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models are positively compared to experimental data available in the literature. 
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Nomenclature 

a crack length (L) 
𝑁𝑁 number of cycles to failure (−) 
da/d𝑁𝑁 crack growth rate (L) 
Δ𝐾𝐾𝐼𝐼  stress-intensity factor range (FL−3 2⁄ ) 
𝑅𝑅 loading ratio (−) 
𝐾𝐾𝐼𝐼𝐼𝐼  fracture toughness (FL−3 2⁄ ) 
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𝜎𝜎𝑢𝑢 ultimate tensile strength (FL−2) 
Δ𝐾𝐾𝑡𝑡ℎ fatigue threshold (FL−3 2⁄ ) 
∆𝜎𝜎 stress range (FL−2) 
∆𝜎𝜎𝑓𝑓𝑓𝑓 fatigue limit (FL−2) 
𝑏𝑏 characteristic structural (or specimen) size (L) 

 

1. Introduction 

The prediction of fatigue life can be performed through two different methods: the first one, based on Paris’ law 
(Paris and Erdogan 1963), relates sub-critical crack growth rate to the stress-intensity factor range, whereas in the 
second, based on Wöhler’s curve (Wöhler 1870), the applied stress range is a function of the number of cycles to 
failure. These two different approaches can be intimately connected through the use of incomplete self-similarity 
and fractal modeling, so that anomalous crack-size and specimen-size effects are considered. In the first part of the 
paper, generalized Paris’ and Wöhler’s laws are derived in accordance with dimensional analysis and incomplete 
self-similarity concepts, which are able to provide an interpretation to the various empirical power-laws used. 
Subsequently, through the use of a different approach, based on the application of fractal geometry concepts, similar 
scaling laws are found. In other words, for Paris’ law, the assumption of the invasive fractal roughness of crack 
profile implies the incomplete self-similarity in the problem. Subsequently, on the basis of the scaling laws 
previously defined, it is possible to obtain the crack-size dependence of fatigue threshold, so that the so-called 
anomalous behaviour of short cracks with respect to their longer counterparts can be explained. 
On the other hand, for Wöhler’s curve, the material ligament is considered as a lacunar fractal set which, taking into 
account a cross-sectional weakening, provides the incomplete self-similarity in the problem, so that the specimen-
size dependence of fatigue limit can be put forward.  
The hypothesis of the invasive fractal roughness of crack profile provides an explanation for the increment in the 
fatigue threshold with the crack length, whereas the assumption of the lacunar fractal ligament is able to explain the 
decrement in the fatigue limit which occurs as the specimen size increases. Eventually, the proposed models are 
positively compared to experimental data available in the literature. 
 

2. Incomplete self-similarity in the analysis of Paris’ law and Wöhler’s curve  

Let us analyse the phenomenon of fatigue crack growth, according to Paris’ law, where the crack growth rate, da/
d𝑁𝑁, is the parameter to be determined (Barenblatt and Botvina 1980). This quantity depends on three different 
categories of variables, which take into account testing conditions, material properties and a geometric parameter, 
i.e. the crack length. Thus, we can write the following functional dependence, where the time dependence is 
neglected: 
 
da
d𝑁𝑁 = 𝛷𝛷(Δ𝐾𝐾𝐼𝐼, 1 − 𝑅𝑅; 𝐾𝐾𝐼𝐼𝐼𝐼, 𝜎𝜎𝑢𝑢, Δ𝐾𝐾𝑡𝑡ℎ; a)                                                                                                                                         (1) 
 
Assuming 𝐾𝐾𝐼𝐼𝐼𝐼  and 𝜎𝜎𝑢𝑢 as dimensionally independent quantities, we reduce the number of parameters involved in the 
problem by applying Buckingham’s Π Theorem (Buckingham 1915): 

da
d𝑁𝑁 = (𝐾𝐾𝐼𝐼𝐼𝐼

𝜎𝜎𝑢𝑢
)

2
𝛷̃𝛷 (Δ𝐾𝐾𝐼𝐼

𝐾𝐾𝐼𝐼𝐼𝐼
, 1 − 𝑅𝑅; Δ𝐾𝐾𝑡𝑡ℎ

𝐾𝐾𝐼𝐼𝐼𝐼
; 𝜎𝜎𝑢𝑢

2

𝐾𝐾𝐼𝐼𝐼𝐼
2 a)                                                                                                                            (2) 

 
The Barenblatt-Botvina’s approach assumes an incomplete self-similarity with the following power-law 
dependencies (Carpinteri and Paggi 2007): 
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da
d𝑁𝑁 =

(𝐾𝐾𝐼𝐼𝐼𝐼)
𝜎𝜎𝑢𝑢2

2−𝛼𝛼1
Δ𝐾𝐾𝐼𝐼

𝛼𝛼1(1 − 𝑅𝑅)𝛼𝛼2 (Δ𝐾𝐾𝑡𝑡ℎ
𝐾𝐾𝐼𝐼𝐼𝐼

)
𝛼𝛼3

( 𝜎𝜎𝑢𝑢
2

𝐾𝐾𝐼𝐼𝐼𝐼
2 a)

𝛼𝛼4

                                                                                                        (3) 

 
Eq.(3) can be considered as a generalized Paris’ law, where all the main functional dependencies of the parameter C 
have been considered, thus permitting to capture specific anomalous deviations from the original formulation of 
Paris’ law. It is interesting to note that, for 𝛼𝛼1 = 2, we obtain the complete self-similarity.  

If we apply the incomplete self-similarity approach to Wöhlers’s functional dependence (Carpinteri and Paggi 
2009), we obtain: 

 
𝑁𝑁 = 𝛹𝛹(∆𝜎𝜎, 1 − 𝑅𝑅; 𝜎𝜎𝑢𝑢, 𝐾𝐾𝐼𝐼𝐼𝐼, ∆𝜎𝜎𝑓𝑓𝑓𝑓; 𝑏𝑏)                                                                                                                                              (4) 
 
where the cycles to failure, 𝑁𝑁, are the parameter to be determined, and the geometric parameter is the characteristic 
structural size, 𝑏𝑏. Similarly to what we have done for Paris’ law, Buckingham’s Π Theorem permits us to reduce the 
number of independent parameters, so that Eq.(4) becomes: 
 

𝑁𝑁 = 𝛹̃𝛹 (∆𝜎𝜎
𝜎𝜎𝑢𝑢

, 1 − 𝑅𝑅;
∆𝜎𝜎𝑓𝑓𝑓𝑓
𝜎𝜎𝑢𝑢

; 𝜎𝜎𝑢𝑢
2

𝐾𝐾𝐼𝐼𝐼𝐼
2 𝑏𝑏)                                                                                                                                               (5) 

 
Subsequently, assuming an incomplete self-similarity, we obtain: 
 

𝑁𝑁 = (∆𝜎𝜎
𝜎𝜎𝑢𝑢

)
𝛽𝛽1

(1 − 𝑅𝑅)𝛽𝛽2 (
∆𝜎𝜎𝑓𝑓𝑓𝑓
𝜎𝜎𝑢𝑢

)
𝛽𝛽3

( 𝜎𝜎𝑢𝑢
2

𝐾𝐾𝐼𝐼𝐼𝐼
2 𝑏𝑏)

𝛽𝛽4

                                                                                                                           (6) 

 
Eq.(6), representing a generalized Wöhler’s relationship, can be compared to Basquin’s law 𝑁𝑁 =  (Δ𝜎𝜎0 ∆𝜎𝜎⁄ )𝑛𝑛 
(Basquin 1910). 
 

3. Fractal approach to Paris’ law and fatigue threshold 

Let us consider the crack-size effect on Paris’ law, which can be explained through the concepts of fractal geometry. 
By modelling the crack profile as an invasive fractal set with a fractal measure a∗ ≃ a1+𝑑𝑑G , being 1 + 𝑑𝑑G  the 
dimension of the fractal crack profile, the following relationships can be written (Carpinteri 1994): 
 

∆𝐾𝐾𝐼𝐼 ≃ ∆𝐾𝐾𝐼𝐼
∗a

𝑑𝑑G
2                                                                                                                                                                                 (7a) 

 
da
d𝑁𝑁 = a−𝑑𝑑G

1 + 𝑑𝑑G
  da

*

d𝑁𝑁                                                                                                                                                                         (7b) 

 
 
where ∆𝐾𝐾𝐼𝐼

∗ and da* d𝑁𝑁⁄  are the renormalized stress-intensity factor range and the renormalized crack growth rate, 
respectively. A scaling law for Paris’ parameter, 𝐶𝐶, can be obtained by rewriting Paris’ law in terms of the fractal 
stress-intensity factor range and the fractal crack growth rate (Carpinteri An. and Spagnoli 2004): 
 

𝐶𝐶(a) = 𝐶𝐶∗

1 + 𝑑𝑑G
a−𝑑𝑑G(1+𝑚𝑚

2 )                                                                                                                                                              (8) 

 
where 𝐶𝐶∗ is the fractal Paris’ parameter. Inserting Eq.(8) into Paris’ law, a crack-size dependent fatigue law is 
obtained: 
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da
d𝑁𝑁 = 𝐶𝐶∗

1 + 𝑑𝑑G
a−𝑑𝑑G(1+𝑚𝑚

2 ) ∆𝐾𝐾𝐼𝐼
𝑚𝑚                                                                                                                                                      (9) 

 
Eq.(9) can be regarded as a modified Paris’ law, since 𝐶𝐶 is no longer a material constant. Furthermore, evaluating 
Eqs.(7a) and (7b) in correspondence of the coordinates of the limit-points of Paris’ regime, the following scaling 
laws can be introduced: 
 

𝑣𝑣𝑡𝑡ℎ ≃ 𝑣𝑣𝑡𝑡ℎ
∗   a−𝑑𝑑G

1 + 𝑑𝑑G
                                                                                                                                                                           (10a) 

 

∆𝐾𝐾𝑡𝑡ℎ ≃ ∆𝐾𝐾𝑡𝑡ℎ
∗  a

𝑑𝑑G
2                                                                                                                                                                          (10b) 

 

𝑣𝑣𝑐𝑐𝑐𝑐 ≃ 𝑣𝑣𝑐𝑐𝑐𝑐
∗   a−𝑑𝑑G

1 + 𝑑𝑑G
                                                                                                                                                                            (10c) 

 

∆𝐾𝐾𝑐𝑐𝑐𝑐 ≃ (1 − 𝑅𝑅)𝐾𝐾𝐼𝐼𝐼𝐼
∗  a

𝑑𝑑G
2                                                                                                                                                              (10d) 

 
 
According to Eqs.(10b) and (10d), the fatigue threshold and the fracture toughness increase with the crack length. 
Notice that this increment in ∆𝐾𝐾𝑡𝑡ℎ and ∆𝐾𝐾𝐼𝐼𝐼𝐼  is consistent with the fractal roughness of crack profile (Carpinteri and 
Paggi 2011). On the other hand, Eqs.(10a) and (10c) predict a decrease of 𝑣𝑣𝑡𝑡ℎ and 𝑣𝑣𝑐𝑐𝑐𝑐  with the crack length. Thus, 
the scaling laws previously introduced yield a simultaneous rightward and downward translation of Paris’ curve 
increasing the crack length. Substituting the nominal crack growth rate and the nominal SIF range with the 
corresponding renormalized parameters, a fractal Cartesian coordinates system is obtained, so that the coordinates of 
the limit-points of Paris’ regime correspond to the fractal quantities entering Eqs.(10a-d). Consequently, through the 
introduction of fractal coordinates, the set of Paris’ curves, obtained varying the crack length, collapse onto a single 
crack-size independent Paris’ curve.  
 

4. Multi-Fractal approach to Paris’ law and fatigue threshold  

Although the general trend can be captured considering just the fractal approach, a transition occurs from a fractal 
regime for small cracks to a Euclidian regime for long cracks. Thus, by exploiting the concept of self-affinity, a 
multi-fractal scaling law should be defined for the Paris parameter 𝐶𝐶 (Paggi and Carpinteri 2009): 
 

𝐶𝐶𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑀𝑀𝑀𝑀
∞ (1 + 𝑙𝑙𝑐𝑐ℎ

a
)

𝑑𝑑G(1+𝑚𝑚
2 )

                                                                                                                                                     (11) 

 
Remarkably, Eq.(11) predicts that, for very long cracks, crack-size effects disappear and a horizontal asymptote is 
found. On the other hand, for shorter cracks, the maximum possible disorder is reached and an oblique asymptote, 
with slope 𝑑𝑑G (1 + 𝑚𝑚

2 ), is obtained.  
Similarly, a transition of fatigue threshold occurs from the long cracks regime, where the fatigue threshold is a 
material property, to the short cracks regime. Hence, with the aim to reproduce the experimental data, a multi-fractal 
scaling law should be considered in order to link the two extreme behaviours: 
 

∆𝐾𝐾𝑡𝑡ℎ = ∆𝐾𝐾𝑡𝑡ℎ
∞ (1 + 𝑙𝑙𝑐𝑐ℎ

a
)

− 
𝑑𝑑G
2

                                                                                                                                                         (12) 
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Whereas ∆𝐾𝐾𝑡𝑡ℎ
∞ is the upper limit for fatigue threshold, which is reached for very long cracks, for very short cracks 

(a → 0), the influence of disorder becomes progressively more important and the fatigue threshold tends to vanish. 
Eventually, notice that 𝑙𝑙ch is function of the heterogeneity of the material microstructure. Validation of the fatigue 
threshold scaling law is performed fitting Eq.(12) with available experimental data (Kitagawa and Takahashi 
1976,1979). The obtained values for the best-fitting parameters, ∆𝐾𝐾𝑡𝑡ℎ

∞ , 𝑙𝑙ch, and 𝑑𝑑G, are reported in Fig.1. 
 

 

Figure 1. Experimental assessment of fatigue threshold scaling (Kitagawa 1976, 1979): ∆Kth measured in MPa 
m1/2; a measured in m. 

 

5. Fractal approach to Wöhler’s curve 

Let us consider size effects on Wöhler’s curve. Introducing fractal concepts to model the lacunarity of cross-section, 
we can write the following relationship for the stress range (Carpinteri 1994, Carpinteri An. and Spagnoli 2009): 
 
∆𝜎𝜎 ≃ ∆𝜎𝜎∗ 𝑏𝑏−𝑑𝑑𝜎𝜎                                                                                                                                                                               (13) 
 
where ∆𝜎𝜎∗ and 𝑑𝑑𝜎𝜎  are the fractal stress range and the fractal dimension decrement, respectively. Notice that Eq.(13) 
predicts a decrease of fatigue strength with the specimen size, 𝑁𝑁 being the same. Similarly to what was done for 
Paris’ curve, it is possible to evaluate Eq.(13) in correspondence of the limit-points of Wöhler’s curve, so that the 
following scaling laws for ∆𝜎𝜎𝑢𝑢 and ∆𝜎𝜎𝑓𝑓𝑓𝑓 are obtained (Carpinteri An. et al. 2002):  
 
Δ𝜎𝜎𝑢𝑢 ≃ (1 − 𝑅𝑅)𝜎𝜎𝑢𝑢

∗  𝑏𝑏−𝑑𝑑𝜎𝜎                                                                                                                                                              (14a) 
 
Δ𝜎𝜎𝑓𝑓𝑓𝑓 ≃ ∆𝜎𝜎𝑓𝑓𝑓𝑓

∗   𝑏𝑏−𝑑𝑑𝜎𝜎                                                                                                                                                                        (14b) 
 
Consistently with the concept of lacunar fractality, we obtain a negative trend for the ultimate tensile strength and 
the fatigue limit by increasing the specimen size. Thus, Eqs.(14a) and (14b) yield a downward translation of 
Wöhler’s curve increasing the structural size. In other words, only a vertical translation is expected since 𝑁𝑁𝑐𝑐𝑐𝑐  and 
𝑁𝑁𝑓𝑓𝑓𝑓  are dimensionless parameters. Substituting the nominal stress range with the corresponding renormalized 
parameter, we obtain a fractal Cartesian coordinates system, so that the set of Wöhler’s curves, obtained varying the 
structural size, collapse onto a single specimen-size independent Wöhler’s curve.  
Validation of the fatigue limit scaling law is performed fitting Eq.(14b) with available experimental data obtained by 
Hatanaka et al. (1983). Considering two different materials and dog-bone specimens of 8, 20, 30 and 40 mm of 
diameter, tests were carried out through a rotating bending machine. The obtained values for the best-fitting 
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parameters, ∆𝜎𝜎𝑓𝑓𝑓𝑓
∗  and 𝑑𝑑𝜎𝜎 , are reported in Fig.2. Notice that, in accordance to LEFM, the dimensional decrement, 𝑑𝑑𝜎𝜎 , 

is always lower than 1/2. 
 
 

 

Figure 2. Experimental assessment of fatigue limit scaling [16]: ∆𝜎𝜎𝑓𝑓𝑓𝑓 measured in MPa; 𝑏𝑏 measured in mm. 

 
Conclusions 
 
We have proposed the application of incomplete self-similarity and fractal approaches to capture the scale effects on 
Paris’ law and Wöhler’s curve. In particular, by modelling the crack profile as an invasive fractal set, it is possible to 
obtain crack-size effects on fatigue threshold, whereas the hypothesis of lacunar fractal ligament permits us to 
determine specimen-size effects on fatigue limit. Eventually, a positive comparison with experimental data available 
in the literature is shown. 
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