint PD in the definition of the best t-
norm for the combination of random contributions
in the possibility domain. Let us assume that the
marginal distributions px and py of px,y are trans-
formed into their equivalent possibility distributions
rx and ry by means of the 1-D transformation dis-
cussed in [12,13]. Moreover, let us assume that rx
and ry are combined into a joint PD 7x y by means
of a t-norm T', according to (4). Starting from these
assumptions, from a strict theoretical point of view,
the optimal ¢t-norm T for the combination of random
contributions is the t-norm yielding:

(7)

In fact, only in this unique case, the proof given
in [13] ensures that equivalent distributions of Z

Txy =Ffxy



t-norm | Param. values e
T,f v =0.05 3.4%
v = 0.55
e 0.9%
Yo = 1.47
Table 1: Errors e introduced by Tf and T%DWS

Standard Normal distributions are assumed for px
and pPy.

are obtained in the probability and the possibility
domains, i.e. that, starting from equivalent assump-
tions about the random contributions, the same un-
certainty estimate is obtained in the two domains.

3.2. Identification of the optimal t-norms
parameters

Unfortunately, a closed form expression of an oper-
ator T strictly satisfying (7) has not yet been found.
Therefore, the most common parametric families of
t-norms have been considered in [8] as the optimal
operator T. In general, the considered ¢t-norm fami-
lies do not satisfy (7), i.e. the resulting joint PD can
be different than the reference joint PD. This means
that the considered t-norm families introduce an er-
ror in the combination of random contributions.

Of course, the error introduced by the ¢-norm
parametric families is a function of their parame-
ters. Therefore, the parameter values for which the
minimum errors are obtained have to be identified.
A numerical procedure can be followed to obtain
the optimal ¢-norms parameters. This procedure
is based on the following definition of normalized
squared error:

e_\/ff rxy(z,y) —xy(z, y))Qdmdy ®)

[ Px,y(z,y)?dedy

When this procedure is applied to the Frank ¢-
norm family, the optimal parameter value and the
minimum error e reported in Table 1 are obtained.
The optimization procedure can be applied also to
the GDO, though in this case two parameters must
be optimized. The optimal parameters and the min-
imum error for the GDO are also reported in Table
1. Comparing the two errors, it can be immedi-
ately seen that the GDO represents an important
improvement in the combination of the random con-
tributions in the possibility domain. In fact, its ca-
pability of approximating the reference joint PD is
significantly better than the Frank ¢-norm capabil-
ity.

This can be also proven by means of a graphical
representation. In Figs. 2 and 3 the a-cuts of the
joint PDs induced by the optimal Frank and GDO
t-norms are plotted and compared with the alpha
cuts of the reference joint PD. Figure 2 shows that
the a-cuts provided by the Frank ¢-norm are larger
than the reference ones for low « values, while they
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Figure 2: Comparison of the a-cuts of the joint PD
induced by TX_ ;s (green lines) with the a-cuts of
the reference Jomt PD (red lines). Standard Normal
distributions are assumed for px and py.

Figure 3: Comparison of the a-cuts of the joint PD
induced by TSP 5 ) 47 (green lines) with the a-
cuts of the reference joint PD (red lines). Standard
Normal distributions are assumed for px and py.

are smaller than the reference ones for high o val-
ues. This means that the Frank ¢-norm introduces
an evident systematic error in the evaluation of the
joint PD. According to Fig. 3, also the GDO pro-
vides an approximated joint PD, but the resulting
a-cuts are more similar to the reference a-cuts.

4. Example of uncertainty combination

In the previous Section, an approximated method
for the combination of random contributions to un-
certainty based on t-norms has been discussed. In
order to understand what is the effect of the ap-
proximation on the final uncertainty estimate, a
very simple measurement example is here consid-
ered. Let measurand zy be the sum of N measured
samples x;:

N

ZN = Z Z; (9)
i=1

The measured values z; are assumed to be affected
by a random noise such that a standard normal dis-
tribution X; can be associated to all of them to
identify the possible measured values:
X; =N(0,1) (10)
Both the standard approach to uncertainty de-
fined in the GUM [1] and the RFV approach to



N T5:0.05 TS£855,72:1.47
2 4.1% 1.0%
8 16.7% 4.3%
32 | 35.2% 10.4%
128 | 54.9% 19.6%

and TGP0 for

. SR F
Table 2: Errors e introduced by T Ty

different IV values.

uncertainty can be applied to the considered ex-
ample to compute the resulting Zy distribution.
Within the GUM approach, the Zy distribution is
assumed to be a Normal PDF whose standard devi-
ation uc(zn) can be obtained by means of the Law
of Propagation of Uncertainty (LPU) [1] that, for
this example, yields:

uc(zn)

where u(z) is the standard uncertainty of each z;
that, in the considered example, is unitary. The
resulting PDF Zp is transformed into the PD A N
according to the 1-D transformation discussed in
[12,13]. Since the GUM assumptions about the Zy
normality are totally met for this particular exam-
ple, Zn can be considered as the reference PD.

Following the RFV approach, an RFV X; can be
associated with each z;. Actually, X; is an RFV
composed by its random PD only, since only random
contributions are considered in this example. Of
course, the random PD is obtained by transforming
the PDF X, according to the 1-D transformation.
Once the random PDs X; are obtained, following
(2) and (4) they can be composed to provide the
random PD Z N-

The reference PD ZN and the random PD ZN
are plotted in Fig. 4 for different numbers of sam-
ples N. In the left plots, Zy has been obtained
by means of the Frank t-norm T!_; s, while in
the right plots Zy has been obtained by means of
the GDO Tﬁ2855’72:1.47. The resulting normalized

squared errors e of the Zy estimates are reported
in Table 2.

These results confirm that the GDO provides a
more accurate uncertainty estimate than the Frank
t-norm for all considered number of samples N. For
N > 2 the Frank t-norm provides an evident un-
derestimate of uncertainty, while the estimate pro-
vided by the GDO is closer to the reference esti-
mate. However, for N = 128 also the GDO leads to
an underestimate of uncertainty, especially for high
a values (low confidence levels), and consequently,
to a large error (e = 19.6%).

Better uncertainty estimates can be obtained for
large N values. In fact, the PDs shown in Fig. 4
have been obtained by applying the Frank ¢-norm
and the GDO resulting from the optimization pro-
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N | T | T2
2 | 5.9% 2.4%
15.9% 3.3%
32 | 23.8% 2.7%
128 | 35.2% 4.4%

and TGP0 for

. S F
Table 3: Errors e introduced by 17 st

different N values.

cedure discussed in Sec. 3.2, which is devoted to
optimize the combination of two samples x; only.
In other words, the optimal parameters obtained in
Sec. 3.2 minimize only the error in the Z, estimate.

Different results can be obtained by applying the
optimal parameters which minimize the error in a
different Zy estimate. As an example, Fig. 5 shows
the PDs resulting from the minimization of the error
in Zsp. In the left plots of Fig. 5, Zx has been ob-
tained by means of the Frank ¢-norm T»f:o.ov while
in the right plots Zy has been obtained by means of

the GDO Tﬁg?l,w:l'?. The resulting normalized

squared error e of the Zx estimates are reported in
Table 3.

These results show that for the GDO it is possi-
ble to find some parameter values which drastically
reduce the maximum error obtained for the consid-
ered numbers N. In fact, the maximum error is now
limited to e = 4.4%. On the contrary, this is not
possible for the Frank ¢-norm, for which the error
values remain too large. This can be explained con-
sidering that the GDO is a two-parameter t-norm
family, while the Frank family is function of one
parameter only. Therefore, the GDO can be more
easily adapted to minimize the errors in the uncer-
tainty estimates in the given range 2 < N < 128.

However, even if optimized, the uncertainty esti-
mate provided by the GDO is always an approxi-
mation of the correct uncertainty estimate. There-
fore, also considering that the effectiveness of the
approximation decreases as the number of samples
N increases, it is always possible to find a number
N for which the approximation is not acceptable.

5. Conclusions

This paper has proved that the combination of
random contributions to uncertainty represented in
terms of possibility distributions yields to approxi-
mate results and the choice of the t-norm employed
to combine them is a critical step to ensure accept-
able results.

While apparently good results can be obtained
when only two results are combined, by means of
relatively simple operators such as the Frank t-norm
family, the residual approximation error may be-
come soon unacceptable when more terms are com-
bined.

The more complex generalized Dombi operator,
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Figure 4: Reference PDs Zy (red lines) and random PD Zy (green lines) for different N values. In the left

plots Tf:0,05 has been applied, while in the right plots T%

belonging to a family of two-parameter t-norms, has
been considered and it proved to return significantly
lower approximation errors. However, the residual
error may still originate large errors when several
terms are combined together, as it may occur in
complex measurement procedures.

The flexibility offered by two parameters, on the
other hand, allows a more efficient optimization of
the Dombi operator, so that acceptable solutions
can be found as a function of the number of elements
to be combined. It can be then concluded that the
considered generalized Dombi operator represents
an efficient solution to the combination of random
contributions to uncertainty when they are repre-
sented in terms of possibility distributions.
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