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ABSTRACT

This paper deals with haptic systems involving multiple human op-
erators and devices with computational and communication delays.
A method is proposed for the design of stabilizing controllers which
also guarantee transparency, i.e., controllers are designed to miti-
gate the impact of delays and of the controllers themselves on the
realism of the tactile interaction. The proposed approach exploits
an extension of a previously developed passivity-based framework
for stabilization combined with a special loop shaping-like tech-
nique. The design procedure involves the solution of a sequence of
Linear Matrix Inequality (LMI) optimization problems.

1 INTRODUCTION

One of the main issues in stability analysis for haptics is that the
human operator handling the haptic interface is difficult to model.
A well-established approach is to consider the human operator as
an unmodeled passive system and to design controllers to guaran-
tee passivity of suitable components of the haptic loop, as shown in
the seminal paper [9] and more recently in [21], where the authors
provide different approaches to the characterization of passivity in
sampled-data systems and in particular in haptics. The first results
on stability of the haptic loop were formalized for a single-degree-
of-freedom (DoF) contact interaction, which has the advantage of
providing very elegant closed form conditions [10]. On the other
hand, recent applications of haptics involve multi-point contact in-
teraction with the environment using several devices, and hence the
single-DoF approach turns out to be inadequate [2]. This paper
deals with multi-DoF haptic systems where one or more human op-
erators interact with a shared virtual environment through multiple
devices.

Several approaches have been proposed to address stability of
multi-DoF force feedback loops [12],[13]. These approaches share
the common idea of monitoring the energy flowing into the sys-
tem and dissipating part of it with different strategies to guarantee
passivity constraints. A similar method has been presented in [19],
where the control is based on an energy observer.

Our approach is different in nature since it does not need to mon-
itor the energy and tune the dissipating action of the controller ac-
cordingly. On the contrary, our method is more related to [14, 16],
where structural conditions are given for the controller (referred
to as virtual coupling) to guarantee the stability of the haptic loop
for the single-DoF case, and to [17], in which an H∞ approach to
transparent controller design is proposed for the case of a single
one-DOF operator. This paper builds upon previous contributions
[5, 6, 7], in which a framework is proposed based on passivity and
Linear Matrix Inequalities (LMIs) for stabilizing controller design
in haptic loops involving multiple devices and human operators. In
particular, we extend these results taking into account the presence
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of constant time delays, which may arise both in the computations
for the simulation of the virtual environment [3] and in communi-
cation, due to the fact that the virtual environment may be shared
among several remote users [20]. Moreover, we address the per-
formance of controllers in terms of transparency. When delays are
present, the controller has to meet the requirement of limiting the
impact of both the controller itself and the delays on the realism
of interaction. The transparency property is formulated in an H∞
context as a model matching problem, extending the formulation
of controller transparency given in [17] and [7] for the undelayed
case. The model matching problem arising in the multi-device de-
layed scenario considered here is solved using a loop shaping-like
technique. The resulting design procedure involves the solution of
a sequence of LMI optimizations.

The paper is organized as follows. In Section 2 we report some
preliminary results; in Section 3 we formalize the problems of sta-
bility and transparency; in Section 4 we address controller param-
eterization while in Section 5 we solve the problem of controller
design for transparency. Section 6 presents the experimental vali-
dation of the proposed results and conclusions are finally drawn in
Section 7.

Notation

For a square matrix X , X > 0 (X < 0) denotes positive (neg-

ative) definiteness, XT denotes transpose and ‖X‖ some ma-
trix norm. I (Im) is the (m × m) identity matrix. X =
blockdiag(X1, . . . ,XN) denotes a block-diagonal matrix with diag-
onal blocks X1, . . . ,XN . With BD(m;m1, . . . ,mN) we denote the
set of m×m block-diagonal matrices whose N blocks have dimen-

sions m1 ×m1, . . . ,mN ×mN , with ∑N
i=1 mi = m. The latter notation

is also used without ambiguity for block-diagonal transfer matri-
ces of m−input, m−output linear systems and, more generally, of
m−input, m−output operators. The notation G : (AG,BG,CG,DG)
indicates that the linear time invariant system G has a state-space
representation (AG,BG,CG,DG). For a complex matrix X , σ [X ]
and σ [X ] denote its maximum and minimum singular values, while
for the transfer matrix G(z) of a linear discrete-time system operat-
ing on signals sampled with period T , ‖G‖∞ denotes its H∞ norm,

i.e., ‖G‖∞ = supω σ [G(e jωT )]. For brevity, we sometimes denote

G(z) with G and σ [G(e jωT )] simply with σ [G] without ambiguity.

2 PRELIMINARIES

The results in this paper exploit a slight generalization [6] of stan-
dard passivity concepts [8].

Definition 1 (continuous-time passivity). Let Σ be a continuous-
time dynamical system with input u(t)∈R

m, output y(t)∈R
m, and

state ψ(t) ∈ R
n. If there exists a continuously differentiable posi-

tive definite function V (ψ) : Rn → R (called the storage function)
and m×m symmetric matrices ∆ and Φ such that along all system
trajectories (ψ(t),u(t),y(t)), t ∈ R, the following inequality holds

V̇ (ψ(t))< y(t)T u(t)− y(t)T ∆y(t)−u(t)T Φu(t),

then, system Σ is passive if ∆ = Φ = 0, output strictly passive with
level ∆ (∆−OSP) if ∆ > 0, Φ = 0, input strictly passive with level
Φ (Φ−ISP) if ∆ = 0, Φ > 0, respectively.
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Definition 2 (discrete-time passivity). Let Σd be a discrete-time
dynamical system with input u(k) ∈ R

m, output y(k) ∈ R
m, and

vector ψ(k)∈R
n. If there exists a positive definite function V (ψ) :

R
n →R and m×m symmetric matrices ∆ and Φ such that along all

system trajectories (ψ(k),u(k),y(k)), k ∈ N, this inequality holds

V (ψ(k+1))−V (ψ(k))< y(k)T u(k)−y(k)T ∆y(k)−u(k)T Φu(k),
(1)

then the system is passive if ∆ = Φ = 0, output strictly passive
(∆−OSP) if ∆ > 0, Φ = 0, input strictly passive (Φ−ISP) if ∆ =
0, Φ > 0, respectively.

Note that ∆ and Φ need not necessarily be positive definite: in-
deed, Σ,Σd are said to lack OSP (ISP) when the above definitions
hold for non-positive definite ∆ (Φ).
Let Σd : (A,B,C,D), where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n,

D ∈R
m×m. A straightforward extension of the Kalman-Yacubović-

Popov lemma [8] holds.

Lemma 1 The discrete-time system Σd is passive (∆−OSP,
Φ−ISP) if and only if there exists a symmetric matrix P ∈ R

n×n

such that the following matrix inequalities hold:

P > 0
[

AT PA−P+CT ∆C AT PB− CT

2 +CT ∆D

BT PA− C
2 +DT ∆C BT PB− D+DT

2 +DT ∆D+Φ

]

< 0.
(2)

It is convenient to formulate the passivity condition of Lemma 1
in terms of LMIs plus an inversion constraint. We have the follow-
ing result (see [5]).

Lemma 2 Let ∆ > 0. Σd is passive (∆−OSP (∆ > 0), Φ−ISP) if
and only if there exists a symmetric matrix Q ∈ R

n×n satisfying

Q > 0,

[

Y RT

R S

]

> 0,

R =





C
2
A
C



 , S =





DT+D
2 −Φ BT DT

B Q 0
D 0 Σ



 ,

Y = Q−1
, Σ = ∆−1

.

Finally, we need the following characterization of the H∞ norm
of a linear discrete-time system [18], which is also an LMI plus an
inversion constraint.

Lemma 3 Consider a linear time invariant discrete-time system
G : (A,B,C,D), and let µ be a positive scalar. Then, ‖G‖∞ < µ
if and only if there exist symmetric matrices X and U such that







X 0 AT CT

0 µ2I BT DT

A B U 0
C D 0 I






> 0,

X =U−1
.

3 PROBLEM FORMULATION

A haptic system is typically modeled as a sampled-data intercon-
nected system (with sampling period T ) as in Fig. 1. The main
components are a human operator block H, a haptic device block
D, a computer-simulated virtual environment E, and a virtual cou-
pling V , whose role is to act as a controller [9], [14]-[16]. The
mappings H and D are continuous-time, while E and V are discrete-
time. In this paper, we consider N human operators Hi, i = 1, . . . ,N,
where each Hi is assumed to have mi DoF. Each human operator
Hi is assumed to interact with a set of Mi devices, denoted di, j ,

j = 1, . . . ,Mi and having mi, j DoF, with mi = ∑
Mi

j=1 mi, j . The inter-

action of each human operator Hi with the respective set of devices
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Figure 1: Haptic loop
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Figure 2: Human-device interconnection

is therefore modeled by the feedback loop in Fig. 2, where

Di = blockdiag(di,1, . . .di,Mi
)

and where fh,i(t) ∈R
mi represents the generalized force vector and

vh,i(t) ∈ R
mi is the corresponding generalized velocity vector.

Let m = ∑N
i=1 mi. It turns out that the overall human-device inter-

connection is described by the H −D loop in Fig. 1, where

H = blockdiag(H1, . . . ,HN) ∈ BD(m;m1, . . . ,mN),
D = blockdiag(D1, . . . ,DN) ∈ BD(m;m1, . . . ,mN),

fh(t) = [ f T
h,1(t) . . . f T

h,N(t)]
T ,

vh(t) = [vT
h,1(t) . . . vT

h,N(t)]
T .

(3)

Remark 1 The structure of the blocks H and D reflects different
ways in which the human operators interact with the set of devices.
For instance, two devices may be operated by one (e.g., with both
hands) or two humans. Each particular structure can be exploited
as in [6] in order to reduce the conservatism of the approach pro-
posed here, but this fact is not taken into account in order to avoid
excessive technicalities.

Let x(k) ∈ R
m and f (k) ∈ R

m denote the sampled generalized de-
vice displacement vector and the sampled generalized force feed-
back vector, respectively.

We account for the presence of constant delays in the haptic loop

via the blocks Θ(z−1) and Ψ(z−1) in Fig. 1. In their most common

interpretation, Ψ(z−1) models computational delays in the simula-

tion of the virtual environment while Θ(z−1) accounts for delays
in the transmission of information between the simulator and the
devices. This is the standard paradigm used, e.g., in [15],[16]. We
assume such blocks to have the form

Θ(z−1) = blockdiag(z−θ1 Im1
, . . . ,z−θN ImN

) (4)

Ψ(z−1) = blockdiag(z−ψ1 Im1
, . . . ,z−ψN ImN

) (5)

with θi,ψi ∈ N, i = 1, . . . ,N.

Remark 2 The structure (4),(5) of Θ(z−1) and Ψ(z−1) implies that
all devices in the device block Di pertaining to the human operator
Hi are affected by the same delay, which is likely to happen in most
cases. Although different delays for all devices can be accounted
for, we prefer not to consider this case to keep the notation simple.

Remark 3 A more accurate model of the delays would in prin-
ciple require the presence of a transmission delay block affecting
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the measurement of the device displacements made available to the
virtual environment simulator. Accounting for this fact involves ad-
ditional technicalities and will be addressed in a future work.

Let G be the portion of the loop encircled by the dashed line in
Fig. 1 and let L denote the overall haptic loop. In this paper, we
address the problem of designing the virtual coupling V in order to
achieve stability and transparency, as explained below.

3.1 Stability

The stability requirement is fundamental to prevent oscillatory be-
haviour of the haptic system during interaction. In this respect, we
consider the notion of haptic loop stability introduced in [15].

Definition 3 The haptic loop L is stable if the generalized velocity
vector vh(t) goes to zero in steady state.

3.2 Transparency

An important performance index in a haptic system is the trans-
parency of components such as the virtual coupling and the delays
with respect to the virtual environment. When delays are present
and/or a virtual coupling is needed to guarantee stability, it is de-
sirable that their effect on the dynamics of the virtual environment,
as it is perceived by the human, be mitigated. This amounts to the
requirement that the admittance of the loop between the sampled
displacement x and the force feedback f (Fig. 1) be as close as pos-
sible to (”match”) the admittance of the ideal virtual environment
according to some criterion, under the stability constraint. We find
it convenient to formulate the transparency requirement as an H∞
model matching problem.
The admittance between x and f is given by

F = Θ(I +ΨEV )−1ΨE. (6)

To be as general as possible, we consider good transparency to
be achieved when the frequency response (in both amplitude and
phase) of F closely matches that of a delayed version of the virtual
environment E in a prescribed frequency range (typically at low
frequencies, depending on the required bandwidth). Matching F

with a delayed version of E, where the amount of delay is given as
a design parameter, introduces flexibility in trading off between the
compensation of phase delay through a derivative action and keep-
ing the strength of the control introduced by the virtual coupling
low. Indeed, a strong control action typically has undesirable ef-
fects such as reducing the perceived stiffness of the environment.
Motivated by the observations above, we consider the delay block

Λ(z) = blockdiag(z−λ1 Im1
, . . . ,z−λN ImN

), (7)

where λi ∈ N, 0 ≤ λi ≤ θi +ψi ∀i = 1, . . . ,N are given as design
parameters, and introduce the ”mismatch” transfer function:

M = F −ΛE = Θ(I +ΨEV )−1ΨE −ΛE. (8)

The transparency requirement then boils down to making M

”small” in a given frequency range, i.e., enforcing

σ [M ]< µ ∀ω ≤ ω0 (9)

for given ω0 and given (possibly minimum) µ , subject to closed-
loop stability.

The problem of ensuring stability is addressed in the next sec-
tion.

4 STABILIZING VIRTUAL COUPLING PARAMETERIZATION

In this section we provide the parameterization of a set S of sta-
bilizing controllers (virtual couplings) which turns out to be com-
putationally effective for addressing the transparency optimization
problem. The results that follow extend the passivity-based frame-
work proposed in [6] to account for the presence of delays, but ne-
glecting the relaxations used to address the possible different struc-
tures of the H −D block (see Remark 1).

_

Ĝ

V̂

Ê

vG(k)

vV (k)

v(k)

F(k)

Figure 3: Transformed haptic loop L̂

As in most approaches to stability analysis of haptic systems, we
rely on the assumption that both the human and the device enjoy
the passivity property; in particular, the human operator is passive
but otherwise unmodeled, while the device dynamics is assumed to
be OSP [15]. The OSP level of a given device is related to the damp-
ing introduced into the system by the device itself. The problem of
its computation has been dealt with in [14] for linear and in [16] for
nonlinear devices. In this respect, we remark that the approach in
this paper does not require an explicit (linear or nonlinear) model
of the devices, since only their passivity levels are involved.
We therefore make the following assumption.

Assumption 1 (a) Each device di, j is a ∆di, j
−OSP (but otherwise

unmodeled) continuous-time system, and (b) each human operator
block Hi is a passive (unmodeled) continuous-time mi-input, mi-
output operator.

In view of Assumption 1, it is easily seen [5] that the device block
D defined as in (3) is ∆D−OSP, where

∆D = blockdiag(∆D1
, . . . ,∆DN

),

∆Di
= blockdiag(∆di,1

, . . . ,∆di,Mi
).

(10)

We now look for a stability criterion in the sense of Definition
3. To this purpose, we exploit a generalization of the approach in

[14],[16]. To proceed, consider the transformed loop L̂ depicted in
Fig. 3, where

Ĝ =
z−1

T z
[G+ Θ̂(z−1)], V̂ =

z−1

T z
[V − Θ̂(z−1)],

Ê =
T z

z−1
Ψ(z−1)E,

(11)

where Θ̂(z−1) is the filter

Θ̂(z−1) =
T

2
blockdiag

(

ϑ1(z
−1)∆−1

D1
, . . . ,ϑN(z

−1)∆−1
DN

)

, (12)

being ϑi(z
−1) = 1+ z−1 + · · ·+ z−θi , i = 1, . . . ,N.

The loop L̂ is a discrete-time system whose dynamics are the
same as those of the original loop L. In the transformed loop, the

blocks Ĝ, V̂ and Ê can be characterized in terms of their OSP or ISP
levels. The following result states the passivity properties of Ĝ. The
proof follows from a quite straightforward extension of Lemma 2
in [16] and is omitted for brevity.

Theorem 1 Let Ĝ be as in (11) and suppose Assumption 1 holds.

Assume ∆D as in (10). Then Ĝ is (discrete-time) ∆
Ĝ
−OSP with

∆
Ĝ
= ∆D. (13)

The loop transformation introduced above is a simple generaliza-
tion of the one employed in [15] and by an argument similar to the
one used there, the following stability condition is readily obtained.

Theorem 2 If the transformed loop L̂ is asymptotically stable, then
the haptic loop L is stable in the sense of Definition 3, i.e., the gen-
eralized velocity vector vh(t) goes to zero in steady state.

225



The next step is to assess stability of the transformed loop L̂ by
means of linear matrix inequalities involving the passivity levels of

Ĝ, V̂ and Ê. The following condition generalizes a standard result
concerning stability of feedback and parallel interconnections of
passive systems (see [6]).

Lemma 4 If there exist symmetric matrices ∆V̂ , ΦÊ such that

1. V̂ is ∆V̂−OSP,

2. Ê +ΦÊ is passive, i.e., Ê is (−ΦÊ)−ISP, and

3. the following matrix inequalities hold:

∆V̂ > 0,

[

∆D −ΦÊ −ΦÊ
−ΦÊ ∆V̂ −ΦÊ

]

> 0, (14)

then, the haptic loop L is stable.

Let E be given as a discrete-time transfer function E(z), and let
(AÊ ,BÊ ,CÊ ,DÊ) be a state-space realization of

Ê = Ê(z) =
T z

z−1
Ψ(z−1)E(z).

The following result shows that checking the existence of ∆V̂ and
ΦÊ satisfying the stability condition of Lemma 4 can be cast as an
LMI problem.

Theorem 3 If there exist symmetric matrices P, ∆V̂ , ΦÊ such that

1. V̂ is ∆V̂−OSP,

2. the following LMIs hold

∆V̂ > 0,

P > 0,




AT
Ê

PAÊ −P AT
Ê

PBÊ −
CT

Ê

2

BT
Ê

PAÊ −
CÊ

2 BT
Ê

PBÊ −
DÊ

2 −
DT

Ê

2 −ΦÊ



< 0,

[

∆D −ΦÊ −ΦÊ
−ΦÊ ∆V̂ −ΦÊ

]

> 0,

(15)

then the haptic loop L is stable.

Proof. It follows immediately from Lemma 4 by observing that
condition 2) in that Lemma is equivalent to the second and third of

(15) by Lemma 1 when E (and thus Ê) is a linear system. �

We are now ready to derive an LMI parameterization of a set S of
stabilizing virtual coupling systems of given fixed order n̄. Within
this set, the transparency problem will be considered.

Let (AΘ̂,BΘ̂,CΘ̂,DΘ̂) be a state-space representation of the fil-

ter Θ̂(z−1) and let V : (AV ,BV ,CV ,DV ), where, AV ∈ R
n̄×n̄, BV ∈

R
n̄×m, CV ∈R

m×n̄, DV ∈R
m×m. Then, V̂ : (AV̂ ,BV̂ ,CV̂ ,DV̂ ) where

AV̂ =





AV 0 − 1
T BV

0 AΘ̂ − 1
T BΘ̂

0 0 0



 , BV̂ =





1
T BV
1
T BΘ̂

I



 ,

CV̂ =
[

CV −CΘ̂ − 1
T (DV −DΘ̂)

]

, DV̂ =
1

T
(DV −DΘ̂).

(16)

The following result yields the sought parameterization of S.

Theorem 4 Consider the haptic loop L, let ∆D be the OSP level

of the devices as in (10), and let Ê : (AÊ ,BÊ ,CÊ ,DÊ). Then,

all controllers V : (AV ,BV ,CV ,DV ) such that there exist matrices
P,∆V̂ ,ΦÊ ,ΣV̂ ,Q,Y satisfying the LMIs

P > 0, ∆V̂ > 0,




AT
Ê

PAÊ −P AT
Ê

PBÊ −
CT

Ê

2

BT
Ê

PAÊ −
CÊ

2 BT
Ê

PBÊ −
DÊ

2 −
DT

Ê

2 −ΦÊ



< 0,

[

∆D −ΦÊ −ΦÊ
−ΦÊ ∆V̂ −ΦÊ

]

> 0,

(17)

Q > 0,

[

Y RT

R S

]

> 0, (18)

R =





CV̂

2
AV̂
CV̂



, S =





DV̂+DT
V̂

2 BT
V̂

DT
V̂

BV̂ Q 0
DV̂ 0 ΣV̂



 , (19)

plus the inversion constraint

ΣV̂ = ∆−1

V̂
, Y = Q−1

, (20)

stabilize the haptic loop L.

Proof. (17) and (18),(19),(20) ensure, respectively, that the OSP
level ∆V̂ satisfies the stability condition of Theorem 4 for some ΦÊ
and that V is ∆V̂ -OSP; the latter property follows from Lemma 2.�

5 DESIGN FOR TRANSPARENCY

We now consider the problem of achieving transparency as defined
in Section 3.2 within the stabilizing controller class S. A possible
optimal approach is to solve the H∞ norm minimization problem

min
V∈S

‖W1MW2‖∞ (21)

where W1 and W2 are suitable weights (low-pass filters) that penal-
ize the objective function at the frequencies of interest.
Unfortunately, solving (21) directly is not easily accomplished us-
ing convex optimization techniques, in particular when algebraic
loops are present in the feedback interconnection of ΨE and V . In
this respect, we observe that E is likely to have feed-through, i.e.,
DE 6= 0 (for instance, when it is obtained by backward Euler or
Tustin approximation of a continuous time system), V is required

to have DV > 0 in order for V̂ to be passive, and Ψ may have some
non-delayed components, i.e, ψi = 0 for some i.
Such an approach is used in [17] but, due to the above mentioned
computational difficulties, the results are limited to the case of only
one single-DoF device (SISO setting). Moreover, in that paper de-
lays are not accounted for.
Convexification techniques for H∞ control problems, such as those
in [18], could in principle be employed in combination with the
controller parameterization proposed here in order to solve (21) op-
timally, provided that possible algebraic loops are avoided, e.g., by
introducing artificial delay in Ψ. Nevertheless, we prefer to pursue
a simpler approach that can be used in the general case and that can
be easily formulated in terms of LMI problems, at the price of ob-
taining sub-optimal solutions. More specifically, we will proceed
as in standard MIMO loop shaping techniques by enforcing bounds
on the singular values of a suitable ”open-loop” response through
the design of V in order to achieve ”closed-loop” performance, i.e.,
to make σ [M ] small at given frequencies. Contrary to classic loop
shaping, no stability requirement has to be considered, since V will
be restricted to belong to the set of stabilizing controllers S.
To proceed, let us introduce the transfer function

L = I +ΨEV −ΨΛ−1Θ. (22)

Note that the transfer function L (z) is proper under the assump-
tions made on Λ(z) (see (7)). Moreover, we observe that if σ [L ] is
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small, then also σ [M ] is small, i.e.,

σ [L ]≪ 1 ⇒ σ [M ]≪ 1.

Indeed, by using the matrix inversion lemma, M can be rewritten
as

M =−Λ
(

I +Λ−1ΘL
−1Ψ

)−1
E.

Hence, if σ [L ]≪ 1 we have

σ [M ]≈ σ [−Λ
(

Λ−1ΘL
−1Ψ

)−1
E]

= σ [−ΛΨ−1
L Θ−1ΛE]

and therefore, if σ [L ]≪ 1 then also σ [M ]≪ 1.

Remark 4 More accurate bounds on σ [M ] with respect to σ [L ]
could possibly be derived by exploiting results such as those in [4],
but we believe this issue to be out of the scope of this paper.

Given the above arguments, making σ [M ] small at given frequen-
cies can be achieved in a sub-optimal fashion by solving the opti-
mization problem

min
V∈S

‖L̃ ‖∞ (23)

where L̃ =W1LW2 and W1,W2 are suitable weights.

To this purpose, we observe that L̃ has the form

L̃ =W3VW2 +W4

where W3 = W1ΨE and W4 = W1(I −ΨΛ−1Θ)W2. Hence, a state

space representation (A
L̃
,B

L̃
,C

L̃
,D

L̃
) of L̃ can be parameter-

ized affinely in the matrices (AV ,BV ,CV ,DV ) in the same fashion

as the parameterization of V̂ in (16). The explicit expressions of
A

L̃
,B

L̃
,C

L̃
,D

L̃
are easy to compute and are not reported here

due to space limitations.
Given a positive scalar µ , computing a stabilizing controller V ∈ S

ensuring that ‖L̃ ‖∞ < µ can be accomplished by combining the
parameterization of S in Theorem 4 and the characterization of the
H∞ norm bound given in Lemma 3. This boils down to solving the
problem (17)-(20) with the additional variables X and U and the
additional constraints

(a)









X 0 AT
L̃

CT
L̃

0 µ2I BT
L̃

DT
L̃

A
L̃

B
L̃

U 0
C

L̃
D

L̃
0 I









> 0,

(b) X =U−1
,

(24)

where the first of (24) is an LMI in AV ,BV ,CV ,DV .

Remark 5 Finding V ∈ S that ensures ‖L̃ ‖∞ < µ reduces to solv-
ing the LMIs (17)-(19),(24(a)) with the additional inversion con-
straints (20),(24(b)). The solution can be carried out as a se-
quence of LMI optimization problems using the cone complemen-
tarity linearization algorithm [11]. Moreover, since the condition

‖L̃ ‖∞ < µ is convex in µ , ‖L̃ ‖∞ can be minimized by proceeding
by bisection on µ . We omit the outline of the algorithm here due to
space constraints.

Remark 6 A measure of the degree of transparency achieved by
the designed controller, which may be conservative, can be com-
puted as the ratio

τ =
supω<ω0

σ [M (e jωT )]

infω<ω0
σ [E(e jωT )]

(25)

where M is the mismatch function corresponding to the computed
controller. This index (the lower, the better) gives an idea of the
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Figure 4: Virtual environment model
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Figure 5: Device displacements during a run without virtual cou-
pling

magnitude of the mismatch compared to that of the frequency re-
sponse of the virtual environment at the frequencies of interest.

6 EXPERIMENTAL RESULTS

To validate the approach presented in this paper, we consider a
simple experimental set-up where interaction is performed with
a 2−DoF virtual environment using a pair of Force Dimension

Omega 3(TM) devices [1]. Each device has 3 DoF, but only one
is active while the other two are locked with mechanical clamps.
Suppose two human operators interact with one device each, thus
yielding the following structure of the H−D interconnection in (3):

H =

[

H1 0
0 H2

]

∈ BD(2;1,1),

D =

[

D1 0
0 D2

]

∈ BD(2;1,1).

For the purpose of this experiment, the OSP levels of the devices
are estimated from the damping factor of an identified first-order
linear model of the Omega along one axis, yielding (in MKS units)

∆D =

[

1.37 0
0 1.37

]

.

Let the virtual environment be the backward Euler discretization
of the mechanical model in Fig. 4. Let the model parameters be
M = 1, B1 = B2 = 1, K1 = 800, K2 = 700 in MKS units. The hap-

tic system operates at a sampling time T = 1.2 ·10−3 s.
We simulate the presence of a transmission delay between the
virtual environment simulator and the devices of 1 time step for
H1 −D1 and 2 time steps for H2 −D2, while no environment delay
is introduced, i.e, we consider

Θ(z−1) =

[

z−1 0

0 z−2

]

, Ψ(z−1) = I2.

A first run of the experiment is performed without introducing a vir-
tual coupling. The corresponding time plot of device displacements
is reported in Fig. 5. Self-sustained oscillatory behaviour arises
during interaction, showing instability of the loop. We proceed to
the synthesis of a virtual coupling using the proposed approach in
two cases.

Case I. We assume

Λ(z−1) =

[

z−1 0

0 z−2

]

= Θ(z−1)
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Figure 6: Device displacements during a run with virtual coupling
inserted

so that F will be required to match a delayed version of E. We

carry out the minimization of ‖L̃ ‖∞ using the procedure outlined
in Section 5, where the weights W1 and W2 are chosen as

W1 = I2, W2 = w(z)I2,

being w(z) a backward Euler discretization of the low-pass filter

w(s) =
1

1+ s
2π f0

, f0 = 80Hz.

By introducing additional LMI constraints in the parameterization
of S (see [7]) we also constrain V to have the typical structure of a
spring-damper system attached to each contact point of the virtual
environment, i.e.,

V (z) =

[

K +B
z−1

T z

]−1

; K =

[

k1 0
0 k2

]

, B =

[

b1 0
0 b2

]

.

(26)

Minimizing ‖L̃ ‖∞ yields the following controller parameters:

K =

[

2.87 0
0 2.32

]

·103
, B =

[

5.47 0
0 5.55

]

. (27)

Figure 6 depicts the evolution of the device displacements during a
run of the haptic system with the virtual coupling in (26),(27) ac-
tive. The plot shows the two users moving the virtual mass M back
and forth, but no self-sustained oscillation phenomena occur. This
design achieves a transparency index (25) equal to τ = −4.15 dB
in the 0−80 Hz frequency range.

Case II. We repeat the procedure in Case I assuming Λ(z−1)= I2,
thus trying to steer the frequency response of F to match that of the
undelayed virtual environment at low frequencies.
The following virtual coupling parameters are obtained:

K =

[

1.81 0
0 0.12

]

·103
, B =

[

5.78 0
0 3.81

]

. (28)

This design yields τ =−3.09 dB.

7 CONCLUSION

In this paper, the problem of virtual coupling design for multi-
device, multi-operator haptic systems has been studied. A previ-
ously developed framework based on passivity and LMIs for the
synthesis of stabilizing controllers has been extended to address
the presence of constant time delays in the haptic loop. Moreover,
a method for the design of controllers which ensure stability and
transparency has been developed in this framework. The proposed
approach relies on a particular loop shaping technique that involves
the solution of a sequence of LMI optimization problems. Experi-
mental validation has been conducted.

Future work will focus on taking into account more accurate
models of delays and a major challenge will consist in making the

approach robust with respect to variable delays. Future develop-
ments will also consist in validating the proposed approach on more
complex experimental scenarios.
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