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Drag forces in statistically stationary and homogeneous submerged granular flows
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The paper deals with the interaction forces between the two phases of a granular flow immersed in water,
analyzing in detail the effects on the drag of the concentration of the solid phase and of the interactions between
velocities of the two phases and particle concentration. According to the system of equations, the relations
between these variables are strongly nonlinear. In particular, this article addresses two issues: how the drag force
varies as a function of the concentration only, and whether it is proper to determine the averaged drag force
only as a function of the time-averaged values of velocities and concentration. We demonstrate, in fact, that by
separating the average and the fluctuating part of each quantity, new terms arise representing a residual drag. To
better understand the role of the interphases forces, we performed a series of tests on a two-phase flow (spherical
particles in water) through a vertical column in a statistically stationary and homogeneous condition.
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I. INTRODUCTION

Granular materials are agglomerations of macroscopic
particles characterized by peculiar behavior with respect to
the three standard states of matter: solid, liquid, and gas.
According to Jaeger et al. [1], the granular state “should
therefore be considered an additional state of matter in its own
right.” Due to its unique features, granular matter attracts great
interest, with applications in different sectors, e.g., physics,
chemistry, pharmaceuticals, agriculture, energy production,
industrial engineering, and environmental engineering [2,3].

A first classification of the granular flows is based on the
nature of the fluid surrounding the particles (interstitial fluid):
if the interstitial fluid is a gas, e.g., air, the particles are
considered dry granular flows, while if the interstitial fluid is
a liquid, like water, they are treated as submerged granular
flows. In more complex cases, the interstitial fluid may be
composed simultaneously of air and water, wet granular flows
[4], or other liquids.

The differences between these types of flows depend on
the interaction between the phases: when the interstitial space
between particles is occupied by air, due to the large density
difference between the two phases, the interaction forces
between the two phases is usually negligible, whereas if it
is occupied by water, these forces become important and
dependent on the degree of dilution [5].

In this paper, we focus on submerged granular flows driven
by gravity, with the ultimate goal being to better understand
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the important features of debris flows, which are extraordi-
nary sediment transport phenomena, typical of mountainous
environments, able to move huge amounts of solid material
in a very short time [6,7]. The recent urbanization of these
areas has increased the debris flow risk, also causing loss
of lives and property damage. For these reasons, a deeper
knowledge of its mechanical behavior is as important as it is
urgent.

In numerical modeling, debris flows are often treated as
homogeneous fluids (mixtures of sediment and interstitial
fluid), i.e., by adding together the equations of the two phases
[8]. In this case, interaction forces do not appear, since they
cancel each other, as will be better explained in Sec. II.

Regarding the two-phase models of debris flows, instead
there are different criteria in the literature to express the
forces of interaction among the solid particles [6–12], while
the modeling of the interaction forces between the solid and
liquid phases is still lacking in a convincing approach from a
physical point of view.

The objective of the paper is to analyze this problem,
first by using a theoretical approach based on the balance
equations that govern granular flows, and then through a series
of laboratory experiments of the granular flow driven by water
in a vertical column.

The paper is organized as follows: Section I covers some
fundamentals of the mechanics of granular flows, the two-
phase approach, and the rheological relations. In Sec. II we
analyze in detail the interaction forces between the liquid and
the granular phases, and we broaden the definition of drag
on a group of noncohesive particles. We derive a relation
for the drag force that is valid also in the case of high solid
concentrations. Section III describes the experimental setup
and the measurement techniques. In Sec. IV we explain the av-
eraging procedure, and we derive the time-averaged equations
of the flow. Section V describes the results of the experimental
investigation. In Sec. VI we present some problems due to
the fluctuations in velocities on nonlinear features of the drag
force. Section VII contains the conclusions.
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A. Flow equations

The mechanics of submerged granular flows is defined
by the equations of mass and momentum conservation of
the two phases [9,13] in an infinitesimal control volume, but
sufficiently large compared to the particle dimensions. The
system, written separately for each phase, is

∂ρβ

∂t
+ ∂

(
ρβuβ

i

)
∂xi

= 0,

∂
(
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i
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+ ∂
(
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with β = g for the granular phase and β = f for the interstitial
fluid; ρg = cρs is the density of the granular phase, and ρ f =
(1 − c)ρw is the density of the liquid phase; c is the volume
concentration of the solid phase; ρs is the material density of
the grains; and ρw is the water density. For each phase, uβ

i is
the generic component of the velocity vector, σβ

i j is the generic

component of the tensor of the internal stresses, and Fβ
i is

the component of the interaction force (per unit volume). Gβ
i

represents the body forces acting on each constituent in the
ith direction. In the present case, we assume Gβ

i = −g∂z/∂xi,
where z represents the vertical rising direction and g is the
acceleration of gravity.

To solve the system (1), closure relations for the stresses of
the liquid phase σ

f
i j , for the stresses of the granular phase σ

g
i j ,

and a relation for the interaction forces F g
i are needed.

B. Flow regimes

If the interstitial fluid is water, the related internal stresses
are well described by the Newtonian rheology. The rheology
of the granular phase is more complex and still presents some
unresolved issues. Generally, the mechanics of the grain-grain
interaction depends on the contacts between the particles,
and two different types of interactions usually occur: almost
instantaneous and binary contacts or long-lasting contacts in-
volving more particles at the same time. A distinction between
these two conditions is based on the characteristic time scales
of the types of interaction [14,15].

When the contacts are instantaneous, the granular flow
is characterized by continuous, partially elastic collisions
between the particles. In this regime, the rheology has been
described, since the 1970s, by applying a kinetic theory
derived in analogy with the kinetic theory of gases, in which
the thermodynamic temperature is replaced by the granular
temperature, which plays a similar role in generating pressure
and governing the mass, momentum, and energy transports
[2,16,17].

With reference to a system composed of Np particles in a
control volume (see Fig. 1), we define the average velocity of
the granular phase as

ug
i =

∑Np

k=1

(
up

i

)
k

Np
, (2)

where i, according to the indicial notation, represents the
index of the generic directions of the flow, (up

i )k is the ith
component of the velocity of each single particle, and Np is the

FIG. 1. Representation of the vectors of the velocities up of the
Np particles inside a control volume.

number of particles inside the control volume. In this respect,
the granular temperature is defined as

T = 1

3

3∑
i=1

∑Np

k=1

[(
up

i

)
k − ug

i

]2

Np
. (3)

The granular temperature changes in space and in time,
and also represents the kinetic energy, per unit mass, of the
fluctuating particles.

This procedure should be valid only if the control volume
is infinitesimal and if the number of particles inside it is
very large. Nonetheless, in most applications of the kinetic
theory to granular flows (dense gas analogy), this process is
considered valid even in the presence of particles with finite
dimensions by assuming that all the particle’s properties are
concentrated in its center [2,6,18,19].

On the other hand, when the contacts are long-lasting and
involve more particles at the same time, the gas analogy
becomes problematic. In the application to channel flows,
this condition usually occurs near the bottom of the flow: if
the bottom is a rigid surface, the grain-wall interaction leads
to a slip velocity and to a finite granular temperature at the
wall, and the flow is considered to be in the dense regime
[19]. In contrast, if the bottom is represented by a loose
packing bed of the same material as the granular flow, the
velocity of the granular phase tends asymptotically to zero
while approaching the mobile bed. In this limit, the granular
temperature also vanishes, but the internal shear stress of the
granular phase is nonzero [5]. This type of flow is referred to
as the frictional regime. In a channel flow of granular material
on a mobile bed driven by gravity, the collisional and the
frictional regimes coexist across the entire flow through an
intermittent mechanism in space and time [20]: the collisional
regime governs the region near the free surface, and the
frictional regime governs the layer approaching the mobile
bed. However, even in this layer, the instantaneous contacts
are not entirely absent, although they occur with less and less
frequency as one moves toward the immobile bed. They (and
consequently the granular temperature) exert an important
role in the process of energy dissipation [5,21].

The relative weights of the three terms on the right-hand
side of the second equation of system (1) depend on the con-
centration: in the dilute case, the internal stresses of the solid
phase are negligible compared to the phase-interaction forces,
whereas while the solid concentration increases, the influence
of the internal stresses of the granular phase increases until the
interaction forces become negligible. When the concentration
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tends to its maximum value (random packing concentration),
in the momentum equation also the internal stresses of the
liquid phase are negligible [5].

II. INTERPHASES FORCES

In the momentum balances, the term Fβ
i represents the

coupling force between the two phases. Since due to the
principle of reciprocity, F g

i = −F f
i , by adding together

the momentum equations of the liquid and the solid phases,
the interaction forces cancel each other so that they do not
appear in the momentum balance equation of the mixture.

The interactions between the two phases are ascribed to
different causes:

(i) The stress gradients of the liquid phase (buoyancy
effect).

(ii) The relative velocity between the two phases (drag
effect).

(iii) The relative acceleration between particles and fluid
(added mass).

(iv) The unsteady diffusion of swirling in the boundary
layer around the particles, which is a history force (Basset
force).

In the first instance, in statistically stationary channel
flow, the added mass and Basset force are usually neglected
[2,5,22–25], and the interaction force is

F f
i = c

(
∂ pf

∂xi
− ∂τ

f
i j

∂x j

)
− Di, (4)

where the first two terms on the right-hand side represent the
buoyancy, and the third term is the drag force.

A. The drag force of a noncohesive population of particles

There are many examples of granular flows where drag
plays an important role, e.g., sedimentation, fluidization, flows
in a porous medium, etc. [26]. In general, the expression for
the drag, Di in Eq. (4), on the agglomeration of particles is
obtained from the expression for the drag FD exerted by a
uniform flow, characterized by an undisturbed flow velocity
Uo, surrounding an isolated particle:

FD = πd2

4
ρwCD

U 2
o

2
, (5)

where CD is the drag coefficient, which is a function of the
particle’s Reynolds number (Rep = Uod/νw), where νw is the
kinematic viscosity of the liquid phase, in this case water, and
of the shape of the particles.

Although many expressions for the drag coefficient exist
in the literature, in this framework we assume the relation of
Dallavalle [27], which is valid for spherical particles over a
large range of Reynolds numbers:

CD =
(

4.8√
Rep

+ 0.63

)2

. (6)

We derived the drag of the group of particles, Di, by sub-
stituting the velocity Uo in Eq. (5) with the relative velocities
between the two phases, (u f

i − ug
i ), by multiplying Eq. (5) by

the number of particles n per unit volume, and by introducing

a suitable function f p of the concentration, accounting for the
influence of the other particles on the flow field. The number
density of particles within a control volume is related to the
volumetric concentration c and to the particle size d , i.e.,
n = 6c/π d3. Finally, we have

Di = 3

4

ρw

d
c CD

(
u f

i − ug
i

)2
f p. (7)

In principle, if velocities and concentration are statistically
stationary functions, we expect that by averaging over time
Eq. (7) (a nonlinear equation) some residual terms arise due to
possible correlations between the fluctuating components of
u f

i , ug
i , and c. These correlations cannot be excluded a priori.

This point will be discussed in detail in Sec. VI.

B. Particle population drag function f p

There are several methods in the literature to take into
account the effect of the concentration of a group of particles
on the drag coefficient of an individual particle. For example,
in fluvial hydraulics the presence of particles is considered by
modifying the von Kármán constant, or by introducing some
parameters accounting for the turbulence damping produced
by a cluster of particles [28]; in fluidized beds, a voidage func-
tion (or correction function) is often introduced, defined as the
ratio between the drag force on a particle when taking into
consideration the effect of neighboring particles, and the drag
force exerted on the same particle when falling isolated in still
water [29,30], or the ratio between the drag force on a particle
in a fluid-multiparticle interaction system and the drag force
on an unhindered particle, subject to the same volumetric flux
of fluid [31]. Since in this paper we adopted a fully two-phase
approach with respect to a noncohesive population of particles
inside the control volume, we introduced the population drag
function f p, defined as the ratio between the modulus of the
drag force Di of the group of n particles and nFD, where FD

is the drag force experienced by an isolated particle under the
same flow velocity, i.e.,

f p = |Di|π d3

FD c 6
. (8)

The population drag function f p should tend to 1 when
the concentration tends to 0, and increase as the concentration
increases.

Moreover, in the limit condition in which the time-
averaged concentration tends to its maximum value crp

(random-packing concentration) (c → crp), the motion of the
interstitial fluid relative to the granular matrix corresponds to
a filtration flow through the granular matrix, so we expect that
the drag corresponds to that of the flow in a porous medium.

With reference to the notation in Fig. 2, according to
Darcy’s law the velocity uD (Darcy velocity) is the ratio
between the flow rate Q and the total cross-sectional area
A. By definition, the Darcy velocity is a fictitious velocity
calculated as if the flow would occur across the entire cross
section of the sediment sample A. The flow actually takes
place only through interconnected pore channels, Av , and the
ratio between the flow rate and Av is the seepage velocity (u f

v )i.
The velocity of the fluid phase of system 1 corresponds

to the average of the seepage velocities inside the control
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FIG. 2. A cross section A of the granular flow sample. Q is the
flow rate across A, with a fictitious velocity uD. The velocity of the
fluid phase is represented by the velocity in the interstices (u f

v )i. Av

is the area occupied by the fluid, while As is the area occupied by the
particles.

volume,

u f
i = 1

Vv

∫
Vv

(
u f

v

)
i dVv, (9)

where Vv is the volume of the voids in the control volume. The
relation between the Darcy velocity and the average seepage
velocity, i.e., the velocity of the liquid phase in system (1), is

(uD)i = u f
i (1 − c). (10)

The relation between (uD)i and the hydraulic gradient
∂h∗/∂xi depends on the hydraulic conductivity Ki (Darcy’s
equation [32]). If the Reynolds number relevant to (uD)i is
small enough, i.e., in the laminar regime, this relation is linear:

(uD)i = K
∂h∗

∂xi
, (11)

where h∗ is the hydraulic head and, since the medium is
isotropic and homogeneous, the hydraulic conductivity is
assumed to be a scalar. K , which dimensionally is a velocity,
is defined as the specific discharge per unit of hydraulic
gradient. It is usually expressed as K = kg/νw, including the
influences of the fluid properties and of the solid matrix. k
represents the intrinsic permeability, which has the dimension
of surface area [33,34]. According to Carman [35], in the
laminar regime of flows in porous media, the permeability is
k = (1 − c)3c−2d2180−1.

In uniform flow conditions, when c → crp, the momentum
equation of the liquid phase of system (1) reduces to the
balance between the drag force and the weight of the liquid
phase, i.e.,

4

3

ρw

d
c CD

(
u f

i − ug
i

)2
f p = −ρwg(1 − c)

∂z

∂xi
. (12)

From Eq. (12), an analytical expression of the population
drag function f p

rp, valid at random-packing concentration and
in the laminar regime, can be derived:

f p
rp = 10

crp

(1 − crp)
. (13)

m

FIG. 3. Sketch of the column setup used for the experiments.

This relation was proposed earlier by several authors
[33,34,36]. As we explain better in the next sections, we
measured the values of the drag of the group of particles
for different values of the volume concentration, and by
comparing these values with the values of the drag of the
single sphere, we obtained the values of the population drag
function for different values of the concentration. Finally, in
Sec. VI we propose an expression for the population drag
function valid for 0 � c � crp.

III. EXPERIMENTAL INVESTIGATIONS

The experimental investigation was carried out in the Hy-
draulics Laboratory of the University of Trento. The exper-
imental setup was constituted by a 2-m-long vertical duct
hereafter called the column, with an almost square section
(Fig. 3), fed from the bottom with an adjustable water dis-
charge measured with an electromagnetic flow meter with
an error of the full scale of 1%. A system of filters and
honeycombs was inserted at the entrance of the column in
order to guarantee the uniformity of the flow. Before each test
the column was filled, in the absence of water, by a known
volume of solid noncohesive spheres, with constant diameter
d = 6 mm and density ρs = 2250 kg/m3. The measured value
of the random-packing concentration of these particles is
crp = 0.67. When the liquid discharge was injected from the
bottom, the solid particles, due to the drag force, expanded,
reaching in a short time a statistically stationary configuration.
This arrangement, similar to that of previous research on
fluidized beds [31,37–39], was such that the ratio between
the diameter D of the circle inscribed in the section of the
column and the diameter of the particles was less than 25 in
order to avoid any possible 2D instability, and larger than 10
in order to avoid the particle arching effect within the tube
[37]. With respect to the phenomenon of the voidage wave
instability, according to the analysis proposed in [39], all the
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tests were performed with combinations of specific flow rates
and concentrations (expansion curve of the fluidized bed),
where the wavy instability no longer occurred.

Finally, in order to guarantee the stationarity and homo-
geneity of the flow, the measurements were initiated after a
period sufficiently long to ensure a constant water discharge
(∼15 min).

A. The measurement of the velocity and of the
granular temperature

The instantaneous velocities of the particles were measured
by means of two synchronized cameras with acquisition fre-
quencies between 60 and 500 fps. We set the two cameras one
above the other in order to record simultaneously two con-
tiguous regions of the flow. Then we moved the two cameras
rigidly in the vertical direction and recorded as many times
as needed to acquire data from the entire measuring section
(usually three times). Due to the logistics of the laboratory,
we could not perform optical measurements (local velocities,
granular temperature, and concentration) in the first 30 cm of
the column.

To measure the velocity of each single particle visible
through the transparent wall, we adopted an imaging method
based on the Voronoï polygons to process the images taken
by the high-speed camera. The interested reader can refer
to [10,40] for a full description of the method. For every
frame, the particles’ positions were recorded and the particles
on one frame and the next were then paired based on the
goodness-of-match between the shapes of their Voronoï cells.
The velocities were finally derived from the corresponding
displacements (optical method).

The velocity of the fluid phase was measured by injecting
into the flow small and light tracking particles (dt = 0.6 mm
and ρt = 1050 kg/m3) by assuming that the velocity of these
particles represented the velocity of the liquid phase and by
measuring their velocities with the optical method.

B. The measurement of the pressure

The water pressure in the column was measured by means
of a battery of piezometers spaced 15 cm apart along the
column (see Fig. 3). Figure 4 shows the typical distribution of
the pressure of the fluid phase. These devices sensibly dump
the possible pressure oscillations, and the accuracy of the head
measure is about 1–2 mm.

It is possible to appreciate two different behaviors of the
pressure gradient (Fig. 4). A considerably linear distribution
of the pressure, and an even more remarkable uniform con-
centration distribution, as it is explained in Sec. V [Fig. 7(c)],
characterize the two-phase region. In this region, the pressure
gradient is likely determined by the drag force between the
water and the particles. An external region, identified by the
absence of particles, was characterized by a pressure gradient,
also linear, but with a definitely lesser slope, induced by the
wall resistance of the duct only. The transition between the
two regions is sharp. All the other tests had similar behaviors.
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FIG. 4. Distribution of the fluid pressure along the column. The
dotted blue horizontal line identifies the height of the two-phase flow
region. Q = 80 L/min.

C. The measurement of the concentration

The local particle concentration was measured by means
of the optical method adopted for recording the particles’
velocity. In particular, we identified an area inside the record
where we defined the 2D particle concentration λa based on
the fact that in a system of identical, regularly organized
spherical particles the hypothetical disposition of the particles
is such that the three particles belong to a plane parallel
to the transparent wall. According to this disposition of the
particles, the 2D particle concentration λa is defined by the
ratio between the area of the triangle connecting the centers of
three particles and the net cross section between this triangle
and the three particles.

By adopting a procedure similar to that for the linear
concentration [41], we derived a relation between the volume
concentration c and the areal concentration λa for spherical
particles:

c

c∗ =
(

λa

λa∗

)3/2

, (14)

where c∗ and λa∗ are the theoretical maximum values of
the volume and of the superficial concentration, respectively,
i.e., for spherical particles c∗ = π/3

√
2 ∼ 0.74 and λa∗ =

π/2
√

3 ∼ 0.90.
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FIG. 5. Time fluctuations of velocities of the liquid and of the
solid phases (Q = 67 L/min and C = 0.3).

We measured also the average volume concentration C for
each test by dividing the volume of the two-phase region by
the total volume of the particles contained in it (volumetric
method). The goodness of the measuring methods adopted
was checked by comparing the average local concentration
with the average of the volume concentration C, as we will
show in Sec. V.

IV. DERIVATION OF THE AVERAGING EQUATIONS
OF THE FLOW

The measurements of the velocities of the solid and liquid
phases, defined according to Eq. (2), show that these quantities
strongly fluctuate in time. To put in evidence a possible
correlation between the two velocities, we filtered the high-
frequency component of the signal of the water velocity.

From Fig. 5, which presents a specimen of the fluctuations,
it is possible to appreciate the good correlation between these
two signals.

This observation leads us to hypothesize that these large
fluctuations are induced by wall turbulence, rather than by the
agitation of the particles at the scale of the collisions between
the grains. To validate this hypothesis, we did some tests by
measuring the statistics of turbulence of a flow in the column
in the absence of particles and comparing these with the same
statistics for the same flow rate of water.

In this regard, it is useful to point out that in two-phase
fluid mechanics, two types of averaged variables exist: the
phase average and the mass weighted average. We decided to
adopt the first type, consistent with the definition of the flow
of the granular phase at the scale of particle collisions. On the
other hand, Hsu et al. [42,43] and Greimann et al. [44] based
the definition of the Reynolds scaling fluctuations on the mass
weighted average.

In other words, we defined the averaged values of a generic
fluctuating property ψ of the flow as

ψ = 1

Tm

∫
Tm

ψ dt, (15)

where Tm is a period sufficiently long to consider the flow sta-
tistically stationary, and we derived the fluctuating component
of ψ :

ψ ′ = ψ − ψ. (16)

By definition, the average of the fluctuating term is null:
ψ

′ = 0.
Table I shows the results of this procedure. The table also

shows that the presence of the solid phase slightly alters the
turbulence intensity of the liquid phase.

TABLE I. Comparison of the average velocities and of the turbu-
lent statistics of the fluid phase in the presence and in the absence of
particles.

Clear water flow Two-phase flow

u f
3 (m/s) 0.23 0.22

u′ f
3 u′ f

3 (m2/s2) 0.021 0.022

u′ f
1 u′ f

1 (m2/s2) 0.001 0.001

On the basis of these considerations, therefore, it seems
plausible to adopt also in our case the scale separation of the
solid phase, already introduced by Greimann et al. [44] and
by Hsu et al. [42,43] in the analysis of sediment transport in a
channel made with kinetic theories of granular flows.

It is then appropriate to average the flow equations [system
(1)] over a time at the scale of the turbulence fluctuations
in the liquid phase (Reynolds scale). The flow equations are
then obtained by applying the Reynolds decomposition to the
equations of system (1) and averaging them over time:

∂

∂t
(1 − c̄) + ∂

∂xi

(
(1 − c̄)u′ f

i + c′u′ f
i

) = 0,

∂
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i + c′u′ f
i

) + ∂

∂x j

(
(1 − c)

(
u′ f

i u f
j + u′ f

i u′ f
i

)
+ u f

i c′u′ f
i + u f

j c′u′ f
i + c′u′ f

i u′ f
i

)
= cg

∂z

∂xi
+ 1

ρw

⎛
⎝−∂ pf

∂xi
+ ∂τ

f
i j

∂x j

⎞
⎠ + F f

i

ρw

,

∂ c̄

∂t
+ ∂

∂xi

(
c̄ug

i + ρsc′u′g
i

) = 0,

∂

∂t

(
c ug

i + c′u′g
i

) + ∂

∂x j

(
c
(
ug

i ug
j + u′g

i u′g
j

)+ ug
i c′u′g

j + ug
j c′u′g

i

)

= cg
∂z

∂xi
+ 1

ρs

(
−∂ pg

∂xi
+ ∂τ

g
i j

∂x j

)
+ F g

i

ρs
, (17)

where x1 and x2 are the horizontal axes and x3 is the vertical
rising direction, such that the gravity acceleration is g =
(0, 0,−g).

V. RESULTS

We performed 12 complete tests, with different fluid dis-
charges, as summarized in Table II.

In each test we initially measured the height, hs, of the
two-phase core region and we derived the volume of the
concentration C, as explained in Sec. III C. Figures 6(a) and
6(b) display the variation of hs/hso (the extension of the
core region divided by its initial value) and C as functions
of the dimensionless liquid flow rate Q/A/(1 − C)/

√
gd =

u f
3 /

√
gd . As expected, at increasing liquid discharges Q, hs

increases while C decreases.
In addition, in each test we measured the distribution of the

velocities of the granular and the fluid phases, of the granular
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TABLE II. List of the tests performed.

Test 1 2 3 4 5 6

Q (L min−1) 12.5 20 24 33 45 50
hs (cm) 30 61 73 81 92 108
C 0.67 0.64 0.62 0.59 0.48 0.44

Test 7 8 9 10 11 12
Q (L min−1) 60 67 72 75 80 100
hs (cm) 132 140 167 184 190 230
C 0.36 0.30 0.27 0.24 0.20 0.05

temperature, of the concentration, and of the pressure of the
fluid phase across the core region hs.

Figures 7(a), 7(b), and 7(c) show the time-averaged data
of two different tests corresponding, respectively, to Q1 =
60 L/min and Q2 = 75 L/min.

Figure 7(a) presents the vertical distributions of the time-
averaged dimensionless granular velocity ug

3/
√

gd . The figure
shows that this velocity is uniform across the entire two-phase
core depth, with values near zero, which can be reasonably
considered null. This result is confirmed by the continuity
equation of the granular phase if the flow is considered
stationary and uniform.

Figure 7(b) shows the vertical distributions of the time-
averaged dimensionless granular temperatures T /(gd ). The
figure confirms that also the distribution of the temperature
is constant along the depth. Also in this case, we can consider
the gradient as zero.

0

(a)

(b)

1
2
3
4
5
6
7
8

0.5 1.0 1.5 2.0

hs/hso

gdu f
3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.5 1.0 1.5 2.0

C

gdu f
3

FIG. 6. (a) Dimensionless values of the measured height of the

core region hs/hso vs u f
3 /

√
gd; (b) measured values of average

particle concentration c vs u f
3 /

√
gd .

Finally, Fig. 7(c) presents the vertical distribution of the
time-averaged solid concentration and shows that also this
variable is reasonably constant along the flow direction. Fig-
ure 7(c) shows also the comparisons between the distribu-
tion of the average concentration measured with the optical
method (see Sec. III C) and the value C obtained by the
volumetric method. It is possible to appreciate how the two
methods give very similar values.

We observed that in all the tests the averages were indepen-
dent of the time Tm for Tm > 2 s. For this reason we performed
tests with a duration of 6 or 12 s, depending on the frequency
of acquisition.

From the experimental results it emerges that the flow can
be reasonably considered to be statistically stationary and
homogeneous in the x3 direction. These assumptions permit
simplifying the time-averaged equations (17) by assuming the
following:

(i) The average velocity of the granular phase is null.
(ii) The average velocity of the fluid phase is constant.
(iii) The closure relations for the stresses of the granular

phase, based on the kinetic theory, give τ
g
i j ∝ ∂ug

i /∂x j and

pg ∝
√

T , and since the vertical gradient of the average ve-
locity of the granular phase is null, the corresponding terms in
Eq. (17) are negligible.

(iv) The gradients of the averaged granular temperature and
of the averaged concentration are zero, so the gradient of the
granular pressure is assumed to be zero.

(v) All the gradients of the correlations of the fluctuating
terms can be neglected compared to the gradient of the liquid
pressure.

According to the above assumptions, the system (17) re-
duces to

0 = (1 − c)

⎛
⎝−ρw g − ∂ pf

∂x3
+ τ

f
1,3

Rh

⎞
⎠ − D3, (18)

0 = c

⎛
⎝−ρs g − ∂ pf

∂x3
+ τ

f
1,3

Rh

⎞
⎠ + D3, (19)

where τ
f

1,3 represents the shear stresses in the vertical direction
on the wall of the column, and Rh is the hydraulic radius, i.e.,
the ratio between the cross-sectional area of the column over
the wetted perimeter.

Since we measured the distribution of c and of ∂ pf /∂x3

in each test, we can obtain τ
f

1,3/Rh and D3 by solving the
system (18) and (19). The ratio between D3 and FD provides
the population drag function f p as a function of the volume
concentration c̄. Figure 8 confirms that the drag increases
when the concentration increases. In the same figure, we have
also reported the following data fitting curve:

f p = f p
rp crp

f p
rp crp − f p

rp c̄ + c̄
. (20)

VI. FURTHER CONSIDERATIONS ON THE DRAG FORCE

According to the time-averaging procedure adopted, the
instantaneous value of the drag force Di has been decomposed
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FIG. 7. Distribution along the vertical direction x3 for two different liquid discharges: Q = 60 and 75 L/min, respectively, of (a) the dimen-
sionless time-averaged velocity of the granular phase, (b) the dimensionless time-averaged granular temperature; and (c) the dimensionless
solid concentration (local values measured with the optical method) and the depth average concentration C, measured with the volumetric
method.

into the average value Di plus the fluctuating component D′
i

that, by definition, is null on average.
Since the drag depends nonlinearly on the relative velocity

and concentration, it is worth noting that the drag calculated
with the average value of these parameters, hereafter denoted

by Di, is different from the averaged drag Di, so we can write

Di = Di + DRi, (21)

0

10

20

30

0.0 0.2 0.4 0.6 0.8

f p

C

expt.  data

Eq. (20)

FIG. 8. Distribution of the population drag function f p according
to Eq. (20) (solid line) and the value of the experiment (blue circles)
for different values of the concentration.

where the term DRi defined by Eq. (21) is a residual term,
representing the difference between the two drag forces.
Figure 9 shows a comparison between the values of the drag

D3 calculated from the experiments with that D3 calculated
as a function of the averaged values of the concentration and
of the velocities. Figure 9 shows also the residual drag DR3

calculated as the difference D3 − D3. At high concentrations
(C > 0.3), the residual drag decreases upon increasing the
concentration.

To derive an expression for the residual drag, we insert
Eq. (6) into Eq. (7), obtaining an expression for the instan-
taneous drag:

Di = 17.3 f p μw

d2
c
(
u f

i − ug
i

) + 4.5 f p
√

ρw
√

μw

d
√

d
·

c
(
u f

i − ug
i

)1.5 + 0.3 f p ρw

d
c
(
u f

i − ug
i

)2
. (22)

We can now apply the Reynolds decomposition to the
instantaneous velocities and concentration to all terms of
Eq. (22), i.e., c = c + c′, u f

i = u f
i + u′ f

i , and ug
i = ug

i + ug′
i ,
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and then average the equation over time, obtaining

DR i-corr
d2

f p μw u f
i

= 17.3
c′(u′ f

i − u′g
i

)
u f

i

+ 27

4

√
u f

i dρw

μw

⎡
⎣(

u f
i − ug

i

u f
i

)0.5
c′(u′ f

i − u′g
i

)
u f

i

⎤
⎦

+ 27

16

√
u f

i dρw

μw

⎡
⎣ c(

u f
i − ug

i

)0.5

(
u′ f

i − u′g
i

)2

u f 1.5
i

+ 1(
u f

i − ug
i

)0.5

c′(u′ f
i − u′g

i

)2

u f 1.5
i

⎤
⎦

+ 0.3
u f

i dρw

μw

⎡
⎣c

(
u′ f

i − u′g
i

u f
i

)2

+ c′(u′ f
i − u′g

i

)2

u f
i

+ 2
u f

i − ug
i

u f
i

c′ (u′ f
i − u′g

i

)
u f

i

⎤
⎦. (23)

In deriving Eq. (23), we have approximated the term (u f
i + u′ f

i − ug
i − ug′

i )1.5 with a second-order Taylor expansion as (u f
i −

ug
i )1.5 + 3

2 (u f
i − ug

i )0.5(u′ f
i − ug′

i ) + 3
8 (u f

i − ug
i )−0.5(u′ f

i − ug′
i )2.

As previously discussed in the case study, ug
3 = 0, so Eq. (23) reduces to

DR 3-corr
d2

f p μw u f
3

= 17.3
c′u′ f

3 − c′u′g
3

u f
3︸ ︷︷ ︸

(i)

+27

4

√
u f

3 dρw

μw

⎡
⎣ c

4

(
u′ f

3 − u′g
3

u f
3

)2

+
(

c′u′ f
3 − c′u′g

3

u f
3

)⎤
⎦

︸ ︷︷ ︸
(ii)

+27

16

√
u f

3 dρw

μw

⎡
⎣c′(u′ f

3 − u′g
3

)2(
u f

3

)2

⎤
⎦

︸ ︷︷ ︸
(iii)

+ 0.3
u f

3 d ρw

μw

⎡
⎣c

(
u′ f

3 − ug′
3

u f
3

)2

+
(

c′u′ f
3 − c′u′g

3

u f
3

)⎤
⎦

︸ ︷︷ ︸
(iv)

+ 0.3
u f

3 d ρw

μw

⎡
⎣c′(u′ f

3 − ug′
3

)2

(u f
3 )2

⎤
⎦

︸ ︷︷ ︸
(v)

. (24)

From the instantaneous and simultaneous records of granu-
lar velocity, liquid velocity, and grain concentration, we were
able to obtain the different terms of Eq. (24), as reported in
Table III.

The terms iv and (v) of Eq. (24) are proportional to the
Reynolds number of the single grain, u f

3 d ρw/μw, which is
much greater than 1. For this reason, the terms (iv) and
(v) are greater than the terms (ii) and (iii), which are pro-
portional to the square root of the Reynolds number, and
even greater than the term (i), which does not contain this
number. Furthermore, the term (iv) consists of the sum of
two components: the first is the time averages of the squares
of the fluctuating component of the relative velocity, i.e., the

TABLE III. Values of different terms of Eq. (24) for two values
of concentrations.

c 0.22 0.30

u f
3 d ρw/μw 1321 1240

(i) −0.06 −0.04
(ii) 4.82 5.07
(iii) −0.008 −0.001
(iv) 36.78 34.49
(v) −0.24 −0.38
DR3-corrd2/ f p u f

3 μw 41.32 39.13

sum of terms that are always positive, and the second is the
correlation between the fluctuations of the concentration and
of the relative velocity, which is always much smaller than the
previous one.

Table III shows that (iv) is one or two orders of magnitude
greater than the term (v). An explanation of this difference
could lie in the fact that (v) represents correlations of the third
order: we deduce that direct correlations between floating
components of the concentration and that of the relative
velocity are modest. This result is also evident by expressing
the triple correlations c′u′

3u′
3 with a diffusive closure model,

that is, assuming them as proportional to the gradient of the
time-averaged concentration. As previously discussed, in this
case the gradient of the time-averaged concentration is null.
Finally, the residual drag term in a two-phase flow through a
vertical column can be simplified as

DR3-corr � f p ρw

d
c u′ f

3 u′ f
3

⎛
⎝0.3 + 27

16

√
μw

u f
3 dρw

⎞
⎠. (25)

Notice that in our configuration, the simultaneous mea-
surements of the instantaneous velocity of the liquid phase
and that of the solid phase were possible only under fairly
dilute conditions (C < 0.3), since for higher concentrations
the instantaneous measure of the liquid velocity was not pre-
cise enough due to the interaction between the solid particles
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FIG. 9. Dimensionless drag forces D3/(gρs ), calculated accord-
ing to the different definitions, as a function of the time-averaged
concentration C. D3/(gρs ) (blue circles) is the time-integrated value

of the measured drag force and D3/(gρs ) (red triangles) is the drag
calculated with the averaged values of velocities and concentration;

DR3 = (D3 − D3)/(gρs ) (blue squares) is the residual drag calcu-
lated as the difference between the two previous definitions, and
DR3-corr/(gρs ) (red rhombi) is the residual drag, approximated as in
Eq. (24).

and seeding particles used to detect the water velocity. For
this reason, in Fig. 9 we plot two points only (red diamonds)
representing the term DR3-corr. The figure shows that the as-
sumptions made to derive the expression (24) are acceptable.

VII. CONCLUSIONS

In the present paper, we have analyzed the problem of the
resistance force between water and particles in a submerged
granular flow. The experimental investigation was carried out
in a vertical column with an upwind flux of water, in which
we had earlier inserted heavy spherical particles.

The analysis has primarily shown the need to integrate the
equations of the granular flow (equations derived from the
application of the dense gas analogy) also on the time scale of
the fluctuations of the water turbulence (the Reynolds scale).
We arrived at this conclusion by observing that the velocity
fluctuations of the solid phase are strongly correlated with the

low-frequency fluctuations of the liquid phase. In addition, we

compared the turbulence intensity of the fluid phase (u′ f
i u′ f

i )
in the submerged granular flow with the analogous term in the
absence of particles (clear water conditions). We observed that
the particles do not affect substantially the turbulence intensity
of the liquid phase.

At the Reynolds scale, the flow of both phases turns out to
be statistically stationary and homogeneous in the main flow
direction. In these conditions, we have been able to integrate
the equations of momentum in the flow direction.

From the experimental analysis and from the solution of
the flow equations, we derived an expression for the popula-
tion drag function f p as the ratio between the drag force on
a noncohesive population of particles and the drag force on a
single isolated particle. This function depends on the average
concentration of the group of particles. The experimental anal-
ysis has shown that Eq. (20) matches the experimental data for
a wide range of average concentrations. This expression can
be assumed to be valid in general, provided that the Basset
forces and added mass are negligible.

As expected, the time-averaged drag force turns out to be
different from the drag force calculated as a function of the
time-averaged values of relative velocity and concentration.
The residual drag, evaluated as Eq. (24), is expressed as a
series of terms containing the nonlinear correlations between
the fluctuating part of the velocities and the concentration.
The experiments show that the second-order correlation term

(u′ f
3 u′ f

3 ) gives the most important contribution to the residual
drag in the column flow. This term represents the turbulence
intensity of the fluid phase. This result is not surprising since
the longitudinal velocity gradient of the granular phase is zero.
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