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Abstract. Agile approaches, one of the key methodologies used in today’s
software projects, often rely on user interface mockups for capturing the goals
that the system must satisfy. Mockups, as any other requirement artifact, may
suffer from ambiguity and contradiction issues when several points of view are
surveyed/elicited by different analysts. This article introduces a novel approach
that enhances mockups with friendly end-user annotations that helps formalizing
the requirements and reducing or identifying conflicts. We present an evaluation
of the approach in order to measure how the use of annotations improves
requirements quality.
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1 Introduction

Eliciting application requirements implies understanding the needs of one or more
stakeholders even in cases where the business domain may be partially or totally
unknown for the analysts who perform the elicitation. Often, requirements are agreed
by stakeholders in such a way that the semantics and meanings of each used term are
well understood. However, when different points of view [6] of the same business
concept exist, ambiguities and/or inconsistencies may arise being them detrimental to
the software requirement specification. Although the use of agile approaches has
become a key factor in project success1, the companies practicing these approaches
claim that the minimal documentation provided by user stories is a challenge for the
projects [3]. When the personnel turnover or rapid changes to requirement arises, the
application evolution is severely compromised. Traditionally, conciliation tasks are
performed using meeting-based tools [8] in order to eliminate requirements ambiguity
and inconsistency but in the event of agile approaches the tacit knowledge which is

1 9th Annual State of Agile Survey - http://stateofagile.versionone.com/.
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mandatory in this task can be lost on personnel turnover or inaccessibility when the
appropriate customer is unavailable. Agile approaches often rely on unit testing for
maintaining the alignment of requirements when these suffer changes but large textual
descriptions present in documents and the requirement change volatility make it
impossible to keep artefacts updated and consistent [1]. When requirement inconsis-
tencies are not detected on time - being this one of the most severe reasons for project
cost overrun [21] -, they may become defects in the application. In this context, the
effort to correct the faults is several orders of magnitude higher than correcting
requirements at the early stages [2].

In practice, agile methodologies reduce the gap between expectations and deliv-
erables by having short development cycles in which a deliverable is released to be
confronted with requirements when an iteration ends. This practice often does not focus
on documenting the solution (class diagrams, deployment diagrams, etc.) as it is done,
for instance, in waterfall or RUP approaches. One of the most important tools for
documentation adopted by agile practitioners is the mockup of user interfaces. By using
this technique, the way in which business scenarios are instantiated relies on light-
weight textual descriptions like User Stories, and wireframes design that easily com-
municate application behavior to stakeholders.

User Interface mockups are a useful tool for describing scenarios where the real-life
data is used for exemplifying the use case instead of abstract descriptions. However, the
information they provide is informal and allows misunderstandings by different
stakeholders. For example, we could consider a marketplace application showing a
product list like the one shown in Fig. 1. For every product, we have an image, a price,
a title, a description, a quantity sold, a location, an icon to indicate if the product is
new, another to indicate if the seller is premium and one that indicates whether the
product has free shipping or not. Although this information is illustrative, it lacks the

(a) Web Version (b) Mobile Version

Fig. 1. Mockup of an e-commerce application.
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precision to formally describe the requirements expected in the early stages of software
development. The mockup’s reader is not able to distinguish if the regular price or the
internet price property is intended to be displayed with the label “$499”. The team
members may interpret different possible behaviors accordingly to their point of view,
experience and background. The developers may define by themselves the missing
information based on this vague definition where any misconception will be detected
later with a costly resolution. This is because the mockup tool is an informal specifi-
cation which lacks of resources to enumerate abstractions such as variables and entities
like UML does.

To make matter worse, as long as new requirements are planned as User Stories in
sprints, one or more conflicts can raise. Inconsistencies may also arise from new
requirements, which introduce new functionality or enhancements to the application or
even from existing requirements that change during the development process. Let’s
suppose that for the use case exposed on Fig. 1, there is a new slightly different
mobile-based user interface. This new mockup is used to describe a new commercial
initiative and it has different business rules that cannot be appreciated by only looking
at the mockup. Despite of the mobile counterpart may seem to be a legitimate design
because much of the shown information is shared by both versions (mobile and web),
there are specific details that belong to the mobile version such as promotional dis-
counts or free-shipping benefits that are imperceptible by the reader at first sight.

To cope with the aforementioned problem, we present in this work as novel con-
tribution a colloquial and user-friendly notation to describe data, navigation, business
and interaction requirements upon mockups specifications. In order to evaluate the
effectiveness of our approach, we include a controlled experiment that assesses the
expressiveness improvement of Mockups using this approach.

The rest of this paper is structured as follows. Section 2 presents some related work
on requirements validation and model consistency checking. Section 3 describes our
approach to annotate mockups using end-user grammar. Section 4 presents an evalu-
ation of our approach. Finally, Sect. 5 concludes this work discussing our main con-
clusions and some further work on this subject.

2 Related Work

The analysis and detection of conflicts, errors, and mistakes in the requirements phase
are the most critical tasks in requirements engineering [7]. In [5], the authors surveyed
the way in which Web engineering approaches deal with main tasks: requirements
capture, requirements definition and requirements validation and conclude that most
approaches use classical requirements techniques to deal with requirements. According
to these, there are four main techniques for requirements validation: reviews, audits,
traceability matrix and prototypes; in the Web engineering literature, requirements
validation is one of the less treated subjects. Besides, none of these techniques offers a
systematic approach for detecting conflicts in requirements. Requirements conflicts
arise despite the way we document them, for example in [22] they define a framework
for quality of user stories and one of the necessary conditions for a US to be of good
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quality is that it has to be unique and free of conflicts. Additionally, a characterization
of conflict in user stories is presented but there is no mention of mockup’s conflicts.

Mockups tools are gaining attention in the requirements engineering field since they
help to build UI specifications in companion with end-users. Also, they help to discover
and define non-UI requirements in a language that is closer to them, as opposed to plain
textual specifications [11, 13]. Additionally, mockups have been proven to be an
effective method to capture fluid requirements [18] – those that are usually expressed
orally or informally and are an implicit (and usually lost) part of the elicitation process.
The usage of user interfaces prototypes with static structure to define conceptual
models has been already shown in [12]. While authors in this work show how E-R
models can be derived from structured mockups, their approach is not applicable to
informal mockups like the ones that are considered in this work. The ICONIX process
[17] proposes to start with Graphical User Interface (GUI) prototypes as a first
requirements artifact. While this may provide some initial guideline, in that work the
authors do not provide any language or formal guidance to define data requirements. In
[14], authors establish a method to work with Use cases and mockups in conjunction,
however, Use Cases specification require more effort than a lightweight specification.
In [10] the authors explain that sometimes when documenting requirements in agile this
is so customer-oriented, that even if the specification is clear for the customer, they
might not for the developers, having here conflicts between two actors in software
development, and for this they propone Requirement Specification for Developers
(RSD); each RSD can have mockups associated, and when a requirement is changed
the mockup associated has to be reviewed.

Regarding requirement consistency, last years we have been researching different
strategies to capture Web software requirements and validating its consistency and
completeness [4, 19]. These approaches were designed to be plugged into “heavy”
Model-Driven approaches and do not easily fit in agile development processes. In this
work, we aim at introducing tools for the consistency checking of mockups by bor-
rowing concepts from our previous work.

3 Enhancing Mockups with End-User Annotations

After software analysts understand clients’ initial needs, they are able to start sketching
mockups (with direct stakeholder participation if desired) in order to informally
describe how the application will be browsed and will be used later. Mockups can be
modelled using any tool in which the analyst has expertise (for instance, Balsamiq2).
We use as a running example the development and extension of an e-commerce site
(Fig. 1).

Mockups are used as a tool for validating requirements’ interpretation with
stakeholders; they describe how the user interface should look like with illustrative
examples belonging to real life scenarios. When using Mockups, analysts take
advantages of the fact that the language that they use, user interface widgets, are

2 Balsamiq Mockups - https://balsamiq.com/products/mockups/.
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jargon-free (unlike textual requirements artifacts) and represent a common language
between the analysts and the stakeholders [11, 15]. However, while mockups allow
describing visual and interaction metaphors their solely visual description is not enough
for expressing requirements like validation, navigation/activation, business process
aspects, etc. Because of this, informal annotations are usually used in companion with
mockups to describe those missing aspects. Throughout this section we describe how
we formalize these informal descriptions to solve ambiguities.

3.1 Structural User Interface

The approach presented in this paper extends (using an end-user grammar) the
MockupDD [15] methodology which provides a metamodel for enhancing mockup
widgets with annotations. In the context of MockupDD, mockups are the main,
mandatory requirements specification artifacts which, instead of being discarded as in
traditional development approaches, are reused as a basis to define more complex
software specifications. This reuse is accomplished through (1) the formalization of the
mockup structure and widgets, through what it is called a Structural User Interface
(SUI) model and (2) the introduction of a set of formal annotations over the structure
defined over such model [15]. Every annotation placed over the formalized mockup
represents an independent specification related, for instance, to content, navigation,
behavior or any other aspect that can be specified over a visual representation of the UI.
The semantics defined for every annotation allows formalizing requirements over
mockups. Consequently, it allows generating code or actions interpreted at runtime,
translating them to semi-textual representations to discuss requirements captured over
the mockups with stakeholders. In this case, annotations (called tags from now on) are
only used to formalize and refine requirements and, eventually, to detect conflicts. Our
approach relies on the definition of formal tags which enhance the widgets that com-
poses the UI. For a sake of space, in this work we will omit details of the SUI model
since it is not strictly related to the approach – more details about it can be found in
[15].

3.2 End-User Grammar Annotations Catalogue

In this section, we introduce the end-user annotation catalogue for enriching the
mockup specifications that will be used later in the examples. In order to improve
Mockup element description and solve the lack of formality, in this step we use a
Domain Specific Language called End User Grammar (EUG) [15] which focuses on
describing information source, format and information relationships. Each annotation is
a structured colloquial definition which is intelligible to end-users because it does not
present any technical concept that would limit its understanding. Next, we introduce
annotations patterns and their description.

"Mockup Name" view (number) ð1Þ

Defines an ID (number) for a mockup in order to be referenced as a destination for
navigation/activation by other tag.
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a½n� ½list of� class ð2Þ

Denotes that an object or a list of objects of class Class is shown or can be
manipulated in the UI. For instance, a list in a mockup that shows an index of products.

Class0 attribute ½which is a datatype j with options :
value1; . . .;and valueN� ð3Þ

Specifies that the attribute of an object of class Class (called attribute) is
shown or can be edited through an underlying graphical widget. Optionally, a
datatype can be defined for that attribute (one of Date, String, Integer,
Decimal, Boolean, Integer an enumeration or Blob). If no datatype is
specified, String is assumed. In the event of an enumeration it is possible to list
possible values using “with options o1;o2; . . .;oN” clause.

a Class1 has a[n][optional][list of] Class2, called

“aReal-Name”

ð4Þ

Denotes that an object of Class2 is shown or can be manipulated through the
underlying element in the UI. However, this element is obtained navigating from an
association called associationName from another element of class Class1.

Subclass is a type of Superclass ð5Þ

Denotes that an object of class Subclass is shown or can be manipulated in the
User Interface and that the class of this object (Subclass) inherits from another one
called Superclass.

Navigates to \destination[ ð6Þ

Opens a popup \destination[ ð7Þ

Denotes that, when executing a default action over the underlying graphical ele-
ment (e.g., a click) the destination mockup will be shown, navigated to or focused –

destination mockup should be tagged with mockupName view (number) and
<destination> should reference that number

Class0s attribute is required ð8Þ

Denotes that a non-empty value for attribute attribute of class Class is
required.

Class0s attribute min value is minimumValue ð9Þ
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Class0s attribute max value is maximumValue ð10Þ
Class0s attribute values must be between minimumValue

and maximumValue
ð11Þ

Denotes that the values for attribute attribute in class Class must be less than
or equal to a maximumValue and/or greater than or equal to a minimumValue

Class0s attribute matches regularExpresion ð12Þ

The contents of attribute attribute of class Class must be formatted to match
a pattern (regularExpression). For instance, phone numbers and ID data have
specific formatting constraints.

½Saves j Deletes� a Class ð13Þ

Denotes that, when clicking or triggering a default action over the widget an
instance of Class (which is being edited) will be created or deleted; respectively.

Triggers "action description" ð14Þ

Denotes that an arbitrary action (described textually) will be invoked when exe-
cuting the default action over the widget. This construct is used when the expected
behavior is not already defined but needs to be pointed out.

Fig. 2. Descripted mockups using our Colloquial DSL.
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3.3 Colloquial Data Description

Mockups often use a real-life scenario defined with illustrative data to describe what
User eXperience (UX) the application will provide. During this step, analysts must
enrich mockups graphical elements with a template-based colloquial description.

The main advantage of EUG is that it can be easily understood by end-users and
also provides the formality required to be processed and, consequently, allows a better
validation of requirements. Each description expression must match a specific template
with well-defined placeholders that will ease later automate processing.

In Fig. 2, we can see how the mockup presented in Fig. 1a was documented using
the tags. For the sake of space, we present in the examples some simple but illustrative
sets of annotations that specify the requirements, but the sets of tags can be more
exhaustive covering a larger set of elements. In the figure, a mockup built with Bal-
samiq tool is presented where tags are included using markup capabilities provided by
the tool itself. The requirement is first identified with the name “Products list” using
Grammar 1 syntax (presented in Sect. 3.2). Then, from the expression “Product’s
delivery flag with options: free, paid” (Grammar 3) we can identify the Product
business entity that has an attribute called delivery flag that has two possible values:
free and paid. Moreover, some behaviors are related to the “Add to cart” button, which
creates a new instance of Product Purchase object through “Saves a Product Pur-
chase” (Grammar 13) and navigates to a Cart view through “Navigates to 2”
(Grammar 6). The reader should note that the entities considering its attributes and
types as well as actions will be used in the consistency analysis of mockups later.

In Fig. 3, the Shopping Cart mockup is shown. This mockup is navigated to after
the user adds a new product in their Product Purchase clicking in the “Add to
cart” button in mockup depicted in Fig. 2, after the Product Purchase is created. The
Shopping Cart mockup mostly shows a list of Product Purchase and the mockup
mostly describes their properties. But, it also features a relationship between the
Product Purchase and the Product - since a Product Purchase represents a purchase

Fig. 3. Checkout mockup
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of specific quantity of an individual Product (Grammar 3). This relationship is
expressed through the “Product Purchase has a Product, called ‘product to be
purchased’” tag (Grammar 4). Finally, it also includes an annotation specifying
that the quantity of a Product Purchase should be 1 as a minimum (Grammar 9).

3.4 Using End-User Grammar to Identifying Requirement
Inconsistencies

A candidate conflict arises when there are syntactic differences between requirements
expressed through mockups. These differences may be common mistakes [4]: (a) as
consequence of an element absence in one mockup but its presence in the other, (b) the
usage of two different widgets for describing the same information which contradict
themselves, or (c) a configuration difference in an element such as the properties values
of a widget. This situation may arise when two different stakeholders have different
views on a single functionality, or when an evolution requirement contradicts an
original one. By annotating mockups, we are able to reason over the specification and,
both manually or using automatic tools when possible, end-user grammar allows to
detect inconsistencies that are not clear with plain mockups – or when using mockups
with colloquial, natural language annotations.

A basic conflict detection can be performed by comparing mockups so as to detect
the absence of elements or elements’ constructions differences. Since Mockups are
containers of widgets, we can apply difference operations of set collections in order to
detect inconsistencies. For example, currently, it has become common for software
products to release both a mobile and a Web version. The arrival of a new mobile
version should have the same business goal although it runs in a different platform with
different interaction and presentation features. For example, in Fig. 4, a different
stakeholder suggests an alternative mockup version to the one presented in Fig. 2.
Although their aim is to present the same underlying concept, they have significant
differences that would be overlooked without our end-user grammar. In Fig. 2, The
Product List mockup defines a Product entity which has Description, Internet Price,
Delivery Flag, Thumbnail, Status, Sold Count, and Location attributes. In Fig. 4, a
different business entity version also called Product comprises a different set of attri-
butes: Description, Internet Price, Delivery Flag, and Thumbnail. We can appreciate
two types of differences: one related to the attribute existence or absence and the other

Fig. 4. Annotated Product List mobile version.
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related to the attribute configuration. Regarding the former, there are attributes that
appear in one figure and not in the other, for example: Status, Sold Count and Location.
On the other hand, there are differences related to the type of the attributes, for example
in one of its versions a Product has a Delivery Flag as an enumeration and in the other
it’s a Boolean. Also, the Price is defined as an Integer number in the first version while
in its counterpart it’s a decimal number (Grammar 3).

Once the inconsistencies are detected, conciliation tasks are performed using
meeting-based tools [8] or heuristics [4] to eliminate requirements ambiguity and
inconsistence. For the sake of space, we will not provide a throughout discussion of this
topic.

4 Evaluation

In this section, we conduct an evaluation of the approach to measure how much it
assists in the understanding of mockups following Wohlin et al. guidelines [20]. First,
we define the goals, hypotheses and variables of the experiment. Then, we proceed to
define metrics and materials considered. After that, we detail subjects, instrumentation,
and data collection methods used in the experiment. Then we conduct an analysis of
results and their implication. Finally, we consider threats to validity of the evaluation.

4.1 Goals, Hypotheses and Variables

Following the Goal-Question-Metric (GQM) format as is suggested in [20], we define
the goal of the experiment in the following way:

Analyze Mockups enhanced with end-user’s annotations for the purpose of mea-
sure how requirements documented with mockups are improved with respect to their
expressiveness from the point of view of researchers in the context of software
analysts and developers.

After defining the Goal, now we proceed to define the different questions that will
allow to answer them. We profit from the precision and recall [9] concepts from
information retrieval research field and adapted them to our experiment so as to
measure quality of responses.

Our main Research Questions (RQ) are:
RQ1: Do End-user annotations improve the relevancy of the data elements iden-

tified in mockups?
For this RQ, we consider as null hypothesis H0 that there is no difference in the

accuracy of identification of involved data by subjects using only mockups and
annotated mockups. The relevancy is the response variable which will be measured
using a precision metric. The metric is used to assess how many data items identified by
the subject in a mockup are relevant accordingly a leading case. In Eq. 15, the formula
is depicted where the precision is computed given a subject and a mockup.

P Subjectj;Mf
� � ¼ RelevantResponse Mf

� �T
Response ðSubjectjÞ

Response Mf
� � ð15Þ
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As alternative hypothesis Ha, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (µEU) against the basic
support of mockups(µMOCK): µMOCK � µEU.

RQ2: Do End-user annotations improve the completeness of the data elements
identified in mockups?.

For this RQ, we consider as null hypothesis H0 that there is no difference in the
accuracy of identification of involved data by subjects using only mockups and
annotated mockups where the completeness is the response variable. The recall metric
is used to assess how many relevant data items are identified by the subjects in a
mockup. In Eq. 16, the Recall formula is presented where the precision is computed
given a subject and a mockup.

R Subjectj;Mf
� � ¼ RelevantResponse Mf

� �T
Response ðSubjectjÞ

RelevantResponse Mf
� � ð16Þ

As alternative hypothesis Ha, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (µEU) against the basic
support of mockups(µMOCK): µMOCK � µEU.

4.2 Experiment Design

In order to answer these questions, we designed a between-subject design experiment
where subjects were asked to identify entities and data present in mockups; from now,
Experiment Variable (EV). The subjects were randomly divided into two groups for the
two alternatives of the approach (the experiment’s factor): mockups without any kind
of annotations (Control) and mockups with the use of presented end-user annotations
(Treatment).

In this experiment, we focused on measuring how the communication of require-
ment is improved with annotation and we did not consider evaluating the user expe-
rience related to the tagging task or comparing the performance against other approach.

4.3 Experimental Unit

The requirement gathering task using mockups requires to document mockups and
communicate them, firstly, to stakeholders to validate its definition and later to the
developers in order to start its development. For this task, we have modeled use cases
using mockups for an e-commerce site – which mockups were similar to the ones
depicted in Fig. 1. The main functionalities considered in use cases were system
registration and the view of a product’s details. Both versions used the same mockups
but one of them included the annotations defined in Sect. 4 to enhance their descrip-
tion. Both the modeling and tagging tasks results were validated by senior analysts
prior to the experiment.

To evaluate subject’s understanding of the requirements, we asked them to fill out a
form where they should record each data definition they can extract from the mockups,
its expected data type, any kind of validation and the associated widget. Since mockups
depict scenarios using examples rather than abstract variables or placeholders, they lack
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any kind of formalism so the datatype, validations and any other specification is the
result of the mockup’s reader interpretation. Both the mockup and the form are
available online3.

4.4 Subjects, Instrumentation, and Data Collection

During the experiment, the subjects received a form and a set of mockups. Subjects
were 34 developers from different software companies. On average, they were 31 years
old, had more than 6 years of programming experience and approximately 3.5 years in
requirement analysis tasks. A group of 18 subjects performed the experiment with
mockups annotated with end-user grammar meanwhile a group of 16 subjects per-
formed the experiment based on simple mockups. They were motivated and committed
to the experiment, as we were sponsored by the CEOs and managers that notified the
subjects about the company’s commitment to the research experiment.

The experiment protocol was executed in the same way with all the subjects. First
of all, they received a brief introduction to the material which had to be used during the
experiment. In the case of annotation-based material, the subjects were trained about
the end-user grammar usage. Next, participants were asked to complete an expertise
survey, read the experiment description, study the mockups, and fill out the ques-
tionnaire’s form. Each subject performed fully experiment supervised by a researcher
who ensured similar facilities layout, infrastructure, and subject isolation conditions.
Additionally, the researcher controlled the subject to avoid any answer modification as
long as she advanced in the experiment. To achieve the task of processing the collected
results, we first processed and digitalized responses. Then, we used different scripts
based on Python language (version 3.6.1) and Scipy library (version 0.19.0) to compute
Precision and Recall formulas.

4.5 Analysis and Evaluation of Results and Implication

For the analysis of samples, firstly we defined the Relevant Data Elements
(RDE) present in the mockups to be used to compute precision and recall metrics.
Then, once samples were digitalized, we checked samples against RDE for computing
True Positive (TP), and False Positive (FP) elements. That is to say, those elements that
a subject correctly reported (TP) when checking whether his response is included in the
relevant element set, or erroneously reported (FP). Finally, all samples were processed
using Mann–Whitney U test [20], which is a non-parametric statistical hypothesis test
technique, considering a standard confidence level (a) of 0.05. This technique can be
used with unequal sample size which is the case of this experiment. Additionally, we
computed the effect size using Cliff’s Delta technique.

The analysis was performed mostly in an automated way using Python-based
scripts that resolved the recall and precision calculation, and the hypothesis testing.

In order to answer our research question, we evaluated different possibilities of
computing subject’s responses and the outcome is presented in Table 1. As we asked

3 https://goo.gl/FMJ6KJ.
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subjects to identify abstract data present in UI (the attribute), its data type, and its
owner entity, we considered four evaluation strategies for all the possible combinations
of evaluating such tuple: (i) only the abstract data (attribute) identified in the response,
(ii) the attribute and its data type, (iii) the attribute and its owner entity, and (iv) the
attribute, its data type and its owner entity tuple. For example, to evaluate whether the
tuple birthday, String type, and owned by the entity Person is a valid response or not.
For every mentioned evaluation strategy, we calculated Precision (P) and Recall
(R) metrics of subject responses when using both mockups without annotations to
measure how accurate were their answers. For each metric we reported, in Table 1, the
average and standard deviation for each approach (Mockup and Annotation columns
respectively), the Cliff’s delta value for the effect size, and the p-value resulting from
the hypothesis testing that compares the means of both approaches. We can realize how
annotated mockups samples excel in performance in all evaluation type. In all cases,
the p-value was lower than the alpha level 0,05. Therefore, there is enough evidence to
support the alternative hypothesis. That is, the mockup with end-user annotation
improves the

To calculate the effect size, we used cliff’s delta technique which has as a result
value in (–1,1) range. In this case, the values are bigger than 0.474 [16] in all evaluation
types depicting a high meaningfulness.

Additionally, we computed the time required for each individual to complete the
experiment. It is noteworthy that the subjects extracting information from annotated
mockups performed better (requiring less time) than the subjects working on
plain-annotated. For annotated mockups 1 and 2, it took to subject on average 297 s and
880 s; respectively. Conversely, for non-annotatedmockups, it required 332 s and 947 s.

The recall metric points out that there is an effective understanding of the pieces of
data comprised by the mockup. The subjects reported a greater number of relevant
elements than those subjects which worked with simple mockups. That means, the
subjects were more accurate with the domain element description. The precision was
also higher having less irrelevant responses than mockups without annotations. This is
another important indication about the responses that they did not combine valid and
invalid information reducing the noise in the communication between clients and
analysts. For example, without the annotations, subjects defined different irrelevant
business entities such Login, User, and Person to compose UI attributes.

Table 1. Sample results

Mockup 1 Mockup 2

Mockup Annotation Cliff’s
delta

P-value <0.05 Mockup Annotation Cliff’s
delta

P-Value <0.05

Evaluation Metric Avg. Std. Avg. Std. Avg. Std. Avg. Std.

(i) Attribute P 0.48 0.16 0.65 0.19 0.55 0.003
p

0.52 0.10 0.61 0.11 0.43 0.020
p

R 0.31 0.08 0.45 0.10 0.70 0.000
p

0.44 0.09 0.54 0.07 0.53 0.003
p

(ii) Attribute,
Type

P 0.33 0.15 0.55 0.18 0.69 0.000
p

0.50 0.13 0.60 0.12 0.39 0.031
p

R 0.21 0.09 0.38 0.11 0.77 0.000
p

0.43 0.11 0.52 0.08 0.49 0.005
p

(iii) Attribute,
Entity

P 0.00 0.00 0.47 0.29 0.78 0.000
p

0.33 0.23 0.55 0.19 0.57 0.003
p

R 0.00 0.00 0.35 0.21 0.78 0.000
p

0.29 0.21 0.48 0.16 0.56 0.002
p

(iv) Attribute,
Type, Entity

P 0.00 0.00 0.39 0.27 0.72 0.000
p

0.31 0.22 0.53 0.19 0.56 0.004
p

R 0.00 0.00 0.28 0.19 0.72 0.000
p

0.27 0.21 0.47 0.15 0.58 0.002
p
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Summarizing, participants that were subjected to mockups with annotations where
more time-efficient and precise in their answers that those that worked with simple
mockups and oral clarifications (if required).

4.6 Threats to Validity

There are several threats to validity that were considered during the experiment design.
This research presents a preliminary result and for space sake.

Construct Validity. The experiment was designed to measure how the use of end-user
annotations improves the communication of requirements. In order to reduce the
experiment’s complexity and bias introduction possibility, we defined the method
(simple mockups or annotated mockups) as the only variable. The reader must note that
our approach is not being compared with another approach, and, indeed, it is under
evaluation how the annotations extension improves basic mockups.

Internal Validity. To avoid any misunderstanding during the experiment, we pre-
sented each material in a brief introduction before subjects performed the experiment
and during the experiment, any enquiry related to the sentences was answered without
introducing a bias to the sample. The subjects were selected randomly and all of them
were working in software companies in Argentina and Spain. The provided material
was the same to all subject. We also checked that all the users had basic knowledge in
e-commerce application (just a simple users) and had not participated in the devel-
opment or requirement analysis in any application of this kind.

External Validity. The subjects were software engineers who have played the role of
developers and/or analyst during their career. Although their experience levels were
different, they are all exposed to the regular responsibilities of any software practi-
tioners: meet with clients, understand requirements, develop the software and honor
deadlines for software delivery. A broader experiment considering different subject of
different cultures who have worked on different business domains will improve the
generality of our claims.

Conclusion Validity. The experiment was based on objective metrics evaluated with
all gathered data without any exclusion to guaranty that the outcome of the experiment
analysis will be the same and avoiding hypothesis fishing. We used non-parametric
tests which have fewer constraints than parametric ones but make it more complex to
compute the power and effect size. Therefore, we used well-known guidelines for
reporting empirical experiments as checklists for confirming the requirements of the
test techniques. Finally, in order to avoid the impact of random irrelevancies on the
experiment, we used a large number set of samples that helped the irrelevancies to
become diluted.
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5 Conclusion and Further Work

We have presented a novel approach for enriching mockups with annotation so that the
mockups improve their expressiveness and understandability minimizing the risk of
requirement’s misunderstanding. The approach is modular, so it can be plugged in any
software engineering approach to ensure application consistency, validate require-
ments, and save time and effort to detect and solve error in latest software development
steps. We have presented some simple examples that illustrate the approach feasibility.
Additionally, we present a preliminary evidence highlighting the benefits of our
approach, but it is required more validation to support stronger claims.

We are currently working on a tool for the processing of annotations so as to
provide a semi-automate syntactic and semantic analysis of inconsistencies. In these
lines, some methodologies like Design Sprint [22] are proposing to build realistic
prototypes to be validated with final users as soon as possible. Then, these method-
ologies propose to see your finished product and customer reactions before making any
expensive commitments. Then, it’s also necessary to explore in future how to adapt and
process these tags notations in general purpose tools like Microsoft PowerPoint and
Keynote.

A user experience evaluation for the tagging task will help to identify improve-
ments that increase the quality of the requirement specification.
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