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Abstract

The aim of this paper is to introduce some classes
of aggregation functionals when the evaluation scale
is a complete lattice. Two different types of aggre-
gation functionals are introduced and investigated.
We consider a target-based approach that has been
studied in Decision Theory and we focus on the
equivalence between a utility-based approach and
target-based approach. Moreover we study a class
of aggregation functionals that generalizes Sugeno
integrals to the setting of complete lattices.

Keywords: Completely distributive lattice, ag-
gregation functionals, target-based aggregation,
measure-based aggregation.

1. Introduction

Aggregation operators are an important mathemat-
ical tool for the combination of several inputs in a
single outcome. that is used in pure mathematics
and in many applied fields (see [7] for a general back-
ground). Real-valued fuzzy measures and their as-
sociated fuzzy integrals are widely used aggregation
operators. There are many situations where inputs
to be aggregated are qualitative and numerical va-
lues are used by convenience. Moreover sometimes
we need to evaluate objects with a scale that is not
totally ordered. As the aim of this paper is to gener-
alize some well known aggregation functionals in a
purely ordinal context. In this case only maximum
and minimum are used for aggregation of different
inputs.
So we study aggregation functionals based on a com-
plete lattices and we consider in particular the class
of completely distributive lattices. A general ap-
proach to aggregation on bounded posets is consi-
dered also in [3], [6] and [12].
The plan of the paper is the following. In Section
2 we introduce some background on lattices theory
and we provide the necessary definitions, following
by a introduction of Choquet-Stieltjes integral on
real line. In Section 3 a target-based procedure to
aggregate different inputs with respect to a mea-
sure is introduced developing a unifying definition
for both numerical and ordinal framework. Finally
we introduce a lower and upper fuzzy integrals that
generalize Sugeno integral in the setting of complete
lattices.

2. Basic notions and terminology

2.1. General background on lattices

A lattice is an algebraic structure ⟨L; ∧, ∨⟩ where L
is a nonempty set, called universe, and where ∧ and
∨ are two binary operations, called meet and join,
respectively, which satisfy the following axioms:

(i) (idempotency) for every a ∈ L, a ∨ a = a ∧ a =
a;

(ii) (commutativity) for every a, b ∈ L, a∨b = b∨a
and a ∧ b = b ∧ a;

(iii) (associativity) for every a, b, c ∈ L, a∨ (b∨c) =
(a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c;

(iv) (absorption): for every a, b ∈ L, a ∧ (a ∨ b) = a
and a ∨ (a ∧ b) = a.

With no danger of ambiguity, we will denote lat-
tices by their universes. A lattice L is said to be
distributive if, for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
As it is well-known, every lattice L constitutes a
partially ordered set endowed with the partial order
≤ given by: for every x, y ∈ L, write x 6 y if x∧y =
x or, equivalently, if x ∨ y = y. A chain is a lattice
such that for every a, b ∈ L we have x 6 y or y 6 x.
Clearly, every chain is distributive. A lattice L is
said to be bounded if it has a least and a greatest
element, usually denoted by 0 and 1, respectively.
A lattice L is said to be complete if

∧
S =

∧
x∈S x

and
∨

S =
∨

x∈S x exist for every S ⊆ L. Clearly,
every complete lattice is also bounded.
For an arbitrary nonempty set A and a lattice L, the
set LA of all functions from A to L also constitutes
a lattice under the operations

(f ∧ g)(x) = f(x) ∧ g(x) and

(f ∨ g)(x) = f(x) ∨ g(x),
for every f, g ∈ LA. We denote the elements of L
by lower case letters a, b, c, . . ., and the elements of
LA by usual function symbols f, g, h, . . .. We use
0 and 1 to denote the least element and greatest
element, respectively, of LA. Likewise and with no
danger of ambiguity, for each c ∈ L, we denote by
c the constant c map in LA. If L is bounded, then
for each X ⊂ A, we denote by IX the characteristic
function of X in LA, i.e.,

IX(x) =

{
1, if x ∈ X

0, otherwise,
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For further background in lattice theory we refer the
reader to, e.g., Birkhoff [1], Davey and Priestley [6]
and Grätzer [8].

2.2. Completely distributive lattices

A complete lattice L is said to be completely dis-
tributive is the following distributive law holds∧

i∈I

( ∨
j∈J

xij

)
=

∨
f∈JI

(∧
i∈I

xif(i)

)
for every doubly indexed subset of elements {xij :
i ∈ I, j ∈ J} of L.
The unit interval [0, 1], ordered in the natural way,
is a completely distributive lattice and more gener-
ally, any complete chain is a completely distributive
lattice.
In this paper we shall make use of an alterna-
tive characterization of complete distributivity in-
troduced by Raney ([14] and [15]).
Given a complete lattice L and x, y ∈ L, we write
x ▹ y and we say that x is way below y if and only
if, whenever X ⊂ L and y ≤

∨
X there is z ∈ X

with x ≤ z. Then a complete lattice L is completely
distributive if and only if

x =
∨

{y ∈ L : y ▹ x} for each x ∈ L.

The binary relation ▹ satisfies the following prop-
erties:

(i) x ▹ y implies x ≤ y;
(ii) z ≤ x ▹ y ≤ w implies z ▹ w;
(iii) x ▹ y implies x ▹ z ▹ y for some z ∈ L (inter-

polation property).

As in [10] a subset D⊂L is called joint-dense if
x =

∨
{d ∈ D : d▹x}. It can be easily proved that a

a subset D ⊂ L of a completely distributive lattice
L is joint-dense if and only if given x, y ∈ L such
that x▹y, there is d ∈ L such that x▹d▹y (see [10]).
An element x ∈ L is called supercompact (or isolated
from below) if x ▹ x. A completely distributive lat-
tice is said to be ▹-separable if it has a countable
joint-dense subset consisting of non-supercompact
elements.
The lattice [0, 1] is an example of a ▹-separable
completely distributive lattice where we have x ▹ y
if either x < y or x = 0 = y.
It can be proved that complete distributivity is a
selfdual property. We can consider also the dual re-
lation J and the meet-dense subsets defined as in
[2] and [10].

2.3. Choquet-Stieltjes integral on [0, 1]

In this section we define the Choquet-Stieltjes in-
tegral as in [13] and we consider the representation
of the Choquet-Stieltjes integral as a the Choquet
integral.
If A is anon-empty set let (A, A, m) be a fuzzy

measure space i.e., A is a σ-algebra of subsets
of A (if A is a finite set we usually assume that
A = 2A, m : A → [0, 1] is a fuzzy measure such that
m(∅) = 0, m(A) = 1 and m(X) ≤ m(Y ) whenever
X ⊆ Y .
If F denotes the class of [0, 1]-valued measurable
functions defined on A and f ∈ F the Choquet in-
tegral of f with respect to m is defined by∫

f dm =
∫ 1

0
mf (r) dr

where mf (r) = m({x : f(x) ≥ r}).
If g : [0, 1] → [0, 1] is a non-decreasing function with
g(0) = 0 and g(1) = 1 we can define the Lebesgue-
Stieltjes measure mg on [0, 1] by

mg(a, b) = g(b+) − g(a−)

where g(b+) = limx→b+ g(x) and g(a−) =
limx→a−g(x) if 0 < a, b < 1 and g(1+) = 1,
g(0−) = 0. Now we can define the Choquet-Stieltjes
integral on [0, 1] with respect to m, g by∫

f dg =
∫ 1

0
mf (r) dmg.

It can be proved as in [13] that if g : [0, 1] → [0, 1]
is a continuous and increasing function with g(0) =
0 and g(1) = 1 and f ∈ F the Choquet-Stieltjes
integral on [0, 1] with respect to m, g is a Choquet
integral of g ◦ f that is∫

f dg =
∫

g(f) dm.

3. Aggregation functionals on lattices

3.1. Target-based aggregation on [0, 1]n

In this section we consider an aggregation functional
on the bounded lattice [0, 1], defined as a functional
F : F → [0, 1]. We say that the functional F is
a utility-based functional if there exists a contin-
uous and increasing function u : [0, 1] → [0, 1] with
u(0) = 0 and u(1) = 1 such that

F (f) =
∫

u(f) dm

for every f ∈ F .
Moreover we say that the functional F is a target-
based functional if there exists an element b ∈ F
such that

F (f) = m({r : f(r) ≥ b(r)})

for every f ∈ F . It is important to note that the
set {r : f(r) ≥ b(r)} belongs to A since the f and b
are measurable functions.
When we consider a target-based functional we use
a benchmarking procedure that ranks [0, 1]-valued
functions by the measure that they outperform the
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benchmark function b. A similar approach is con-
sidered in the framework of decision analysis under
uncertainty where it is common to model a rational
individual’s preferences using utility functions . It
is an alternative, mathematically equivalent, way of
modeling preferences that is quite natural in many
situations. We refer to the paper of Castagnoli and
Li Calzi[4](and the references therein) for more de-
tails on target-based decision models.
We can easily prove that a utility-based (target-
based) functional is an aggregation functional. It
is important to point out that every utility-based
functional on [0, 1] is a target-based functional.

Proposition 1 If u : [0, 1] → [0, 1] is a continuous
and increasing function with u(0) = 0 and u(1) =
1 there exists a [0, 1]-valued measurable function b
defined on A such that∫

u(f) dm = m({x : f(x) ≥ b(x)}).

Proof We can prove that there exists a [0, 1]-
valued measurable function b defined on A such that
u(x) = Db = m({r : f(r) ≥ x}) and so the function
u is a cumulative distribution function of b. Using
Choquet-Stiltjes integration we have∫

u(f) dm =
∫

f du =
∫

f dD =

∫ 1
0 m({x : f(x) ≥ r}) dD = m({x : f(x) ≥ g(x)}).

3.2. Some definitions

Let (A, A, m) be a measurable space and L a a
bounded lattice. A fuzzy measure on A with values
in L is a function m : A → L such that m(∅) = 0,
m(A) = 1 and m(X) ≤ m(Y ) whenever X ⊆ Y .
A function f : A → L is said to be measurable if the
sets {x : f(x) ≤ a} and {x : f(x) ≥ a} are elements
of A for every a ∈ L.
We denote by M the set of all fuzzy measures on A
with values in L and by F the set of the measurable
functions f : A → L.
A measure-based aggregation functional F on L is a
mapping F : F × M → L such that

(i) for each m ∈ M F (m, 0) = 0 (boundary con-
dition);

(ii) for each m1, m2, ∈ M with m1 ≤ m2 and
f1, f2, ∈ F with f1 ≤ f2 we have F (m1, f1) ≤
F (m2, f2) (monotonicity).

This general definition has to be completed by a
variety of additional conditions depending on the
considered framework.

3.3. Target-based aggregation on
completely distributive lattices

Our aim is to extend the definition of target-based
aggregation functional to an ordinal framework.

Proposition 2 If L be a ▹-separable completely
distributive lattice, m ∈ M, b ∈ F then the set
{x : f(x) ◃ b(x)} is measurable.

Proof Let D the countable join-dense subset of L
and {dn} an enumeration of D. One can easily
checks that if f, g ∈ F we have that:

{x : f(x) ◃ d} =
∪

d▹dn

{x : f(x) ≥ dn} and

for every d ∈ D. So we can prove that for every
d ∈ D the set {x : f(x)◃d} is measurable. We have
also that for every d ∈ D the set {x : f(x) ▹ d} is
measurable. We can prove that {x : b(x) ▹ f(x)} =
=

∪
d∈D ({x : d ▹ f(x)}

∩
{x : b(x) ▹ d}) and so we

can conclude that the set {x : f(x) ◃ b(x)} belongs
to A.

Proposition 3 If If L be a ▹-separable completely
distributive lattice and b ∈ F then the functional
F : F × M → L such that

F (m, f) = m({x : f(x) ◃ b(x)})

is a measure-based aggregation functional.

Proof First we note that F is well-defined by
Proposition 2. Then the properties of F follow
immediately from the properties of the relation ▹.

If L is a complete chain we have that x▹ y if either
x < y or x = y is isolated from below which in
this case means that x is the upper endpoint of a
jump in the ordering. Hence we can easily prove the
following proposition.

Proposition 4 If If L be a ▹-separable complete
chain and b ∈ F then the functional F : F ×M → L
such that

F (m, f) = m({x : f(x) ≥ b(x)})

is a measure-based aggregation functional such that
F (m, 1) = 1.

3.4. Utility-based aggregation on complete
lattices

In this section we are interested in a class of polyno-
mial functionals defined on a complete lattice. Fol-
lowing the approach in [9] we consider the functio-
nals defined by Fl, Fu:

Fl(m, f) =
∨

x∈L

(x ∧ m({x : u(f(x)) ≥ x})) and

Fu(m, f) =
∧

x∈L

(x ∨ m({x : u(f(x)) � x})) where

u : L → L is an increasing function such that u(0) =
0 and u(1) = 1. If u is the identity function Fl and
Fu extend Sugeno integral to the setting of complete
lattices.
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As in [11] we introduce a generalization of the equal-
ity almost everywhere of two functions.
If m1, m2, ∈ M and f1, f2, ∈ F we say that the
pairs (m1, f1) and (m2, f2) are equivalent, in sym-
bols (m1, f1) ∼ (m2, f2) when

m1({x : f1(x) ≥ a}) = m2({x : f2(x) ≥ a}) and

m1({x : f1(x) � a}) = m2({x : f2(x) � a})

Proposition 5 Let L be a complete and bounded
lattice and u : L → L an increasing function such
that u(0) = 0 and u(1) = 1.

(i) The functionals Fl and Fu measure-based ag-
gregation functionals;

(ii) if X ⊆ A then Fl(m, IX) = Fu(m, IX) =
m(X);

(iii) if (m1, f1) ∼ (m2, f2) then F (m1, f1) =
F (m2, f2).

(iv) if L is completely distributive then Fl(m, f) =
Fu(m, f) for every m ∈ M and f ∈ F .

Proof Since u is an increasing function and u(0) =
0 and u(1) = 1 it is easy to see that the functionals
Fl and Fu measure-based aggregation functionals.
If X ⊆ A then {x : u(IX(x)) ≥ 1} = X = {x :
u(IX(x)) � 0} and then Fl(m, IX) = Fu(m, IX) =
m(X). By the definition of the functionals Fl and
Fu and of the relation ∼ we can get (iii). Theorem
3.1 of [9] applied to the the function u◦f guarantees
that Fl(m, f) = Fu(m, f) for every m ∈ M and
f ∈ F when L is a completely distributive lattice.

3.5. Concluding remarks

The aim of this paper has been to consider a qualita-
tive approach to aggregation. The focus has been on
aggregation functionals defined on lattices. In par-
ticular we have introduced measure-based aggrega-
tion functionals defined on completely distributive
lattices. A further research direction is that of an
axiomatic characterization of the considered aggre-
gation functionals.
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