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Iron in fatty liver and in the metabolic syndrome:
A promising therapeutic target
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Summary to evaluate the potential of iron reductive therapy on hard clini-
The dysmetabolic iron overload syndrome (DIOS) is now a
frequent finding in the general population, as is detected in about
one third of patients with nonalcoholic fatty liver disease
(NAFLD) and the metabolic syndrome. The pathogenesis is
related to altered regulation of iron transport associated with ste-
atosis, insulin resistance, and subclinical inflammation, often in
the presence of predisposing genetic factors. Evidence is accumu-
lating that excessive body iron plays a causal role in insulin resis-
tance through still undefined mechanisms that probably involve
a reduced ability to burn carbohydrates and altered function of
adipose tissue. Furthermore, DIOS may facilitate the evolution
to type 2 diabetes by altering beta-cell function, the progression
of cardiovascular disease by contributing to the recruitment and
activation of macrophages within arterial lesions, and the natural
history of liver disease by inducing oxidative stress in hepato-
cytes, activation of hepatic stellate cells, and malignant transfor-
mation by promotion of cell growth and DNA damage.

Based on these premises, the association among DIOS, meta-
bolic syndrome, and NAFLD is being investigated as a new risk
factor to predict the development of overt cardiovascular and
hepatic diseases, and possibly hepatocellular carcinoma, but
most importantly, represents also a treatable condition. Indeed,
iron depletion, most frequently achieved by phlebotomy, has
been shown to decrease metabolic alterations and liver enzymes
in controlled studies in NAFLD. Additional studies are warranted
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A strong association between iron overload unrelated to heredi-
tary hemochromatosis (HHC) and several manifestations of the
metabolic syndrome (MetS), including nonalcoholic fatty liver
disease (NAFLD), has been demonstrated during the last years.
Furthermore, iron stores have been linked to a heightened risk
of metabolic complications, such as diabetes, and faster progres-
sion of organ damage, including hepatic and cardiovascular
diseases. Although emerging evidence suggests that the associa-
tion between iron, NAFLD, and MetS represents a clinically omi-
nous condition, the mechanisms underpinning the dysmetabolic
iron overload syndrome (DIOS) and the pathogenesis of organ
damage are still debated, whereas the potential therapeutic role
of iron depletion therapy (ID) for the prevention of clinical com-
plications is just beginning to be evaluated in controlled trials.
Here, we review the recent overall evidence on epidemiology,
pathogenesis, genetics, natural history, and treatment of DIOS,
and provide a hypothetical interpretation of contrasting findings,
with possible lines of future research.
Association between hyperferritinemia, MetS alterations, and
NAFLD: the dysmetabolic iron overload syndrome

Ferritin and increased body iron stores have been associated with
insulin resistance (IR) and metabolic abnormalities defining MetS
in population studies conducted both in Western and Eastern
countries [1–4].

Several studies confirmed the association between hyperferr-
itinemia and type 2 diabetes (T2D). In a case–control study in
Europe, subjects with hyperferritinemia had a 2.4-fold higher risk
to develop T2D [5], whereas in a cross-sectional study in 9486 US
subjects, elevated ferritin was associated with T2D [6]. More
recently, in a prospective nested case–control study in 32,826
healthy Chinese women, higher iron stores were associated with
T2D independently of known risk factors [7], and in a case–
control study nested in the EPIC-Norfolk cohort, ferritin levels
were again an independent predictor of incident T2D [8]. In
the HEIRS study considering 97,470 subjects belonging to six
racial/ethnic groups, ferritin was independently associated with
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T2D [9]. As concerning the relationship among iron stores, MetS
and IR, in a cross-sectional study in 6044 US adults, ferritin was
associated with MetS and IR [1]. Other epidemiological studies
showed a correlation between ferritin, MetS, and IR severity,
which was independent of inflammation [2,3].

An interesting disease model to dissect the relationship
between iron and MetS is also provided by the polycystic ovary
syndrome (PCOS). PCOS is characterized by overweight, IR, and
increased ferritin levels, which are not related to inflammation,
but likely to oligomenorrhea [10]. Increased iron stores have been
suggested to contribute to IR frequently found in PCOS patients
[11]. In PCOS, metformin reduced ferritin in parallel with an
increase in insulin sensitivity, thus suggesting that hyperinsuli-
nemia and IR play a role on the increased iron stores in these
patients [12].

Thus, overall evidence indicates that high ferritin, reflecting
iron stores, is associated with MetS and T2D in ethnically diverse
populations. However, the extent to which ferritin truly reflects
iron stores (since inflammation and oxidative stress may compli-
cate the picture), and whether iron overload is causally associ-
ated with IR are still a matter of debate.

Key Points  

The dysmetabolic iron overload syndrome (DIOS) is 
detected in about one third of patients with nonalcoholic 
fatty liver disease (NAFLD) and the metabolic syndrome.  

The pathogenesis is related to altered regulation of iron 
transport associated with steatosis, insulin resistance, 
and subclinical inflammation, often in the presence of 
predisposing genetic factors.  

Increased body iron plays a causal role in insulin 
resistance through still undefined mechanisms that 
probably involve a reduced ability to burn carbohydrates 
and altered function of adipose tissue.  

DIOS may facilitate the evolution to type-2 diabetes, the 
progression of cardiovascular disease, the natural history 
of liver disease, and malignant transformation by 
promotion of cell growth and DNA damage.  

Iron depletion by phlebotomy, has been shown to 
decrease metabolic alterations and liver enzymes in 
controlled studies in NAFLD, and possibly to reduce the 
progression of vascular damage.  
A different perspective focused on the liver: Mendler et al. first
described a cohort of patients with unexplained hepatic iron over-
load characterized by the association with IR, and coined the term
‘‘insulin resistance-associated hepatic iron-overload syndrome’’
[13]. On the other hand, increased ferritin is detected in about
30% of unselected patients with NAFLD [14], and in these subjects
it has been associated with increased hepatic iron, as determined
by histological and radiological assessment, and by quantitative
phlebotomy [14–17]. The acronym NAFLD refers to a broad spec-
trum of liver diseases ranging from uncomplicated steatosis to
nonalcoholic steatohepatitis (NASH), which may progress to cir-
rhosis and hepatocellular carcinoma [18], and poses a high risk of
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cardiovascular disease [19]. Now the leading cause of liver disease
in Western countries [20], NAFLD is characterized by hepatic insu-
lin resistance (IR) and is considered a manifestation of the MetS
[21–23]. Progression of liver damage is more severe when fatty
liver is complicated by NASH [23–25], which is thought to be pro-
voked by lipid peroxidation and mitochondrial dysfunction deter-
mining oxidative stress and cytokine release [26].

The condition characterized by hepatic iron overload involv-
ing both hepatocytes and macrophages [27], absence of inflam-
mation, normal transferrin saturation, and associated with
features of MetS is now more commonly referred as DIOS
[28,29]. Although the diagnostic criteria are not clearly defined,
DIOS represents the most frequent iron overload condition, since,
as the clinical presentation overlaps almost completely with that
of hyperferritinemia associated with metabolic abnormalities, it
is observed in 15% of patients with MetS [2], and it is associated
in at least half of the cases with NAFLD [30]. DIOS patients have
mild hepatic iron excess with a predominantly mixed sinusoidal/
hepatocellular pattern [31], which presupposes macrophage iron
retention and an iron recycling defect that is associated with the
severity of inflammation and IR [32].

Recently, a more strict definition of DIOS has been proposed,
based on the presence of two or more MetS components, steato-
sis, normal transferrin saturation, and mild hepatic iron overload,
with typical involvement of the sinusoidal compartment [29].
However, this definition is not applicable to subjects who do
not have an indication for liver biopsy.

It has been reported that in DIOS iron absorption is decreased
and hepcidin, the hormone that acts by decreasing intestinal iron
absorption and recycling from macrophages [33], is increased
compared to healthy controls, indicating that iron compartmen-
talization in monocytes is likely related to a relatively preserved
upregulation of hepcidin as an attempt to counteract iron excess
[28,34].
Metabolic hyperferritinemia and DIOS: different faces of the
same problem?

As ‘‘metabolic’’ hyperferritinemia associated with NAFLD and
MetS and DIOS share the majority of clinical features (Table 1),
we propose that they might be considered as two faces of the
same health problem. In particular, both are characterized by
(1) the presence of metabolic alterations typical of MetS
[21,29,35]; (2) the presence of fatty liver [29]; (3) hyperferritin-
emia with normal or only slightly elevated transferrin saturation,
reflecting physiological upregulation of hepcidin in response to
increased iron stores [14,35,36]; (4) besides that in DIOS, mildly
increased hepatic (as detected by histological scores after Perls’
stain for iron, and determination of liver iron concentration by
atomic absorption spectrometry, or superconducting quantum
interference device – SQUID) and body iron stores (indirectly
estimated by the association with risk factors such as transferrin
saturation, age, male gender, increased alcohol intake within nor-
mal limits, and HFE mutations, and quantitatively assessed by
quantitative phlebotomy) have been demonstrated in patients
with NAFLD associated with hyperferritinemia compared to those
without hyperferritinemia, and the amount of body iron has been
associated with serum ferritin [14,15,37,38]. Data obtained in
recent studies by our group have been summarized in Supple-
mentary Table 1. Furthermore, serum ferritin has been associated
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Table 1. Comparison of clinical features of hyperferritinemia associated with NAFLD and MetS and of DIOS. Clinical features not referenced are present by definition
[29].

Hyperferritinemia in NAFLD and MetS  DIOS 

Male predominance Yes [14] Yes [13] 
Serum ferritin Increased Increased 
Transferrin saturation   Normal/slightly increased [14] Normal 
Hepcidin Increased [38, 41] Increased [28] 
Hepatic iron concentration Mild increase [15, 16, 37] Mild increase 
Hepatic iron pattern Non-parenchymal/mixed  

Hepatocellular if HFE or beta-globin mutations altering hepcidin [17,41] 
Non-parenchymal/mixed 

Ferroportin-1 muts/SNPs None [41] Rare [42] 
Dietary iron intake Increased ? [154] ? 
MetS components Present Present 
Insulin resistance Increased Increased 

Steatosis Present Present 
CRP levels Within normal range [38] Within normal range 
Cytokines Correlation with IL-6 and TNF-α, MCP-1 [39, 123] ? 
Response to phlebotomy Yes [15, 146, 152, 155] Yes [145, 151] 

Correlates with ferritin [37-39, 154]

NAFLD, nonalcoholic fatty liver disease; MetS, metabolic syndrome; DIOS, dysmetabolic iron overload syndrome; muts, mutations; SNPs, single nucleotide polymorphisms;
CRP, C reactive protein; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; MCP-1, macrophage chemoattractant protein-1 (CCL-2).
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with the severity of insulin resistance [38–40]. (5) Ferroportin-1
(Fp-1) mutations and polymorphisms have been excluded as a
common cause of iron overload in both DIOS and NAFLD/MetS
[41,42]. Unfortunately, the role of acquired factors, cytokines,
and other genetic factors have been reported in details only for
patients with a diagnosis of NAFLD and not in DIOS. Thus, com-
parative studies are clearly required to verify the aforementioned
hypothesis.
Molecular mechanism underlying body iron accumulation in
DIOS

Iron accumulation in DIOS likely involves altered regulation of
molecules involved in cellular iron export, such as ceruloplasmin
(Cp) and Fp-1 induced by inflammation and micronutrients
imbalance. A striking down-regulation of the cellular iron expor-
ter Fp-1 has been observed in NASH, whereas hepcidin was phys-
iologically increased in DIOS [43,44], confirming that altered iron
trafficking underlies iron accumulation in NAFLD, whereas pre-
served hepcidin regulation inhibits Fp-1 protein activity, thus
limiting further iron absorption and transferrin saturation. Since
the Cu2+-dependent ferroxidase Cp, the physiological plasma Cu2+

transporter, is required for the mobilization of iron by Fp-1, it was
hypothesized that low Cp may be a cause of iron accumulation in
DIOS. Indeed, NAFLD patients with the lowest liver and serum
Cu2+ and Cp levels were more likely to have iron overload [45].
Moreover, Fp-1 mRNA was lower in patients with low hepatic
Cu2+, and associated with steatosis and IR. As mentioned above,
unbalanced oxidative stress is considered a trigger of NAFLD
[46], and SOD1, one of the enzymes counteracting oxidative
stress, depends on adequate Cu2+ availability [47]. Systemic
Cu2+ deficiency causes mitochondrial dysfunction in mice [48],
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with similar morphological and functional alterations to that
described in NAFLD [49], and patients with NASH had lower
Cu2+ than those with simple steatosis [50], suggesting a possible
involvement of altered Cu2+metabolism in the pathophysiology of
NASH by favoring both iron accumulation and reduced antioxi-
dant activity.

Other sources of increased serum ferritin in NAFLD are
represented by subclinical inflammation and ferritin release by
activated leukocytes, and hepatocellular necrosis. Hepatic iron
accumulation is an early event in the natural history of NAFLD,
and increased ferritin levels in pediatric patients correlate with
IR and increased levels of cytokines [39]. An interesting hypoth-
esis based on data obtained in the HFD model is that activated
Kupffer cells may accumulate iron and release ferritin because
of increased erythrophagocytosis, which would cause cytokines
release and fibrogenesis [51].
Genetics of iron overload in NAFLD and the MetS

In the attempt to explain the reason behind DIOS development in
only a proportion of patients with NAFLD, several studies analyzed
whether mutations in the HHC gene (HFE) may be involved, with
conflicting results [40,52–54]. In a multicenter study in 587 Italian
patients, we recently investigated whether the C282Y and H63D
mutations predispose to iron overload in NAFLD [17]. Both hepa-
tocellular and non-parenchymal siderosis were associated with
HFE mutations, but the penetrance of HFE mutations was rela-
tively low, so that only one third of carriers had the hepatocellular
iron accumulation typical of HHC, explaining less than half of the
variability of this phenotype. Interestingly, we had previously
shown that carriers of the C282Y mutation have lower insulin
release, and develop NAFLD in the presence of less severe
1 vol. 55 j 920–932
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metabolic abnormalities (in particular the degree of adiposity),
suggesting that heterozygosity for C282Y HFE mutation,
responsible for mild iron overload, may increase the susceptibility
to clinically overt NAFLD [14]. It could be hypothesized that the
mechanism linking HFE mutations to iron accumulation in non-
parenchymal cells may involve a relative hampering in hepcidin
upregulation and facilitation of intestinal iron absorption, thus
allowing the increase of body iron stores that will possibly localize
in non-parenchymal cells because of defective iron export.

Other genetic factors influencing hepatocellular damage,
inflammation and iron handling might be involved. Alpha1-anti-
trypsin (AAT), the principal serum protease inhibitor synthesized
by the liver, potentially represents one of such factors. The most
common variants are the PiZ and PiS alleles, where amino acid sub-
stitutions lead to abnormal folding and spontaneous protein poly-
merization, determining endoplasmic reticulum (ER) stress and
hepatocellular damage. Heterozygosity for the PiZ, and to a lesser
extent for the PiS allele has been associated with cirrhosis and
hepatocarcinoma [55–57]. We found that the AAT mutations were
highly prevalent in NAFLD, and associated with hyperferritinemia
in the presence of normal transferrin saturation, and sinusoidal
hepatic siderosis [16], the typical abnormalities of DIOS. It is thus
possible that the coexistence of multiple genetic variants contrib-
utes to DIOS [13,14,27,30], and it could be speculated that AAT
modulate iron metabolism by inducing ER stress [58].

Since HFE and AAT mutations did not fully explain the vari-
ability of the phenotype, we next evaluated whether a wider
panel of genetic variants reported to influence hepatic iron,
including Fp-1 and beta-globin, might better predict DIOS and
fibrosis progression [41]. The beta-thalassemia trait, commonly
observed in the Mediterranean area, was more frequent in sub-
jects with hyperferritinemia, and specifically associated with
low hepcidin and parenchymal siderosis, leading to increased
fibrosis. In Italian patients with NAFLD with predominantly
parenchymal, non-parenchymal/mixed, or no hepatic siderosis,
we observed a prevalence of H63D+/+ HFE genotype of 15%, 6%,
and 3%; of the C282Y+/� HFE genotype of 25%, 12%, and 3%; of
the PiS and PiZ AAT mutations of 22%, 15%, and 6%; and of
beta-thalassemia trait of 32%, 8%, and 5%, respectively [41]. The
prevalence of these genetic factors in patients without hepatic
iron staining was superimposable to that of the general popula-
tion. These differences were statistically significant, and 65% of
patients with parenchymal iron accumulation carried at least
one of these genetic factors vs. 9% of the control population
[41]. Thus, these results support a preponderant effect of genetic
factors, such as HFE and beta-globin mutations in the develop-
ment of hepatocellular iron overload in NAFLD, suggesting it
could represent a distinct and genetically determined sub-pheno-
type of DIOS at high risk of liver damage.
Possible mechanisms of IR associated with metabolic
hyperferritinemia/DIOS

Clinical evidence suggests that iron might play a role in patho-
genesis of IR [59]. This hypothesis has been addressed in experi-
mental studies including those determining an association of
increased ferritin with iron stores [37] and IR and amelioration
of IR after ID [15].

As observed in HHC, in experimental models of obesity, iron
accumulation within beta-cells alters insulin secretion, [60],
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whereas dietary iron restriction or chelation protects from dia-
betes [61]. However, the relative deficit in insulin secretion is
not sufficient to explain the metabolic alterations observed in
DIOS.

Supporting a causal role of iron overload in inducing IR, recent
data indicate that manipulation of body iron stores by means of
diet, genetic manipulation, or iron chelators is able to influence
IR in different models of metabolic disease [61–63], but the
molecular mechanisms underlying the association between iron
accumulation and IR and the tissues primarily involved are far
from being clear.

Iron overload has been hypothesized to induce IR by catalyz-
ing oxidative stress [64,65]. Reactive oxygen species (ROS) have
been implicated in IR pathogenesis on the basis of two types of
indirect evidence: (1) an association of oxidative stress markers
with obesity and T2D [66,67] and (2) evidence that factors that
increase ROS in adipocytes induce IR [65,68]. Inhibition of mito-
chondrial superoxide dismutase (SOD2) has been hypothesized to
mediate iron dependent oxidative damage and metabolic dys-
function [69,70].

Activation of NFjB in macrophages and Kupffer cells, and con-
sequent release of TNFa [71–73], a major player in IR in MetS and
NAFLD by means of its ability to downregulate insulin signaling
and decrease adiponectin levels [39,74–76], may also be impli-
cated in the pathogenesis of IR associated with DIOS, which is
typically characterized by iron accumulation in this cellular
compartment.

Supporting a role for iron in the induction of IR and a possible
involvement of adipose tissue, Green et al. [77] demonstrated
that isolated adipocytes treated with iron become insulin resis-
tant, as detected by decreased insulin-stimulated glucose trans-
port and increased lipolysis. If confirmed in vivo, these
metabolic alterations would promote IR, and raise the risk of
T2D and steatosis [77], but the effect of body iron overload on
adipose tissue in vivo, except for a few data on adipokines (see
below), is still under definition. Further work is required to deter-
mine whether iron may directly accumulate in adipose tissue and
alter its function.

Despite the model does not reflect the typical pattern of iron
overload of DIOS, novel insights into the pathogenesis of iron
induced IR have been provided in vivo by the detailed metabolic
characterization of iron overloaded mice due to the deletion of
the Hfe gene of HHC. Despite higher glucose uptake, these mice
had lower glucose oxidation in skeletal muscle, which was
linked to Ampk- and Pdk4-mediated [78] decrease in pyruvate
dehydrogenase activity, and higher hepatic glucose output and
metabolic inflexibility (i.e. a decreased ability to transition
between utilization of carbohydrate and lipid fuel sources), both
of which are characteristics of T2D [62]. Contrary to what
expected, the metabolic alterations described in this model did
not depend on mitochondrial oxidative damage. As iron suffi-
ciency and deletion of Hfe facilitate erythropoiesis [79], it would
seem advantageous for an iron-loaded mouse to shift to the
more energy-efficient but oxygen-inefficient fuel source of fatty
acids to make use of that full capacity for oxygen transport [62].
Preliminary data from our group also confirm that dietary iron
overload induces IR in mice, and the mechanism might be
related to iron accumulation within visceral adipose tissue
resulting in altered release of adipocytokines [80]. A working
model of the mechanisms underlying iron associated IR is pro-
posed in Fig. 1.
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Fig. 1. Proposed mechanisms explaining iron induced insulin resistance and metabolic alterations. FFAs, free fatty acids; ER, endoplasmic reticulum.
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Iron, adipose tissue, and adipokines

NAFLD is highly prevalent in obesity, associated with chronic
inflammation in adipose tissue, and with abnormal release of adi-
pocytokines that play an endocrine role in the progression to
NASH, T2D, and cardiovascular disease. Thus, it is likely that
the effect of iron on IR involves altered regulation of adipose tis-
sue and of adipokines.

Serum levels of adiponectin, the major anti-steatotic and anti-
inflammatory adipocyte-derived mediator, are reduced in obes-
924 Journal of Hepatology 201
ity, T2D, and IR, whereas weight loss and PPARc activation by
glitazones induce adiponectin [81]. In obese mice, deletion of
adiponectin receptors induces inflammation, oxidative stress,
and IR, whereas adiponectin overexpression improves IR and
reverts the diabetic phenotype [82]. Patients with NAFLD have
decreased adiponectin [83], and hypo-adiponectinemia predicts
the severity of inflammation and fibrosis in NASH [84]. Interest-
ingly, a negative correlation between adiponectin and ferritin
levels has been reported in patients with type 2 diabetes and in
the general population [85,86], although no data are available
1 vol. 55 j 920–932



JOURNAL OF HEPATOLOGY

in NAFLD. Induction of heme oxygenase-1 (HO-1) by adiponectin,
mediated by AMPK-mediated PPARa activation, elicited an
antiapoptotic effect by decreasing iron in hepatocytes [87], thus
linking adiponectin to iron related liver damage. Adiponectin also
induced cyclooxygenase-2 expression in mouse hepatocytes, con-
ferring further protection against iron injury [88].

Leptin is another well-studied adipokine, which plays an
important role in the regulation of body weight through inhibi-
tion of food intake and stimulation of energy expenditure [89].
High levels of leptin have been observed in obesity, indicating
the development of leptin resistance [90]. Indeed, both leptin-
mutant (ob/ob) and leptin receptor-deficient (db/db) mice are
severely obese and insulin resistant, due to increased food intake
and decreased energy expenditure [91]. Leptin rapidly reverses
steatosis induced by high sucrose diet in rats [92], promotes
the proliferation and migration of hepatoma cells in vitro [93],
and is thought to be involved to the progression from NASH to
fibrosis and hepatocellular carcinoma [94]. Hepatoma cells
exposure to leptin directly up-regulates hepcidin, resulting in
decreased iron absorption and impaired iron recycling, possibly
contributing to DIOS pathogenesis [95]. Thus, increased hepcidin,
partially related to hyper-leptinemia, may represent the missing
link between obesity and DIOS [96]. However, there are no data
on the correlation between leptin and iron stores in patients with
NAFLD and MetS.

Resistin is a recently discovered adipokine secreted by adipose
tissue and macrophages that circulates at increased levels in
obesity [97]. Treatment of mice with recombinant resistin
impairs glucose tolerance, and anti-resistin antibodies improve
IR in obese mice. Incubation of 3T3-L1 adipocytes with resistin
inhibits insulin-stimulated glucose uptake [97], whereas in skel-
etal muscle resistin reduces the uptake and metabolism of FFAs
[98]. Moreover, it seems that resistin significantly induces the
gene expression of suppressor of cytokine signaling 3 (SOCS3), a
known inhibitor of insulin signaling [99]. So far there are no data
supporting a relationship between resistin and iron overload, but
an interaction between a polymorphism in the promoter of
human resistin and oxidative stress has been reported [100],
and antioxidants inhibited the expression of resistin in mice
[101]. In a randomized trial, short-term vitamin C supplementa-
tion reduced resistin levels independently of inflammation [102].

Visfatin is another novel adipokine predominantly secreted by
visceral adipose tissue and increased in T2D [103] that exerts adi-
pogenic effects in vitro and is, therefore, a good candidate to
explain the accumulation of visceral adipose tissue that is associ-
ated with IR. In men with hyperglycemia, serum prohepcidin was
strongly associated with visfatin, suggesting that circulating visf-
atin is perhaps upregulated by increasing iron stores, but no data
are available specifically in patients with NAFLD, although most
of the subjects with impaired fasting glucose or diabetes have
increased liver fat. Moreover, visfatin correlated negatively with
serum transferrin receptor, a marker of iron deficient erythropoi-
esis [104]. Finally, retinol binding protein-4 (RBP4), an adipokine
associated with IR, was correlated with ferritin levels in middle
aged men and in subjects with type 2 diabetes, and iron increased
RBP4 release by adipocytes in vitro [105].

These data suggest that DIOS is associated with abnormal
endocrine function of adipose tissue and adipokines signaling,
potentially contributing to metabolic abnormalities, liver dam-
age, and cardiovascular disease.
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Association between iron overload and vascular damage in
MetS and NAFLD

NAFLD has been associated both with increased susceptibility to
develop increased iron stores (DIOS), and with heightened risk of
vascular damage, independently of classic risk factors [19,106],
and cardiovascular disease represents the first cause of death in
patients with NAFLD [107]. Iron deposition in arterial wall mac-
rophages is increased in atherosclerotic lesions [108] and,
although evidence is controversial [109–111], increased iron
stores have been suggested as a marker of cardiovascular risk
[112]. Indirect confirmation of the ‘‘iron hypothesis’’ comes from
studies of atherosclerosis treatment. Indeed, ID decreased athero-
genesis in experimental models [108,113], blood donation was
associated with lower risk of myocardial infarction [5] and phle-
botomy slowed the progression of vascular disease [114,115],
whereas the lack of association between HFE mutations with vas-
cular damage might be explained by the decrease in hepcidin lev-
els, which would paradoxically facilitate iron export from
macrophages [33,116], determining more rapid clearance of iron
from arterial lesions. Indeed, besides iron overload, hepcidin is
also induced by inflammation and obesity, and local production
determines iron trapping into macrophages [115,117]. Thus,
excessive iron in macrophages would increase oxidative stress
and transformation into foam cells and hepcidin may be respon-
sible for iron induced atherogenesis [108].

The still unexplained association between the C282Y hemo-
chromatosis mutation and low LDL cholesterol [118,119], which
was confirmed in a meta-analysis of genome-wide association
studies [120], may also contribute to explain atherosclerosis pro-
tection in individuals carrying HFE mutations. Interestingly, also
the beta-thalassemia trait is strongly associated with reduced
cholesterol levels and lower cardiovascular risk [121,122], but
the elucidation of the relationship between iron and cholesterol
metabolism requires, therefore, further studies.

Recently, our group has shown that serum ferritin and hepci-
din levels predicted vascular damage in NAFLD, but only in
patients negative for HFE genotypes or beta-globin mutations
associated with low hepcidin [38]. The mechanism seems to
involve upregulation of macrophage chemoattractant protein-1
(MCP-1/CCL2), a chemokine involved in the recruitment of leuko-
cytes to plaques and correlated with the atherosclerotic burden,
by intracellular iron in monocytes [123]. However, whether the
presence of iron overload is associated with an increased rate
of cardiovascular events in NAFLD and the MetS is presently
unproven.
Association between iron overload and liver damage

We have shown [17] that, in NAFLD, hepatocellular iron accumu-
lation was associated with a higher risk of fibrosis compared to
the absence of siderosis or the non-parenchymal iron accumula-
tion, which is more commonly observed and typical of DIOS.
However, evidence that only parenchymal iron carries a higher
risk of progressive liver disease is still conflicting, since in a large
US cohort, non-parenchymal iron, related to more severe meta-
bolic alterations, was associated with histological inflammation
and more advanced fibrosis [32]. Furthermore, non-parenchymal
iron overload has been associated with hepatocellular carcinoma
in Italian patients with NASH-related cirrhosis [124]. It is,
1 vol. 55 j 920–932 925
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therefore, likely that the genetic background underlying iron
accumulation influences the outcome in ethnically different pop-
ulations. Due to incomplete association with iron overload, HFE
mutations were not associated with liver fibrosis in Italian
patients with NAFLD [17], although they predicted liver damage
in US Caucasian patients with NASH [125], whereas beta-globin
mutations, the best predictor of parenchymal iron overload in
the Mediterranean area, were associated with an almost double
risk of severe fibrosis [41].

Nevertheless, longitudinal studies with follow-up liver biop-
sies are needed to investigate the relationship between iron over-
load, ID, and the progression of hepatic disease.
Mechanism of iron induced liver damage

Evidence is accumulating that mild hepatic iron overload pro-
motes the progression of liver damage associated with fatty liver
also independently of IR, and once again the mechanism involves
increased oxidative stress. Iron is a potent catalyst of oxidative
stress via the Fenton reaction and can directly cause lipid perox-
idation generating malonyldialdehyde, which is capable to acti-
vate hepatic stellate cells (HSCs), a major player of fibrogenesis
in NAFLD [126,127]. ROS cause peroxidation of polyunsaturated
fatty acids and nucleic acids [128,129], and a lipophilic antioxi-
dant, such as vitamin E reduced liver enzymes and hepatocellular
damage in a large randomized controlled trial in NASH [130]. Iron
overload may thus play a role in NASH by generating oxidative
DNA damage; supporting this hypothesis, hepatic 7,8-dihydro-
8-oxo-20 deoxyguanosine (8-oxodG), a DNA base-modified prod-
uct generated by hydroxyl radicals, was increased in NASH, and
correlated with iron overload, IR, and severity of hepatic steato-
sis. Moreover, ID decreased oxidative stress and HSCs activation
in experimental models of liver injury [131], and after phlebot-
omy hepatic 8-oxodG levels decreased with concomitant reduc-
tion of serum transaminases in NASH patients [132].

Iron can also directly induce fibrogenesis, as HSCs can be acti-
vated by the generation of ROS with ascorbate/FeSO4 and by mal-
onyldialdehyde. In addition, HSCs activation by collagen type I
and TGFa was blocked by antioxidants [126].

A specific receptor for ferritin has been demonstrated on acti-
vated HSCs, and it has been proposed that ferritin acts as a cyto-
kine with pro-inflammatory activity regulating fibrogenesis via
NFjB-regulated signaling in HSCs [133].

Is iron overload sufficient to trigger oxidative damage? In rats,
iron accumulation is associated with induction of HO-1, a sensi-
tive indicator of oxidative stress, but not with fibrosis [134], high-
lighting the difference between oxidative stress and damage, and
suggesting that the former is not sufficient to elicit overt fibrosis,
at least in rodents. While hepatic iron overload leads to oxidative
stress, there is an associated up-regulation of antioxidant
defenses that may be a critical factor limiting the accumulation
of oxidative damage. Probably, co-existing liver injury or nutri-
tional/genetic factors, and in particular the coexistence of steato-
sis [135], may compromise the ability to mount an effective
antioxidant defense, and thus predispose to fibrogenesis. In a
rat model of T2D, lipid peroxidation and hepatic superoxide pro-
duction decreased in rats fed an iron-deficient diet or treated
with phlebotomy [63]. In the methionine choline-deficient
(MCD) model of NASH, hepatic iron overload was associated with
necroinflammation and a trend toward increased perivenular
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fibrosis [136], whereas in the same model, a single injection of
iron induced fibrosis development and worsening of steatosis,
thereby emphasizing the role of iron in the progression of
nutritional NASH to the fibrotic stage [137], which is possibly
mediated by the facilitation of apoptosis [138]. Apoptotic hepato-
cytes may indeed stimulate HSCs either directly or indirectly via
TGF-b production [139].

Thus, iron could represent a second hit in the progression of
liver damage from simple uncomplicated steatosis to fibrotic
NASH, but since fibrosis is not a constant feature of DIOS, other
genetic or acquired conditions are necessary to trigger this pro-
cess. In addition, iron may favor malignant transformation and
hepatocellular carcinoma by promotion of cell growth and oxida-
tive dependent DNA damage [140,141]. A model depicting the
proposed mechanisms underlying liver damage associated with
iron overload in steatosis and DIOS is shown in Fig. 2.
Iron depletion therapy in DIOS: experimental studies

Experimental evidence suggests that ID not only is able to coun-
teract the negative effect of iron overload, but that mild iron defi-
ciency itself may further positively impact on IR. Recently, our
group has investigated the effect of iron depletion on glucose
metabolism in hepatocytes in vitro and in an in vivo model. The
data obtained indicate that cellular ID induced by chelators
induces glucose uptake and utilization, increasing insulin recep-
tor (InsR) binding activity and signaling, and that the mechanism
is probably associated with the hypoxia inducible factor-1a
HIF-1a stabilization by reduced iron availability [142]. In line
with these findings, as skeletal muscles play a major part in glu-
cose utilization, it has been shown that L6 myocytes adapt to ID
by increasing glucose utilization through enhanced expression of
the main basal glucose transporter Glut-1 [143]. Furthermore,
increased insulin sensitivity in peripheral tissues has been shown
in a rat model of iron deficiency anemia [144]. This response may
represent a metabolic adaptation (which is specular to that
observed during iron overload) to decreased oxygen availability
secondary to a deficiency in hemoglobin, myoglobin, and cyto-
chromes due to the scarcity of iron [62], which forces tissues to
depend more heavily on the anaerobic catabolism of glucose for
their energy supply. A model of the proposed mechanisms under-
lying improved glucose clearance and insulin sensitivity under ID
is shown in Fig. 3.
Iron depletion therapy in patients with NAFLD, MetS, and DIOS

Several reports indicate that ID may be beneficial in patients with
DIOS. ID has been first reported to be well tolerated in patients
with DIOS [145], and to improve insulin sensitivity in the short
term (without changes in body weight) in patients with NAFLD
with and without increased ferritin levels, in two uncontrolled
studies conducted in 17 patients with impaired glucose tolerance
[146] and in 12 patients with normal glucose tolerance [147].
Phlebotomy led to decreased HbA1c levels, heightened insulin
secretion and insulin sensitivity in a randomized controlled study
in 28 patients with T2D and increased ferritin levels and stable
body weight [148]. In addition, ID improved insulin release in
an uncontrolled study in 17 carriers of HFE mutations with stea-
tosis [149]. Regular blood donation was also associated with
1 vol. 55 j 920–932
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increased insulin sensitivity in 21 frequent donors compared to
66 healthy subjects, suggesting that stored iron impacts nega-
tively on insulin action even in healthy people [150]. Both vene-
section therapy (in the absence of weight loss) and dietary
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treatment have been reported to improve serum ferritin,
metabolic parameters, and liver function tests in 59 patients with
DIOS in a controlled unmatched study [151]. However, in a case–
control study in 128 patients (matched for age, sex, ferritin, and
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ALT levels) with diet-resistant NAFLD followed for 12 months,
which took into account changes in body weight during the
study, it was shown that ID reduced IR more than lifestyle mod-
ifications alone, independently of confounding factors [15]. Life-
style modifications were modestly effective on ferritin and liver
enzymes, but did not improve IR, and the effect of ID was inde-
pendent of changes in body weight and metabolic parameters
[15]. Of note, the advantage of ID by phlebotomy was more
marked in patients with higher baseline iron stores (ferri-
tin >320 ng/ml) [15].

Concerning the direct effect of ID on liver damage, in a rela-
tively large multi-center prospectively enrolled observational
study in 198 NAFLD patients without diabetes, after adjustment
for propensity score (which is used to simulate the effect of ran-
domization on treatment choice in observational studies), ID was
associated with a higher probability of normalization not only of
insulin resistance, but also of liver enzymes compared to lifestyle
modifications alone during follow-up [152]. Furthermore, the
analysis of a cardiovascular trial suggests that ID may also pre-
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vent cancer development and progression [153], indicating that
in patients with liver disease, it might protect from hepatocellu-
lar carcinoma independently of fibrosis progression [124,140].

Thus, ID associated with lifestyle modifications may represent
an eligible therapy for patients with NAFLD in the presence of
iron overload. However, while it is almost well established that
ID may improve metabolic and biochemical parameters in
patients with NAFLD, whether it also prevents progression to cir-
rhosis and hepatocellular carcinoma is not demonstrated. A ran-
domized controlled trial is ongoing to evaluate the effect of ID on
the progression of histologically evaluated liver damage in
patients with NAFLD and increased iron stores (NCT00658164).
Conclusions

DIOS is now a frequent finding in the general population, and
hyperferritinemia, which reflects fatty liver and hyperinsuline-
mia, but also mildly increased body iron stores, is also detected
in about 20–30% of patients with NAFLD and the MetS. Excessive
body iron may play a causal role in IR through mechanisms that
involve a reduced ability to burn carbohydrates and altered func-
tion of adipose tissue and release of adipokines. Furthermore,
DIOS may facilitate the evolution to T2D by altering beta-cell
function, the progression of cardiovascular disease by contribut-
ing to the recruitment and activation of macrophages within
arterial lesions, and the natural history of liver disease by induc-
ing oxidative stress in hepatocytes, activation of HSCs, and malig-
nant transformation by promotion of cell growth and DNA
damage.

Based on these premises, the association among DIOS, MetS,
and NAFLD is being investigated as a new risk factor to predict
the development of overt cardiovascular, and hepatic diseases,
but most importantly represents also a treatable condition.
Indeed, ID, most frequently achieved by phlebotomy, has already
been reported to decrease IR, metabolic alterations, and liver
enzymes in controlled studies in NAFLD. Additional, randomized
controlled studies are warranted to evaluate the potential of ID
on hard clinical outcomes in patients with hyperferritinemia,
and results are awaited before iron depletion therapy can be rec-
ommended for the treatment of hyperferritinemia associated
with NAFLD, MetS, and DIOS.
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