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This paper surveys topologies, called admissible group topologies, of the full group of self-homeomorphismsH(𝑋) of a Tychonoff
space 𝑋, which yield continuity of both the group operations and at the same time provide continuity of the evaluation function
or, in other words, make the evaluation function a group action of H(𝑋) on 𝑋. By means of a compact extension procedure,
beyond local compactness and in two essentially different cases of rim-compactness, we show that the complete upper-semilattice
L
𝐻
(𝑋) of all admissible group topologies onH(𝑋) admits a least element, that can be described simply as a set-open topology and

contemporaneously as a uniform topology. But, then, carrying on another efficient way to produce admissible group topologies in
substitution of, or in parallel with, the compact extension procedure, we show that rim-compactness is not a necessary condition
for the existence of the least admissible group topology. Finally, we give necessary and sufficient conditions for the topology of
uniform convergence on the bounded sets of a local proximity space to be an admissible group topology. Also, we cite that local
compactness of𝑋 is not a necessary condition for the compact-open topology to be an admissible group topology ofH(𝑋).

1. Introduction

The “incipit” of the homeomorphism group theory resides in
the early seminal work of Birkoff [1]. With an apparent sim-
plicity joinedwith an impressive bright proof strategy, Birkoff
positively answered to the query: there exists a topology
on the full self-homeomorphism group H(𝑋) of a compact
metric space 𝑋 which makes it into a topological group and a
subspace of the Hilbert cube? The area, originating from [1],
has initially evolved relaxing the compactness condition by
passing from the class of compact metric spaces, as in Birkoff,
to the class of𝑇

2
locally compact spaces, as in Arens [2]. In [2]

Arens focused on those topologies which yield continuity of
both the group operations, product and inverse function, and
also, at the same time, provide continuity of the evaluation
function 𝑒 : (𝑓, 𝑥) ∈ H(𝑋)×𝑋 → 𝑓(𝑥) ∈ 𝑋 and posed the
problem of the existence for noncompact spaces𝑋 of the least
element in the upper-semilattice (ordered by the usual inclu-
sion)L

𝐻
(𝑋) of all topologies with these two features, that he

called admissible group topologies. Of course, there are many
different ways to topologize H(𝑋). For instance, it can be
endowed with the subspace topology induced by any of all
known function space topologies. Nevertheless, following

Birkoff and Arens, we also focused our investigation on
topologies which make H(𝑋) a topological group and the
evaluation function a group action ofH(𝑋) on𝑋 and, rather
obviously, looked at uniform topologies. In fact, uniform
topologies make continuous the evaluation function. Fur-
thermore, they make continuous both product and inverse
function at (𝑖, 𝑖) and at 𝑖, respectively, where 𝑖 is the identity
function of𝑋. Being well aware that if𝑋 is compact 𝑇

2
, then

the compact-open topology onH(𝑋), which is also the uni-
form topology derived from the unique totally bounded uni-
formity on 𝑋, is an admissible group topology, we searched
the admissible group topologies onH(𝑋) bymeans of a com-
pact extension procedure. Whenever 𝑋 is Tychonoff, since
any self-homeomorphismof𝑋 continuously extends to𝛽(𝑋),
the Stone-C̆ech compactification of 𝑋, then H(𝑋) embeds
as a subgroup inH(𝛽𝑋). Analogously, whenever𝑋 is locally
compact 𝑇

2
, H(𝑋) embeds as a subgroup in H(𝑋

∞
), where

𝑋
∞
is the one-point compactification of𝑋.Thereby, the rela-

tivization toH(𝑋) of the compact-open topology onH(𝛽𝑋)

and that on H(𝑋
∞
) are both admissible group topolo-

gies. Accordingly, the previous significant examples strongly
suggest investigating those uniform topologies on H(𝑋)

derived from totally bounded uniformities on 𝑋 whose
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uniform completion is a 𝑇
2
-compactification of 𝑋 to which

any self-homeomorphism of𝑋 continuously extends. We say
that a 𝑇

2
-compactification 𝛾(𝑋) of 𝑋 has the lifting property

if every self-homeomorphism of 𝑋 continuously extends to
𝛾(𝑋). Whenever 𝛾(𝑋) is a 𝑇

2
-compactification of 𝑋 with the

lifting property, the homeomorphism group H(𝑋) embeds
as subgroup in H(𝛾(𝑋)) equipped with the compact-open
topology. Thus, the induced topology, that is, the topology
of uniform convergence determined by the unique totally
bounded uniformity associated with 𝛾(𝑋), is an admissible
group topology. Furthermore, the compact extension proce-
dure appears as a powerful method to prove the existence of a
least admissible group topology.The problem of the existence
of a least element in L

𝐻
(𝑋) for non-compact space 𝑋 goes

back to Arens [2], who proved that, if𝑋 is locally compact𝑇
2
,

then the 𝑔-topology, which is generated by the collection of
all sets of the type:

[𝐶,𝑊] = {𝑓 ∈ H (𝑋) : 𝑓 (𝐶) ⊆ 𝑊} , (1)

where 𝐶 is closed, 𝑊 is open in 𝑋 and 𝐶 or 𝑋 − 𝑊 is
compact, is the least admissible group topology. He also
proved that, with the additional property of local connect-
edness for 𝑋, the 𝑔-topology agrees with the compact-open
topology. In the direction of extending Arens’ result beyond
the class of locally compact spaces, it comes as very natu-
ral idea to weaken local compactness into rim-compactness,
since, to a rim-compact 𝑇

2
space 𝑋 is attached the Freu-

denthal compactification 𝐹(𝑋) [3–5], to which any self-
homeomorphism continuously extends [6]. A space𝑋 is rim-
compact if and only if any of its points admits arbitrarily
small neighborhoods with compact boundaries. The group
topology 𝜏

𝐹
induced by 𝐹(𝑋) onH(𝑋) has a simple descrip-

tion as the set-open topology admitting like subbasic open
sets all sets [𝐶,𝑊], as in (1), but where now 𝐶 is a closed
set with compact boundary in 𝑋 and again 𝑊 is open in 𝑋.
However, rim-compactness by itself is not enough to assure
the admissible group topology 𝜏

𝐹
determined by the Freuden-

thal compactification to be the least element in L
𝐻
(𝑋).

As for the space of natural numbers N, for instance, the
Freudenthal compactification 𝐹(N) induces on H(N) the
closed-open topology which differs from the compact-open
topology which in the case is the 𝑔-topology. Nevertheless,
we performed the result in two substantially different cases of
rim-compactness: the former one, where 𝑋 is rim-compact,
𝑇
2
, and locally connected, [7]; the latter one, in the first step,

where 𝑋 is the rational number space Q equipped with the
Euclidean topology and, next, where 𝑋 is a product of 𝑇

2

zero-dimensional spaces each satisfying the property: any two
nonempty clopen subspaces are homeomorphic, [8]. In the
former, whenever 𝑋 is a locally connected, rim-compact 𝑇

2

space, we construct in two steps a 𝑇
2
-compactification of

𝑋, 𝛾(𝑋), inwhich 𝛾(𝑋)−𝑋 zero-dimensionally embeds and to
which any self-homeomorphism of 𝑋 continuously extends.
In the first step,𝑋 comes densely embedded into the disjoint
union of the Freudenthal compactifications of its compo-
nents, 𝑐(𝑋), which is a locally compact 𝑇

2
space to which any

self-homeomorphism of 𝑋 continuously extends. In the sec-
ond step, in turn 𝑐(𝑋) comes embedded in its one-point com-
pactification 𝛾(𝑋), and, as a matter of fact, 𝜏

𝛾(𝑋)
is the least

element of L
𝐻
(𝑋), that can be described as the set-open

topology determined by all closed sets with compact bound-
aries contained in some component of 𝑋. The latter, the
rational one, is very singular indeed. First, since any two non-
empty open subspaces in Q are homeomorphic, L

𝐻
(Q) is

a very big object. Next, Arens proved “given an admissible
topology for the group of homeomorphisms H of the rational
number system, one can construct another admissible topology
for H which is not weaker (but now not stronger) than
the first.” And more, the minimal convergence structure on
H(Q) which provides continuity of the evaluation function
and both the group operations, denoted by 𝑔-convergence
and assigned by requiring

{𝑓
𝜆
}
𝜆∈Λ

󳨀→ 𝑓 iff {𝑓
𝜆
}
𝜆∈Λ

c⋅c
󳨀󳨀→ 𝑓, {𝑓

−1

𝜆
}
𝜆∈Λ

c⋅c
󳨀󳨀→ 𝑓

−1
,

(2)

where c⋅c
󳨀󳨀→ stands for continuous convergence, unfortunately

is not topological [9, 10]. Therefore, in the beginning one
has no clear indication and fluctuates between arguments
promoting existence or nonexistence inL

𝐻
(Q) of a least ele-

ment. What Arens wrote seems to contain a subliminal mes-
sage of nonexistence. On the contrary, checking in details his
construction or completing in their minimal group topolo-
gies the uniform topologies induced by non-Archimedean
metric compactifications of Q anytime one runs into the
closed-open topology which is induced by the Stone-C̆ech
compactification which in the rational case is also the Freu-
denthal compactification [11]. Two arguments seem to pro-
mote the existence. On one side, the fine orWhitney topology
onH(Q) determines an admissible group topology onH(Q)

strictly finer than the closed-open topology: so, the closed-
open topology is not too fine. On the other side, the Stone-
C̆ech compactification is the only one 𝑇

2
-compactification

of Q with the lifting property: so, the closed-open topology
seems enough fine. In conclusion, H(Q), even though it
admits no least admissible topology [2], it still supports the
clopen-open topology as the least admissible group topology.
This issue is essentially achieved by the property: any two
non-empty clopen subspaces ofQ are homeomorphic, as it is
derived from the topological characterization ofQ.Therefore,
following the rational trace, we focus just on the class of
zero-dimensional spaces satisfying the property: any two
non-empty clopen subspaces are homeomorphic and their
products. All zero-dimensional spaces of diversity one [12]
and all compact zero-dimensional spaces of diversity two [13]
are of this kind. Among them we recognize as leaders the
rationals, the irrationals, the Baire spaces, and the Cantor
discontinuum. In all previous results the least element in
L
𝐻
(𝑋) is achieved as a uniform topology that can be viewed

also as a set-open topology. Accordingly, in the approach to
the zero-dimensional case we explored the class of bases of
clopen sets in 𝑋 to select the ones that determine a clopen-
open topology that is an admissible group topology induced
by a 𝑇

2
-compactification of 𝑋 with the lifting property. The

bases of clopen sets of 𝑋 closed under complements and
invariant under homeomorphisms of 𝑋 emerge as the right
tool: they make the match. We show that if 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
is
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a product of zero-dimensional spaces each of which satisfies
the property: any two non-empty clopen subspaces are home-
omorphic, then L

𝐻
(𝑋) is a complete lattice. Besides, its least

element is a clopen-open topology with the left, the right, and
the two-sided uniformities all non-Archimedean, thus zero-
dimensional [8, 11, 14].

As rim-compactness is a weak and peripherical compact-
ness property, one might think any further relaxation as
impossible. But, we show that rim-compactness for 𝑋 is
not a necessary condition for the existence of the least
admissible group topology onH(𝑋).More precisely, we show
that the full group of self-homeomorphisms of the product
space R × Q, where R and Q are the sets of the real and
rational numbers, respectively, both carrying the Euclidean
topology, admits a least admissible group topology even
though notoriouslyR×Q is not rim-compact, [15]. To achieve
this result we carry on another efficient way to produce
admissible group topologies in substitution of, or in parallel
with, the compact extension procedure. By exploring the
literature on the different ways to control efficiently closeness
between self-homeomorphisms of a Tychonoff space, we
arrive at several different remarkable ideas: drawn by covers
yielding the open-cover topology [16]; by uniformities yield-
ing uniform topologies [16–18]; or, in the metric case, also
by the compatible metrics yielding the limitation topology
[1, 19] and by the continuous functions to the positive real
numbers yielding the fine orWhitney topology [20]. Namely,
as for the metric setting, three of the examined methods
collapse in just one. As a matter of fact, in the metric setting
there are only two substantially different options to control
closeness in H(𝑋). An effective control of closeness can be
managed, in one way, via the metrics compatible with𝑋 and,
in the other way, via the continuous functions from 𝑋 to the
positive real numbers.The idea of how to discriminate comes
from the rationals. The clopen-open topology on H(Q) is
the uniform topology induced by the C̆ech uniformity of
Q, which in turn is the finest totally bounded uniformity
compatible with Q. Consequently, being Q metrisable and
separable, thus admitting compatible totally bounded met-
rics, the clopen-open topology onH(Q) can be reformulated
as the supremum of all uniform topologies induced by totally
bounded metrics compatible with Q. On the other hand, the
fine or Whitney topology onH(Q) is a group topology [15].
Hence, we demonstrate that it collapses on just the fine uni-
form topology [16], which in the case is the supremum of all
uniform topologies deriving frommetrics compatible withQ.
These results pointout the suprema of uniform topologies
deriving frommetrics compatible with𝑋, running in a given
class, as the right tool. The presentation in [19] of the fine
uniform topology is a compelling motivation to generalise
it in order to produce new admissible group topologies
on H(𝑋) and its subgroups. Given a class D(𝑋) of metrics
compatible with 𝑋 and a group G(𝑋) of self-homeomor-
phisms of 𝑋, we refer to the uniform topology induced on
G(𝑋) by the supremum of the uniformities on 𝑋 associated
with the metrics in D(𝑋) as the fine uniform topology on
G(𝑋) associated with, or generated by, D(𝑋). Obviously, in
this way the fine uniform topology is generated by the full

homeomorphism groupH(𝑋) and by the class of all metrics
compatible with 𝑋. Blending in a group of self-homeomor-
phisms G(𝑋) with a class D(𝑋) of metrics compatible with
𝑋 originates a new class of metrics compatible with𝑋, which
reveals interesting and useful features. A classD(𝑋) is invari-
ant under the groupG(𝑋) if, whenever the distance between
every two points of 𝑋 is measured by a metric in D(𝑋)

applied to the pair of their images under a homeomorphic
deformation of 𝑋 belonging to G(𝑋), the new produced
metric in this way belongs once again toD(𝑋). We show that
if D(𝑋) is G(𝑋)-invariant, then the fine uniform topology
induced by D(𝑋) on G(𝑋) is a group topology. Justified by
this result, we refer to the fine uniform topology on G(𝑋)

generated by the minimal G(𝑋)-invariant enlargement of
D(𝑋) as the fine group topology onG(𝑋) generated byD(𝑋).
A same group blended in with different classes of metrics
gives rise to different fine group topologies. As for the rational
case, for instance, the fine group topology generated onH(Q)

by all totally boundedmetrics compatible withQ and the fine
group topology generated onH(Q) by all metrics compatible
with Q are distinct from each other. Namely, the former one
coincides with the clopen-open topology ofH(Q) [7] and the
latter one with the fine or Whitney topology on H(Q). And
the clopen-open topology and the fine or Whitney topology
on H(Q) do not agree, being the fine or Whitney topology
strictly stronger than the clopen-open topology [7]. Finally,
we show that any admissible group topology onH(R × Q) is
stronger than the fine group topology determined from the class
of metrics onR×Q of the type 𝑑

1
×𝑑
2
as 𝑑
1
is the stereographic

metric onR and 𝑑
2
runs over all totally bounded metrics onQ

[15].
The issues so far discussed lead us to show: a uniform

topology on H(𝑋) derived from a totally bounded uniformity
on𝑋 is a group topology (hence an admissible group topology)
if and only if it is derived from a totally bounded uniformity of
𝑋 associated with a 𝑇

2
-compactification of 𝑋 with the lifting

property [21].
On the other hand, if 𝑋 is locally compact 𝑇

2
, then the

compact-open topology onH(𝑋), which is also the topology
of uniform convergence on compacta derived from any uni-
formity on𝑋, is admissible and yields continuity of the prod-
uct function. Unfortunately in general, the compact-open
topology does not provide continuity of the inverse function.
But, with the following additional property: (∗) any point
of 𝑋 has a compact connected neighborhood, due to Dijkstra
[22], the compact-open topology becomes a group topology
and, as a consequence, the least admissible group topology
ofH(𝑋). According to this issue the compact-open topology
onH(𝑋) is quoted as the most eligible one if𝑋 is a manifold
of finite dimension or 𝑋 is an infinite dimensional manifold
modelled on the Hilbert cube [23]. In looking for topologies
of uniform convergence on members of a given family, con-
taining all compact sets, which are admissible group topolo-
gies, we focus beyond local compactness. In order to do so,
we follow as suggestive example that of bounded sets of an
infinite dimensional normed vector space carrying as prox-
imity the metric proximity associated with the norm. We
emphasise first that local compactness of 𝑋 is equivalent to
the family of compact sets of 𝑋 being a boundedness of
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𝑋 [24], which, jointly with any EF-proximity of 𝑋, gives a
local proximity space [25]. As a consequence, we make this
particular case fall within the more general one in which
compact sets are substituted with bounded sets in a local
proximity space, while the property (∗) is replaced by the
following one: (∗∗) for each nonempty bounded set 𝐵 there
exist a finite number of connected bounded sets 𝐵

1
, . . . , 𝐵

𝑛
such

that 𝐵≪
𝛿
int(𝐵
1
) ∪ ⋅ ⋅ ⋅ ∪ int(𝐵

𝑛
). So doing, we achieve the

following issue: if (𝑋,B, 𝛿) is a local proximity space with
the property (∗∗) and any homeomorphism of 𝑋 preserves
both boundedness and proximity, then the topology of uniform
convergence on bounded sets derived from the unique totally
bounded uniformity associated with 𝛿 is an admissible group
topology onH(𝑋).

The uniform topologies so far considered are totally
bounded, and the concept of totally bounded uniformity can
be dually recast as EF-proximity and then as strong inclusion,
[26]. As a consequence, it is worthwhile to reformulate uni-
form topologies derived from totally bounded uniformities
as proximal set-open topologies. Taking up the common
proximity nature of set-open topologies as the compact-open
topology, the bounded-open topology and the topology of
convergence in proximity, Naimpally, jointly with the author,
introduced as unifying tool the notion of proximal set-open
topology, simply replacing the usual inclusion with a strong
one [27].The proximal set-open topology relative to a network
𝛼 and an EF-proximity 𝛿, designed by the acronym PSOT

𝛼,𝛿

or, simply, PSOT
𝛿
, when 𝛼 is the set CL(𝑋) of all non empty

closed subsets of 𝑋, is that having as subbasic open sets the
ones of the following form:

[𝐶, 𝐴]𝛿 := {𝑓 ∈ H (𝑋) : 𝑓 (𝐶)≪𝛿 𝐴} , (3)

where 𝐶 runs through 𝛼, 𝐴 runs through all open subsets in
𝑌, and≪

𝛿
is the strong inclusion naturally associated with 𝛿.

Whenever 𝛼 is a closed and hereditarily closed network of𝑋,
then PSOT

𝛼,𝛿
agrees with the topology of uniform conver-

gence relative to 𝛼 derived from the unique totally bounded
uniformity naturally associated with 𝛿. Consequently, PSOT

𝛿

agrees with the uniform topology on H(𝑋) derived from
the unique totally bounded uniformity compatible with 𝛿. By
endowing H(𝑋) with a PSOT, our two previous results can
be reformulated as follows. The former, when 𝛼 is CL(𝑋), is:
aPSOT

𝛿
is a group topology onH(𝑋) if and only if it isPSOT

𝛿
󸀠

relative to a proximity 𝛿󸀠 whose Smirnov compactification has
the lifting property. After recalling that the concepts of local
proximity on a Tychonoff space𝑋 and 𝑇

2
local compactifica-

tion of𝑋 are dual [25] and a𝑇
2
local compactification of𝑋has

the lifting property if and only if any self-homeomorphism of
𝑋 continuously extends to it, then the latter result, when𝛼 is a
boundedness of𝑋which jointly with 𝛿 gives a local proximity
space [25], can be recasted as: if (𝑋,B, 𝛿) is a local proximity
space with the property (∗∗) and the 𝑇

2
local compactification

of 𝑋 naturally associated with it has the lifting property, then
𝑃𝑆𝑂𝑇B,𝛿 is an admissible group topology onH(𝑋)[21].

Again in local compactness, in the paper [28], unpub-
lished as per my knowledge, Wicks gave necessary and
sufficient conditions for the compact-open topology being a

group topology by using nonstandard methods on one side
and action onhyperspace on the other side, which is so inspir-
ing [29]. But, under local compactness is Dijkstra’s prop-
erty a necessary condition for the compact-open topology
being a group topology?And is local compactness a necessary
condition for the compact-open topology being a group
topology that more makes the evaluation map jointly con-
tinuous? In both cases we give a negative answer by using as
counterexample first a model of locally compact topologist’s
comb, a typical space that is not locally connected, and then a
nonlocally compact one. Wicks proved that H(𝑋) equipped
with the compact-open topology 𝜏c.o being a topological
group is equivalent to joint continuity of the evaluation map
𝐸 : (𝑓, 𝐶) ∈ H(𝑋) ×CL𝑋 → 𝑓(𝐶) ∈ CL𝑋with respect to 𝜏c.o
and the Fell hypertopology 𝜏

𝐹
. Since for the compact-open

topology three different formulations as set-open topology, as
the topology of uniform convergence on compacta, and also
as proximal set-open topology can be displayed, three pos-
sible generalizations in topology, proximity, and uniformity
arise from those. After analyzing the compact case, we
improve and contemporaneously generalize the compact case
in the topological, uniform, and proximal frameworks by
replacing the compact-open topology with a set-open topol-
ogy based on a Urysohn family, with a topology of uniform
convergence on a uniformly Urysohn family, with a proximal
set-open topology relative to a proximity and a boundedness
giving a local proximity space, respectively. Finally, we show
that the topologicality of H(𝑋) is equivalent to topologicality
of the evaluation map 𝐸 : (𝑓, 𝐶) ∈ H(𝑋) × 𝐶𝐿𝑋 → 𝑓(𝐶) ∈

𝐶𝐿𝑋, as in the Wicks case, in each generalized case. We limit
only to cite this final result since the paper containing it and
others has to be published [29].

2. Background and Works

Firstly, we give some useful background and summarise a
number of already stated basic facts. Definitions and termi-
nology quoted below are drawn by [26, 30–33].

2.1. Topologies onH(𝑋). Let 𝑋 be a Tychonoff space,H(𝑋)

the group of all self-homeomorphisms of 𝑋, and 𝑒 : (𝑓, 𝑥) ∈

H(𝑋) × 𝑋 → 𝑓(𝑥) ∈ 𝑋 the evaluation map. We start by
recalling some necessary background about continuous con-
vergence and related topics. Remember that if (Λ, ≤), (𝑀, ≤

󸀠)

are directed sets, thenΛ×𝑀 admits as a direction (≤) defined
by

(𝜆, 𝜇) (≤) (𝜆, 𝜇) ⇐⇒ 𝜆 ≤ 𝜆, 𝜇 ≤
󸀠
𝜇. (4)

Whenever {𝑓
𝜆
}
𝜆∈Λ

is a net inH(𝑋) and {𝑥
𝜇
}
𝜇∈𝑀

is a net in𝑋,
then {𝑓

𝜆
(𝑥
𝜇
)}
(𝜆,𝜇)∈Λ×𝑀

stands for the net in𝑋 determined by
Λ ×𝑀 with direction (≤).

A net {𝑓
𝜆
}
𝜆∈Λ

in H(𝑋) continuously converges to 𝑓 ∈

H(𝑋), in short {𝑓
𝜆
}
𝜆∈Λ

c.c
󳨀󳨀→ 𝑓, if and only if whenever a net

{𝑥
𝜇
}
𝜇∈𝑀

→ 𝑥 in𝑋, then {𝑓
𝜆
(𝑥
𝜇
)}
(𝜆,𝜇)∈Λ×𝑀

→ 𝑓(𝑥) in𝑋.
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Topologies on H(𝑋) providing continuity of the evalua-
tion function 𝑒 : (𝑓, 𝑥) ∈ H(𝑋) × 𝑋 → 𝑓(𝑥) ∈ 𝑋 are called
admissible.

(i) Any admissible topology onH(𝑋) induces a conver-
gence that implies continuous convergence [34].

(ii) Let (𝑋,U) be a Weil uniform space [17, 31, 33]. Then
the topology of uniform convergence induced by U
onH(𝑋) is admissible [34].

Topologies on H(𝑋) compatible with the group opera-
tions are called group topologies.

(i) Let (𝑋,U) be aWeil uniform space.Then the topology
of uniform convergence induced by U on H(𝑋)

provides continuity of the product at (𝑖, 𝑖) and of the
inverse function at 𝑖, where 𝑖 is the identity function
of𝑋.

(ii) Let𝑋 be a compact 𝑇
2
space.Then the compact-open

topology on H(𝑋) is an admissible group topology
on H(𝑋). Furthermore, it is exactly the topology of
continuous convergence [1, 2].

(iii) Let (𝑋, 𝑑) be a compact metric space and 𝑑 the supre-
mummetric determined from 𝑑 onH(𝑋) by the usual
formula

𝑑 (𝑓, 𝑔) := sup {𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) : 𝑥 ∈ 𝑋} . (5)

Then the metric 𝑑∗ defined by the formula

𝑑
∗
(𝑓, 𝑔) = max {𝑑 (𝑓, 𝑔) , 𝑑 (𝑓−1, 𝑔−1)} , 𝑓, 𝑔 ∈ H (𝑋)

(6)

induces, as 𝑑 does, the compact-open topology on
H(𝑋) and metrizes the two-sided uniformity so
makingH(𝑋) into a Polish space [1].

(iv) Of course, every admissible group topologymakes the
evaluation function as a group action.

(v) There is always on H(𝑋) a minimal convergence
structure which provides continuity of the evaluation
function and both the group operations. It is assigned
by the formula

{𝑓
𝜆
}
𝜆∈Λ

󳨀→ 𝑓 iff {𝑓
𝜆
}
𝜆∈Λ

c⋅c
󳨀󳨀→ 𝑓, {𝑓

𝜆

−1
}
𝜆∈Λ

c⋅c
󳨀󳨀→ 𝑓

−1
.

(7)

The natural notation for it is as 𝑔-convergence. The
𝑔-convergence is not topological in general [9, 10].

(vi) Of course, every admissible group topology onH(𝑋)

induces a convergence which implies the 𝑔-conver-
gence.

Let L
𝐻
(𝑋) stand for the set of all admissible group

topologies onH(𝑋) ordered by the usual inclusion. Since any
topology finer than an admissible one is in its turn admissible
and the join of subsets of group topologies is again a group
topology,L

𝐻
(𝑋) is a complete upper semilattice. Obviously,

the discrete topology is in L
𝐻
(𝑋) and is, indeed, the maxi-

mum.The existence inL
𝐻
(𝑋) of the minimum is equivalent

to L
𝐻
(𝑋) being a complete lattice. The problem of the

existence of a least element inL
𝐻
(𝑋) for noncompact space

𝑋 goes back to Arens [2], who proved that:
(i) if𝑋 is locally compact 𝑇

2
, then the 𝑔-topology, which

is generated by the collection of all sets:
[𝐶,𝑊] = {𝑓 ∈ H (𝑋) : 𝑓 (𝐶) ⊆ 𝑊} , (1∗)

where𝐶 is closed,𝑊 is open in𝑋 and𝐶 or𝑋−𝑊 is compact,
is the least admissible group topology. He also proved that,
with the additional property of local connectedness for 𝑋,
the 𝑔-topology agrees with the compact-open topology.

Secondly, we differentiate the topologies on H(𝑋)

according to their derivation from the following: uniformities
yielding uniform topologies, covers yielding the open-cover
topology, the compatible metrics yielding the limitation
topology, and the continuous functions to the positive reals
yielding the fine or Whitney topology.

2.2. HowUniformities on𝑋Yield a UniformControl onH(𝑋).
Let 𝑋 stand for a Tychonoff space. Every Weil uniformity U
compatible with 𝑋 induces on H(𝑋) the uniformity of the
uniform convergence with respect toU, which admits as basic
diagonal neighborhoods the sets

𝑈̂ := { (𝑓, 𝑔) ∈ H (𝑋) ×H (𝑋)

: (𝑓 (𝑥) , 𝑔 (𝑥)) ∈ 𝑈, ∀𝑥 ∈ 𝑋}
(8)

as 𝑈 runs over all diagonal neighborhoods inU. The unifor-
mity of the uniform convergence w.r.t.U onH(𝑋) generates
in its turn the uniform topology or the topology of the uniform
convergence w.r.t. U, that we will denote by 𝜏

𝑈
. Whenever

the uniformity U is metrisable and 𝑑 is a bounded metric
compatible with it, then the uniform topology 𝜏

𝑈
is just the

topology of the supremum metric 𝑑. The uniform topology
induced on H(𝑋) by the finest uniformity compatible with
𝑋 is usually referred to as the fine uniform topology on
H(𝑋). Following [16], we will denote it by 𝜏

𝑓
. Moreover, the

supremum of uniform topologies on H(𝑋) relative to Weil
uniformities on 𝑋, running in a given class, agrees with the
uniform topology relative to the supremum uniformity in
that class. Finally, if 𝑋 is a metrisable separable space, which
thus admits compatible totally bounded metrics, then the
uniform topology onH(𝑋) induced by the C̆ech uniformity
of 𝑋, which is also the finest totally bounded uniformity
compatible with𝑋, is the supremumof all uniform topologies
deriving from totally bounded metrics compatible with𝑋.

2.3. Closeness by Covers: The Open-Cover Topology. LetA be
an open cover of 𝑋 and 𝑓, 𝑔 ∈ H(𝑋). Then 𝑓 is said to be
A-close to 𝑔 if for each 𝑥 in𝑋 there exists some 𝑈 ∈ A such
that both 𝑓(𝑥), 𝑔(𝑥) belong to𝑈. At any 𝑓 ∈ H(𝑋) the open-
cover topology admits as arbitrarily small neighborhoods the
sets of the form:

A (𝑓) := {𝑔 ∈ H (𝑋) : 𝑔 is A—close to 𝑓} , (9)
withA being an open cover of𝑋 [16].
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2.4. Closeness by Real Functions in theMetric Case:The Fine or
Whitney Topology. Let (𝑋, 𝑑) stand for a metric space. At any
𝑓 ∈ H(𝑋) the fine or Whitney topology on H(𝑋), that we
will denote by 𝜏

𝑊
, admits as arbitrarily small neighborhoods

the following sets, also called tubes:

𝑇 (𝑓, 𝜀) := {𝑔 ∈ H (𝑋) : 𝑑 (𝑓 (𝑥) , 𝑔 (𝑥))

< 𝜀 (𝑥) , ∀𝑥 ∈ 𝑋} ,
(10)

𝜀 being a continuous function from 𝑋 to the positive real
numbers.

It is known that, having been given a topological charac-
terisation, the fine topology 𝜏

𝑊
is independent of the metric

𝑑 [20].

2.5. Closeness by Metrics: The Limitation Topology. Let (𝑋, 𝑑)
stand for a metric space again. At any 𝑓 ∈ H(𝑋) the
limitation topology onH(𝑋) admits as arbitrarily small open
neighborhoods sets as the following:

𝐵 (𝑓, 𝑑) := {𝑔 ∈ H (𝑋)

: sup {𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) : 𝑥 ∈ 𝑋} < 1}

(11)

as 𝑑 runs over all metrics compatible with𝑋 [1, 19].
In [19] it has been proven that the limitation topology on

H(𝑋) is an admissible group topology.

2.6. Comparison. In themetric setting three of the examined
methods collapse in just one because of the two following
circumstances. The former one is why the open-cover topol-
ogy and the limitation topology agree: any open cover in a
metric space𝑋 can be refined by the cover of balls of radius 1,
{𝐵
𝑑
(𝑥, 1) : 𝑥 ∈ 𝑋}, relative to a suitable metric 𝑑 compatible

with 𝑋. The latter one is why the fine uniform topology
and the limitation topology agree: the fine uniformity of a
metric space𝑋 is the supremumof allmetrisable uniformities
compatible with 𝑋. Accordingly, as for the metric setting,
closeness in H(𝑋) can be substantially controlled in two
ways: via themetrics compatible with𝑋 or via the continuous
functions from 𝑋 to the positive real numbers. Usually, the
fine or Whitney topology 𝜏

𝑊
is finer than the fine uniform

topology 𝜏
𝑓
.

Theorem 1. If 𝜏
𝑊
is a group topology, then 𝜏

𝑊
= 𝜏
𝑓
, [15].

3. Compact Extension Procedure

Implicitly due to Birkhoff, a natural way to get admissible
group topologies works efficiently. Whenever𝑋 is Tychonoff,
since any self-homeomorphism of 𝑋 continuously extends
to 𝛽(𝑋), the Stone-C̆ech compactification of 𝑋, then H(𝑋)

embeds as a subgroup inH(𝛽𝑋). Analogously, whenever𝑋 is
locally compact 𝑇

2
,H(𝑋) embeds as a subgroup inH(𝑋

∞
),

where 𝑋
∞

is the one-point compactification of 𝑋. Thereby,

the relativization to H(𝑋) of the compact-open topology
on H(𝛽𝑋) and that on H(𝑋

∞
) are both admissible group

topologies. Accordingly, the previous significant examples
strongly suggest investigating those uniform topologies on
H(𝑋) derived from totally bounded uniformities on𝑋whose
uniform completion is a 𝑇

2
-compactification of 𝑋 to which

any self-homeomorphism of𝑋 continuously extends. We say
that a 𝑇

2
-compactification 𝛾(𝑋) of 𝑋 has the lifting property

if every self-homeomorphism of 𝑋 continuously extends to
𝛾(𝑋). Remember that whenever 𝑋 is a Tychonoff, locally
compact 𝑇

2
, and rim-compact 𝑇

2
space, any self-homeo-

morphism extends to a self-homeomorphism of its Stone-
C̆ech compactification 𝛽𝑋, its one-point compactification
𝑋
∞
, its Freudenthal compactification 𝐹(𝑋), respectively. In

other words 𝛽𝑋,𝑋
∞
, and 𝐹(𝑋), when they make sense, are

all compactifications of𝑋 with the lifting property.

Theorem 2. Let 𝛾(𝑋) be a 𝑇
2
-compactification of 𝑋 with the

lifting property. Then the relativization 𝜏
𝛾(𝑋)

to H(𝑋) of the
compact-open topology on H(𝛾(𝑋)) is an admissible group
topology onH(𝑋), [7].

Starting with a totally bounded uniformity we construct
a 𝑇
2
-compactification with the lifting property as follows.
LetU be a collection of subsets of𝑋 × 𝑋. For any 𝑈 ∈ U

and any ℎ ∈ H(𝑋) put

𝑈
ℎ
:= {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : (ℎ (𝑥) , ℎ (𝑦)) ∈ 𝑈} . (12)

Furthermore, set

SH := {𝑈
ℎ
: 𝑈 ∈ U, ℎ ∈ H (𝑋)} . (13)

Theorem 3. Let U be a uniformity on 𝑋. Then the following
hold:

(a) The familySH is a subbase for a uniformityUH on𝑋,
which is separated wheneverU is so.

(b) The uniformity UH is totally bounded whenever U is
so.

(c) Any self-homeomorphism of 𝑋 is a uniformly contin-
uous function with respect to UH or equivalently UH

has the lifting property.
(d) The uniformity UH is the least uniformity with the

lifting property finer thanU.

For every uniformity U the property (d) motivates us to
refer to UH as the minimal H(𝑋)-enlargement of U. Mini-
malH(𝑋)-enlargements have interesting properties.

Proposition 4. Let U be a totally bounded uniformity on 𝑋.
Then the uniform topology 𝜏UH

onH(𝑋) derived fromUH is
a group topology; hence it is an admissible group topology.

In the caseU is totally bounded the previous result indu-
ces us to refer to the uniform topology 𝜏UH

as the fine group
topology associated withU.

Proposition 5. Let U be a totally bounded uniformity on 𝑋.
Then the uniform topology on H(𝑋), 𝜏U, derived from U is
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a group topology if and only if it agrees with the uniform
topology 𝜏UH

derived fromUH.

The previous result can be summarised as follows.

Theorem 6. A uniform topology on H(𝑋) derived from a
totally bounded uniformity on 𝑋 is a group topology (hence
an admissible group topology) if and only if it is derived
from a totally bounded uniformity of 𝑋 associated with a 𝑇

2
-

compactification of𝑋 with the lifting property, [21, 29].

4. Completeness of L
𝐻
(𝑋) in

Rim-Compactness

In the direction of extending Arens’ result beyond the class
of locally compact spaces, it comes as very natural idea to
weaken local compactness into rim-compactness, since to a
rim-compact 𝑇

2
space 𝑋 is attached the Freudenthal com-

pactification 𝐹(𝑋) [3–5], to which any self-homeomorphism
continuously extends [6]. So, we focus our attention on rim-
compact 𝑇

2
spaces and in particular on their Freudenthal

compactification. The Freudenthal compactification in rim-
compactness plays a key role as the one-point compact-
ification does in local compactness. A space 𝑋 is rim-
compact, peripherically compact, or semicompact if any point
has arbitrarily small neighborhoods whose boundaries are
compact. For example, removing from a compact metric
space a totally disconnected 𝐹

𝜎
-set is a way to produce rim-

compact 𝑇
2
spaces [35]. Of course, 0-dimensional spaces are

rim-compact. We briefly summarize the characters of the
Freudenthal compactification which we will refer to. Any
rim-compact 𝑇

2
space 𝑋 admits 𝑇

2
-compactifications 𝛾(𝑋)

whose growth 𝛾(𝑋) − 𝑋 is zero-dimensionally embedded
in 𝛾(𝑋) that is, every point in the growth 𝛾(𝑋) − 𝑋 has
arbitrarily small neighborhoods whose boundaries lie in 𝑋.
The Freudenthal compactification 𝐹(𝑋) is the maximal 𝑇

2
-

compactification of 𝑋 whose growth 𝐹(𝑋) − 𝑋 is zero-
dimensionally embedded in 𝐹(𝑋). The Freudenthal com-
pactification can be also described as the completion of
the totally bounded uniformity determined by the covering
uniformity generated from all binary coverings {𝑋 − 𝐴,𝑋 −

𝐵}, where 𝐴 and 𝐵 are open sets with compact boundaries.
The Freudenthal compactification is the unique perfect 𝑇

2
-

compactification in which the growth zero-dimensionally
embeds.A compactification 𝛾(𝑋)of a space𝑋 is called perfect
if, for each point 𝑥 ∈ 𝛾(𝑋) − 𝑋 and each open neighborhood
𝑈 of 𝑥 in 𝛾(𝑋), the set 𝑈 ∩ 𝑋 is not a disjoint union of two
open sets 𝑉 and 𝑊 such that 𝑥 ∈ CL

𝛾(𝑋)
(𝑉) ∩ CL

𝛾(𝑋)
(𝑊).

Any homeomorphism between two rim-compact 𝑇
2
-spaces

extends to a homeomorphism between their Freudenthal
compactifications. Hence, the Freudenthal compactification
has the lifting property. Finally, the Freudenthal compact-
ification is the Smirnov compactification associated to the
Freudenthal proximity: two closed sets are far if and only if
they can be separated by a compact set. If 𝑋 is rim-compact
𝑇
2
connected and locally connected, then its Freudenthal

compactification is locally connected.

We are now able to give a very simple description as set-
open topologies for 𝜏

𝛽𝑋
, whenever𝑋 is normal, and for 𝜏

𝐹
.We

recall that a set-open topology on H(𝑋) admits as subbasic
open sets those sets of the type [18]

[𝐶,𝑊] = {𝑓 ∈ H (𝑋) : 𝑓 (𝐶) ⊆ 𝑊} , (14)

where 𝐶 runs in a fixed collection of closed sets of 𝑋 and𝑊

is open in 𝑋. When 𝐶 runs over all closed sets in 𝑋, then we
get the closed-open topology.

Theorem 7. When 𝑋 is 𝑇
4
, the relativization 𝜏

𝛽𝑋
of the

compact-open topology onH(𝛽𝑋) is the closed-open topology.

Theorem 8. Let 𝑋 be a rim-compact 𝑇
2
space. Then the

relativization 𝜏
𝐹
to H(𝑋) of the compact-open topology on

H(𝐹(𝑋)) is a set-open topology. It admits as subbasic open sets
those ones of the type

[𝐶,𝑊] = {𝑓 ∈ H (𝑋) : 𝑓 (𝐶) ⊆ 𝑊} , (15)

where 𝐶 runs in the family of all closed sets whose boundaries
are compact and𝑊 runs in the topology of 𝑋.

Unfortunately, we have no hope for minimality of 𝜏
𝐹

without adding some more condition. In fact, there are rim-
compact 𝑇

2
spaces whose Freudenthal compactification does

not determine a least admissible group topology, as for the
space N of natural numbers, for instance. Since N is locally
compact and locally connected, H(N) admits a least group
topology which is just the compact-open topology [2], while
that one induced by the Freudenthal compactification is just
the closed-open topology. The closed-open topology is in
this case strictly finer than the compact-open topology on
H(N). The neighborhood of the identity function 𝑓 in the
closed-open topology [𝑃, 𝑃], where 𝑃 is the set of all even
integers, cannot contain any neighborhood of 𝑓 of the type
[𝐾
1
,𝑊
1
] ∩ ⋅ ⋅ ⋅ ∩ [𝐾

𝑛
,𝑊
𝑛
], with 𝐾

1
, . . . , 𝐾

𝑛
compact, hence

finite, and 𝑊
1
, . . . ,𝑊

𝑛
bounded open. Suppose ⋃

𝑖=1⋅⋅⋅𝑛
𝑊
𝑖
⊂

[0,𝑚] for some odd integer𝑚. Put

𝑔 (𝑛) = 𝑛, 𝑛 ≤ 𝑚; 𝑔 (𝑚 + ℎ) = 𝑚 + ℎ − 1,

ℎ ≥ 2, ℎ is even;

𝑔 (𝑚 + ℎ) = 𝑚 + ℎ + 1, ℎ ≥ 1, ℎ is odd.

(16)

Then 𝑔 is inH(N) and in [𝐾
1
,𝑊
1
] ∩ ⋅ ⋅ ⋅ ∩ [𝐾

𝑛
,𝑊
𝑛
] but does

not belong to [𝑃, 𝑃]. If 𝑛 > 𝑚, 𝑛 is even, and 𝑛 = 𝑚 + ℎ, then
ℎ has to be odd and 𝑔(𝑛) = 𝑛 + 1 is odd.

For that, we focus our attention on the class of rim-
compact 𝑇

2
spaces whose Freudenthal compactification is

locally connected at any ideal point. Naturally there exist
rim-compact but not locally compact 𝑇

2
spaces having their

Freudenthal compactification locally connected at any ideal
point. We can give as an example the subspace 𝑋 obtained
from 𝐼 × 𝐼, the unit square in the plane, by removing from it
the points whose coordinates are both irrational. The space
𝑋 is rim-compact 𝑇

2
but not locally compact. Moreover, its

Freudenthal compactification is just 𝐼 × 𝐼.
Trying to capture minimality in local connectedness we

get a previous basic result. Let 𝑋 be a Tychonoff space and
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𝛾(𝑋) a 𝑇
2
-compactification of 𝑋. The space 𝑋 is locally

connected in 𝛾(𝑋) provided that any point in 𝛾(𝑋) − 𝑋

admits arbitrarily small open neighborhoods 𝑈 such that
𝑈 ∩ 𝑋 is connected [36]. Whenever a space 𝑋 is connected,
locally connected, locally compact, and second-countable 𝑇

2
,

then 𝑋 is locally connected in 𝐹(𝑋) (Freudenthal’s original
construction). Naturally if 𝑋 is locally connected in 𝛾(𝑋),
then 𝛾(𝑋) is locally connected at any ideal point.

Theorem 9. If 𝑋 is a locally compact 𝑇
2
space, then 𝐹(𝑋) is

locally connected at any ideal point if and only if 𝑋 is locally
connected in it.

A result about local compactness involving as particular
case the real line and more generally connected non compact
Lie groups is the following.

Theorem 10. Let𝑋 be a rim-compact𝑇
2
and locally connected

space. If 𝐹(𝑋) is an n-point compactification, then 𝐹(𝑋) is
locally connected at any ideal point.

Theorem 11. Whenever 𝑋 is a rim-compact 𝑇
2
space and its

Freudenthal compactification 𝐹(𝑋) is locally connected at any
ideal point, then the group topology 𝜏

𝐹
induced onH(𝑋) from

𝐹(𝑋) is the least in the upper-semilatticeLH(𝑋) of all admissi-
ble group topologies onH(𝑋).

A relationship with local compactness resides in the fol-
lowing.

Corollary 12. If𝑋 is a locally connected space and its Freuden-
thal compactification has only a finite number of ideal points,
then the group topology induced by the one-point compac-
tification and the Freudenthal compactification agree.

In a more general context in which unfortunately the
group topologies do not have a simple description and a
convergence strategy, even though rather technical, has to be
managed we have the following.

Theorem 13. If 𝑋 is rim-compact 𝑇
2
and admits a 𝑇

2
-com-

pactification 𝛾(𝑋)with the lifting property, locally connected at
any ideal point, in which 𝛾(𝑋)−𝑋 zero-dimensionally embeds,
then the group topology 𝜏

𝛾(𝑋)
induced by 𝛾(𝑋) onH(𝑋) is the

least of all admissible group topologies onH(𝑋).

By essentially using the previous basic result, then we
construct in two steps a 𝑇

2
-compactification of 𝑋, 𝛾(𝑋), in

which 𝛾(𝑋) − 𝑋 zero-dimensionally embeds and to which
any self-homeomorphism of 𝑋 continuously extends. At the
first step,𝑋 comes densely embedded in the disjoint union of
the Freudenthal compactifications of its components, 𝑐(𝑋),
which is a locally compact 𝑇

2
space to which any self-

homeomorphism of 𝑋 continuously extends. At the second
step, in turn 𝑐(𝑋) becomes embedded in its one-point com-
pactification 𝛾(𝑋), and, as a matter of fact, 𝜏

𝛾(𝑋)
is the least

element ofL
𝐻
(𝑋).

Theorem 14. Suppose 𝑋 is a rim-compact 𝑇
2
and locally con-

nected space. Then:

(i) 𝑋 embeds in a𝑇
2
-compactification 𝛾(𝑋)which induces

onH(𝑋) the least admissible group topology 𝜏
𝛾(𝑋)

,
(ii) 𝜏
𝛾(𝑋)

is the set-open topology determined by all closed
sets with compact boundaries contained in some com-
ponent of𝑋 [7].

Whenever 𝑋 is finite union of disjoint connected sub-
spaces, as in particular if𝑋 is connected, the compactification
𝛾(𝑋) agrees with the Freudenthal compactification, but it is
generally different as in the natural case. Under local com-
pactness the previous construction works but is evidently
redundant.

Example 15. Let 𝑅
𝑛
, 𝑛 ∈ 𝑁+, be obtained from the rectangle

[0, 1] × [𝑟
𝑛
, 1/𝑛], where 1/(𝑛 + 1) < 𝑟

𝑛
< 1/𝑛 after

removing inside points whose coordinates are both rational.
Put 𝑅 = ∪{𝑅

𝑛
: 𝑛 ∈ 𝑁+}. Add to 𝑅 the segment

𝐼 = {(𝑥, 0) : 0 ≤ 𝑥 ≤ 1}. Consider𝑋 = 𝑅∪𝐼 as subspace in the
Euclidean plane. The space 𝑋 is a rim-compact 𝑇

2
space not

locally compact, not connected, and not locally connected. Its
Freudenthal compactification 𝐹(𝑋) agrees with the closure
of the space 𝑅; then it is metrisable and locally connected
at any ideal point. So H(𝑋) admits a least admissible group
topologywhich is induced by the supmetric deriving from the
Euclidean metric on𝑋.

5. The Rational Case

The rational case apparently is singular. First, since any two
nonempty open subspaces inQ are homeomorphic,H(Q) is
a very big object. Anyway, H(Q), even though it admits no
least admissible topology [2], still supports the clopen-open
topology as the least admissible group topology.

Theorem 16. Let 𝛾(Q) be an arbitrary 𝑇
2
-compactification of

Q but distinct from 𝛽(Q).Then there always exists a self-home-
omorphism ofQ which does not continuously extend to 𝛾(Q).

Remember that Q is strongly zero-dimensional, hence
rim-compact. Its Stone-C̆ech compactification is zero-
dimensional and perfect, so is its Freudenthal compactifica-
tion [37]. The relativization to H(Q) of the compact-open
topology onH(𝛽Q) is the closed-open topology.

Of course, the main issue in the rational case is the fol-
lowing one.

Theorem 17. Any admissible group topology 𝜏 on H(Q) is
finer than the closed-open topology [7].

We now investigate whether the fine, strong, or Whitney
topology on H(Q) [20] induces naturally an admissible
group topology on H(Q) strictly finer than the closed-
open topology. To make easier the relationship between the
Whitney topology and the group operations, preliminarly we
need to acquire the following two Lemmas.

Let 𝐶(Q,R+) denote the set of all real-valued positive
continuous functions onQ.
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Lemma 18. Let 𝜀 ∈ 𝐶(Q,R+). Then there exists a locally
constant function 𝜂 ∈ 𝐶(Q,R+) such that 𝜂 < 𝜀.

Lemma 19. For each 𝑓 ∈ 𝐶(Q,R+) and each locally constant
𝜀 ∈ 𝐶(Q,R+), there exists 𝜑

𝑓,𝜀
∈ 𝐶(Q,R+) such that anytime

𝑥, 𝑦 ∈ Q and |𝑥 − 𝑦| < 𝜑
𝑓,𝜀
(𝑥) then |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀(𝑥).

Let 𝜀 ∈ 𝐶(Q,R+), and let 𝑑 be the Euclidean metric onQ.
Denote

𝑈
1 (𝜀) = {(𝑓, 𝑔) ∈ H (Q) ×H (Q)

: 𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) < 𝜀 (𝑥) , ∀𝑥 ∈ Q} .
(17)

It is well known that {𝑈
1
(𝜀) : 𝜀 ∈ 𝐶(Q,R+)} is a base for

a uniformityU
1
onH(Q) which induces the fine, strong, or

Whitney topology which is independent of themetric 𝑑 since
Q is paracompact [20]. The fine or Whitney topology admits
as typical basic neighborhoods for any 𝑓

𝑈
1
(𝑓, 𝜀) = {𝑔 ∈ H (Q)

: 𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) < 𝜀 (𝑥) , ∀𝑥 ∈ Q} ,

(18)

where 𝜀 ∈ 𝐶(Q,R+).

Theorem 20. TheWhitney topology onH(Q) provides conti-
nuity of the usual product (𝑓, 𝑔) ∈ H(Q) ×H(Q) → 𝑔𝑜𝑓 ∈

H(Q).

Now, denote 𝑈
2
(𝜀) = {(𝑓, 𝑔) ∈ H(Q) × H(Q) :

𝑑(𝑓−1(𝑥), 𝑔−1(𝑥)) < 𝜀(𝑥), for all 𝑥 ∈ Q}.
It is easily verified that {𝑈

2
(𝜀) : 𝜀 ∈ 𝐶(Q,R+)} is a

base for a uniformityU
2
onH(Q), which induces a topology

providing, in analogy with the previous result, continuity of
the usual product. Jointly U

1
,U
2
generate a new uniformity

U onH(Q) having as basic diagonal neighborhoods 𝑈(𝜀) =
𝑈
1
(𝜀) ∩ 𝑈

2
(𝜀), 𝜀 ∈ 𝐶(Q,R+).

The uniformity U induces a topology on H(Q) whose
typical basic neighborhoods for any 𝑓 are

𝑈 (𝑓, 𝜀) = {𝑔 ∈ H (Q) :

max [𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) , 𝑑 (𝑓
−1
(𝑥) , 𝑔

−1
(𝑥))]

< 𝜀 (𝑥) , ∀𝑥 ∈ Q} ,

(19)

where 𝜀 ∈ 𝐶(Q,R+). We, justified from the following result,
call it the fine group topology onH(Q).

Theorem 21. The topology generated by the base {𝑈(𝑓, 𝜀) :

𝑓 ∈ H(Q), 𝜀 ∈ 𝐶(Q,R+)} is an admissible group topology
onH(Q), strictly finer than the closed-open topology [7].

6. Group Action on 0-Dimensional
Spaces and Completeness

The full homeomorphism group H(Q) of the rational num-
bers space Q equipped with the Euclidean topology admits
as least admissible group topology the closed-open topology
induced by the Stone-C̆ech compactification of Q, which,
in the case, agrees with the Freudenthal compactification
of Q. In trying to extend a similar result to a larger class
of zero-dimensional spaces we briefly review properties of
some of their 𝑇

2
-compactifications and in particular of their

Freudenthal compactifications. A Tychonoff space𝑋 is zero-
dimensional if it admits a base of clopen sets. A clopen set in
𝑋 is a subset of𝑋 that is at the same time closed and open. A
zero-dimensional space is rim-compact.

In the rational case, the proof strategy is based on the
property (⋆) any two non-empty clopen subspaces are home-
omorphic. So we focus our attention on the class of spaces
with this property and their products. This class includes all
zero-dimensional spaces of diversity one (or divine) and all
compact zero-dimensional spaces of diversity two (or semidi-
vine), as introduced and investigated byRajagopalan and oth-
ers [12, 13]. An infinite Tychonoff space𝑋 is of diversity one if
any twonon-empty open subspaces are homeomorphic and is
of diversity two if there exist two classes of homeomorphism
for the open non-empty subspaces of 𝑋. The rationals, the
irrationals, and the Baire spaces are of diversity one by their
topological characterizations. The Cantor discontinuum is of
diversity two. In a compact space of diversity two any two
non-empty clopen subspaces are homeomorphic. No space
of diversity one can be compact or locally compact, connected
or locally connected. Diversity one or two is not preserved
under products. Every space of diversity one is rich of home-
omorphisms that move any point, since it can be expressed
as countable disjoint union of homeomorphic copies of itself.
For further details see [12, 13].

Theorem 22. If𝑋 is a zero-dimensional space, then the topol-
ogy onH(𝑋), 𝜏

𝐹(𝑋)
, induced by the Freudenthal compactifica-

tion 𝐹(𝑋) is the clopen-open topology.

Theorem 23. If𝑋 has the property (⋆), then so does 𝐹(𝑋).

Theorem 24. If 𝑋 is a zero-dimensional, nonlocally compact
space that satisfies the property (⋆), then its Freudenthal com-
pactification 𝐹(𝑋) is the unique 𝑇

2
-compactification of𝑋 with

the lifting property and zero-dimensional growth.

Recall that a Tychonoff space 𝑋 is strongly zero-dimen-
sional if any twonon-empty disjoint zero sets can be separated
by the empty set.

Theorem 25. If 𝑋 is a strongly zero-dimensional, non-locally
compact space that satisfies the property (⋆), then its Stone-
C̆ech compactification 𝛽(𝑋) is the unique perfect 𝑇

2
-compacti-

fication of𝑋 and also the unique𝑇
2
-compactification of𝑋with

the lifting property [8].



10 Journal of Function Spaces and Applications

Supposing𝑋 is a zero-dimensional space, we call nice any
base of clopen sets in 𝑋 that is closed under complements
and invariant under homeomorphisms of 𝑋. Any base B
of clopen sets embeds in the nice base {ℎ(𝐸) : 𝐸 ∈ B or
𝑋 − 𝐸 ∈ B, ℎ ∈ H(𝑋)}, that is also the minimal nice base
containingB. IfB is a base of clopen sets, the minimal nice
base containingB is referred to as the nice closure ofB.

Recall that aWeil uniformity is non-Archimedeanwhen it
admits a base of diagonal neighborhoods that are equivalence
relations in𝑋. For further details see [11].

Theorem 26. Let 𝑋 be a zero-dimensional space, B a nice
base of𝑋, and 𝜏B the set-open topology determined byB.Then
the following holds:

(i) 𝜏B is an admissible group topology, that is, 𝜏B ∈

L
𝐻
(𝑋).

(ii) The left, the right, and the two-sided uniformities
associated with 𝜏B are all non-Archimedean.

(iii) 𝜏B is the topology of uniform convergence induced by a
𝑇
2
-compactification of 𝑋 with the lifting property [8].

Corollary 27. Let𝑋 be a zero-dimensional space andB a nice
base of 𝑋. Then the set-open topology 𝜏B determined from B
is zero-dimensional.

Let {𝑋
𝑖
: 𝑖 ∈ 𝐼} be a family of zero-dimensional spaces

in each of which any two non-empty clopen subspaces are
homeomorphic. Let 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
be equipped with the

product topology. We call standard nice base for 𝑋 the nice
closure of the standard clopen base generated by the subbasic
clopen sets of the type 𝐸

𝑗
× ∏
𝑖 ̸= 𝑗

𝑋
𝑖
, where 𝐸

𝑗
runs over all

clopen sets in 𝑋
𝑗
and 𝑗 in 𝐼. We refer to the clopen-open

topology generated by the standard base as the standard
clopen-open topology.

Theorem 28. Let {𝑋
𝑖
: 𝑖 ∈ 𝐼} be a family of zero-dimensional

spaces in each of which any two non-empty clopen subspaces are
homeomorphic. Let 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
be equipped with the product

topology. Then L
𝐻
(𝑋) is a complete lattice. The standard

clopen-open topology is the minimum ofL
𝐻
(𝑋) [8].

We conclude with the following.

Theorem 29. If 𝑋 is a zero-dimensional space in which any
two non-empty clopen subspaces are homeomorphic, then
L
𝐻
(𝑋) is a complete lattice. The minimum is the clopen-open

topology that is induced by the Freudenthal compactification.

Corollary 30. If 𝑋 is a zero-dimensional metrisable space of
diversity one, thenL

𝐻
(𝑋) is a complete lattice. The minimum

of L
𝐻
(𝑋) is the closed-open topology that is induced by the

Stone-C̆ech compactification.

7. Fine Group Topologies

Now, we carry on another efficient way to produce admissible
group topologies in substitution of, or in parallel with,

the compact extension procedure. Let 𝑋 stand for a metris-
able space. The presentation in [19] of the fine uniform
topology is a compelling motivation to generalise it in order
to produce admissible group topologies on H(𝑋) and its
subgroups. But first, we introduce a way to produce new
metrics from old ones [15]. We suitably combine a self-
homeomorphism ℎ of 𝑋 with a metric 𝑑 compatible with
𝑋 and so generate a new metric 𝑑

ℎ
, which is once again

compatible with 𝑋. Namely, if the space 𝑋 is subject to a
homeomorphic deformation ℎ and we measure the distance
between two points in 𝑋 as the 𝑑—distance of their ℎ—
images, we construct a new metric 𝑑

ℎ
defined more precisely

by the following formula:

𝑑
ℎ
(𝑥, 𝑦) := 𝑑 (ℎ (𝑥) , ℎ (𝑦)) ∀𝑥, 𝑦 ∈ 𝑋, (÷)

compatible with𝑋 and further totally bounded when so is 𝑑.
Let D(𝑋) be a class of metrics compatible with 𝑋 and

G(𝑋) a subgroup ofH(𝑋).Wewill refer to the uniform topol-
ogy induced on G(𝑋) by the supremum of the uniformities
on𝑋 associated with the metrics inD(𝑋) as the fine uniform
topology onG(𝑋) associated with (or generated by)D(𝑋), and
wewill denote it by 𝜏D,G. Of course, the fine uniform topology
𝜏
𝑓
is then generated by the full homeomorphism groupH(𝑋)

and by the class of all metrics compatible with𝑋.
WheneverD(𝑋) is closed under the scalarmultiplication,

it is easy to show that at any 𝑓 ∈ G(𝑋) the topology 𝜏D,G
admits as subbasic open neighborhoods the sets of the kind

𝐵 (𝑓, 𝑑)

:= {𝑔 ∈ G (𝑋) : sup {𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) : 𝑥 ∈ 𝑋} < 1}
(20)

as 𝑑 runs over D(𝑋). Blending in a group of self-homeo-
morphisms G(𝑋) with a class D(𝑋) of metrics compatible
with𝑋 gives rise to a new class of metrics compatible with𝑋,
which reveals useful features.

We say that a class D(𝑋) is invariant under the group
G(𝑋) orG(𝑋)-invariant if, whenever we submit the space 𝑋
to any homeomorphic deformation ℎ in G(𝑋) and we mea-
sure the distance between two points of𝑋 as the 𝑑—distance
of the pair of theirℎ—images, where𝑑 is ametric inD(𝑋), the
new produced metric 𝑑

ℎ
, defined in (÷), belongs once again

toD(𝑋).
If D(𝑋) is G(𝑋)-invariant, then the fine uniform topol-

ogy 𝜏D,G is a group topology onG(𝑋).
Every class of metrics D(𝑋) admits as G(𝑋)-invariant

enlargement the wider class {𝑑
ℎ
: 𝑑 ∈ D(𝑋), ℎ ∈ G(𝑋)},

which is also the minimal G(𝑋)-invariant enlargement of
D(𝑋). The previous result enables us to define the fine
uniform topology onG(𝑋) generated by the minimalG(𝑋)-
invariant enlargement ofD(𝑋) as the fine group topology on
G(𝑋) generated byD(𝑋).

7.1. A Same Group Blended in with Different Classes of
Metrics Gives Rise to Different Fine Group Topologies. If 𝑋 is
metrisable and separable, thus admitting totally bounded
compatible metrics, then the fine group topology generated
onH(𝑋) by all totally boundedmetrics compatible with𝑋 is,
in general, distinct from the fine uniform topology generated
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on H(𝑋) by all metrics compatible with 𝑋. The rational
numbers provide the right counterexample that follows.
The fine group topology generated on H(Q) by all totally
boundedmetrics compatible withQ and the fine group topol-
ogy generated onH(Q) by all metrics compatible withQ are
distinct from each other. Namely, the former one coincides
with the clopen-open topology of H(Q) [7]. The latter one
has to coincide with the fine or Whitney topology onH(Q),
since this one, in the case, is a group topology. And, as proven
in [7], the clopen-open topology and the fine or Whitney
topology on H(Q) do not agree, being the fine or Whitney
topology strictly stronger than the clopen-open topology.

8. The Space R ×Q

As rim-compactness is a weak and peripherical compactness
property, one might think of any further relaxation as
impossible. But, we show that rim-compactness for 𝑋 is not
a necessary condition for the existence of the least admissible
group topology on H(𝑋). More precisely, we show that the
full group of self-homeomorphisms of the product space
R × Q, where R and Q are the sets of the real and rational
numbers, respectively, both carrying the Euclidean topol-
ogy, admits a least admissible group topology even though
notoriouslyR ×Q is not rim-compact, [15].

Since, if 𝐶 is closed and 𝐴 is open in Q and 𝐶 ⊆ 𝐴, there
exists a clopen set 𝐸 such that 𝐶 ⊆ 𝐸 ⊆ 𝐴, then the sets like
the following:

[𝐸, 𝐸] := {𝑓 ∈ 𝐻 (Q) : 𝑓 (𝐸) ⊆ 𝐸} (21)

as 𝐸 runs over all clopen sets in Q, give arbitrarily small
neighborhoods at the identity function of Q. This entails the
coincidence of the closed-open topology with the clopen-
open topology onH(Q). At the same time, the clopen-open
topology on H(Q) is the uniform topology induced by the
C̆ech uniformity ofQ, which is the finest totally bounded uni-
formity compatible with Q. Consequently, the clopen-open
topology on H(Q) can be reformulated as the supremum of
all uniform topologies induced onH(Q) by totally bounded
uniformities compatible with Q. Then, being Q metrisable
and separable, the same is the supremumof all uniform topol-
ogies induced by totally boundedmetrics compatible withQ.

Let us turnnowour attention toR×Q. Since the boundary
of any non-empty bounded open subset of R × Q is not
compact, the product R × Q is not rim-compact when both
R and Q carry the Euclidean metric. The study of a complex
object as H(R × Q) is certainly simplified by splitting any
self-homeomorphism 𝐹 of R × Q into its two natural halves
𝑝
1
∘ 𝐹, 𝑝

2
∘ 𝐹, where 𝑝

1
, 𝑝
2
are the usual projections of

R×Q overR andQ, respectively.The study of the two halves,
separately, allows us to acquire their own features and their
interplay.

Let us focus on the second half 𝑝
2
∘𝐹. The following two

facts are to be considered. The components of R × Q are the
subsets of the type R × {𝑞}, as 𝑞 runs over Q. Furthermore,

every homeomorphism takes components to components.
Consequently, for any given 𝑞 inQ, the following occurs:

𝑝
2
∘ 𝐹 (𝑥, 𝑞) = 𝑝

2
∘ 𝐹 (𝑥

󸀠
, 𝑞) , ∀𝑥, 𝑥

󸀠
∈ R. (22)

Thismeans that 𝑝
2
∘𝐹 is independent of the point 𝑥 inR.This

feature of 𝑝
2
∘𝐹makes coherent its substitution with the map

fromQ to itself

𝑓
2
: 𝑞 ∈ Q 󳨀→ 𝑝

2
∘ 𝐹 (𝑥, 𝑞) ∈ Q (∙)

whatever is the point 𝑥 in R. Accordingly, it seems natural
to identify the self-homeomorphism 𝐹 with the pair (𝑓

1
, 𝑓
2
),

where 𝑓
1
= 𝑝
1
∘ 𝐹 : R × Q → R and 𝑓

2
: Q → Q is

determined from 𝑝
2
∘ 𝐹 as in (∙). Of course, both 𝑓

1
, 𝑓
2
are

continuous.The identity map ofR×Q identifies with the pair
(𝑝
1
, 𝑖Q), where 𝑝1 is again the usual projection of R × Q on

R and 𝑖Q is the identity map of Q. Next, if 𝐹 identifies with
(𝑓
1
, 𝑓
2
) and 𝐺 with (𝑔

1
, 𝑔
2
), then their composition 𝐺 ∘ 𝐹

identifies with the pair (ℎ
1
, ℎ
2
), where

ℎ
1
(𝑥, 𝑞) = 𝑔

1
(𝑓
1
(𝑥, 𝑞) , 𝑓

2
(𝑞)) , ∀ (𝑥, 𝑞) ∈ R ×Q,

ℎ
2
(𝑞) = 𝑔

2
(𝑓
2
(𝑞)) , ∀𝑞 ∈ Q.

(23)

Hence, if the inverse homeomorphism𝐹−1 of𝐹 identifieswith
(𝑔
1
, 𝑔
2
), then

𝑔
1
(𝑓
1
(𝑥, 𝑞) , 𝑓

2
(𝑞)) = 𝑥, ∀ (𝑥, 𝑞) ∈ R ×Q,

𝑔
2
(𝑓
2
(𝑞)) = 𝑞, ∀𝑞 ∈ Q.

(24)

This implies 𝑔
2
= 𝑓−1
2
. Thus, 𝑓

2
is in turn a homeomorphism

of Q to itself whenever 𝐹 is a homeomorphism of R × Q to
itself.

The identification leads to a natural embedding ofH(R×

Q) in 𝐶(R × Q) × H(Q), where 𝐶(R × Q) is the set of all
continuous functions from R ×Q to the reals.

We now recall the notion of product metric on a product
space. Let (𝑋

1
, 𝑑
1
), (𝑋
2
, 𝑑
2
) stand for two metric spaces.

Then, their product 𝑋
1
× 𝑋
2
can be metrised by the product

metric 𝑑
1
× 𝑑
2
, which is defined by

𝑑
1
× 𝑑
2
((𝑥
1
, 𝑥
2
) , (𝑦
1
, 𝑦
2
))

:= max {𝑑
1
(𝑥
1
, 𝑦
1
) , 𝑑
2
(𝑥
2
, 𝑦
2
)} .

(25)

If we suppose H(R × Q) embedded via the canonical
identification, as described above, in 𝐶(R × Q) ×H(Q) and
denote by 𝑑

1
the stereographic metric onR, which measures

the distance between two points inR as the geodesic distance
of their images in the unit circle 𝑆1 of the Euclidean plane by
the inverse of the stereographic projection, then the following
holds true.

Theorem 31. Every admissible group topology onH(R×Q) is
stronger than the fine group topology generated onH(R × Q)

by the class of all metrics on R × Q of the type 𝑑
1
× 𝑑
2
, where

𝑑
1
is the stereographic metric on R and 𝑑

2
runs over all totally

bounded metrics compatible withQ [15].



12 Journal of Function Spaces and Applications

9. Locally Compact Extension Procedure

In looking for topologies of uniform convergence on mem-
bers of a given family, containing all compact sets, which are
admissible group topologies, we focus beyond local compact-
ness. In order to do so, we follow as suggestive example that
of bounded sets of an infinite dimensional normed vector
space carrying as proximity the metric proximity associated
with the norm. We emphasise first that local compactness of
𝑋 is equivalent to the family of compact sets of 𝑋 being a
boundedness of𝑋 [24], which, jointly with any EF-proximity
of 𝑋, gives a local proximity space [25]. As a consequence,
we make this particular case fall within the more general one
in which compact sets are substituted with bounded sets in a
local proximity space, while the property (∗) any point has a
compact connected neighborhood is replaced by the following
one: (∗∗) for each nonempty bounded set 𝐵 there exist a
finite number of connected bounded sets 𝐵

1
, . . . , 𝐵

𝑛
such that

𝐵≪
𝛿
int(𝐵
1
) ∪ ⋅ ⋅ ⋅ ∪ int(𝐵

𝑛
).

9.1. Uniformity, Proximity, and𝑇
2
-Compactifications. Unifor-

mities, proximities, and 𝑇
2
-compactifications have an inten-

sive reciprocal interaction. EF-proximity and totally bounded
uniformity are dual concepts. Any uniformityU on 𝑋 natu-
rally determines an EF-proximity on 𝑋 by setting for 𝐴, 𝐵 ⊆

𝑋, 𝐴�𝛿U𝐵 if and only if there exists a diagonal neighborhood
𝑈 ∈ U such that 𝑈[𝐴] ∩ 𝐵 ̸= 0. The class of all uniformities
on 𝑋 determining the same EF-proximity 𝛿 on 𝑋 contains
a unique totally bounded uniformity, which is also the least
element in the class. In the opposite, by the Smirnov com-
pactification theorem [26], any EF-proximity 𝛿 on 𝑋 deter-
mines, up to homeomorphism, a 𝑇

2
-compactification 𝛾(𝑋)

of 𝑋, whose unique compatible uniformity in turn induces
on 𝑋 a totally bounded uniformity U∗, whose naturally
associated proximity is just the starting 𝛿. Both proximity
and uniformity give rise to exhaustive procedures to generate
all 𝑇
2
-compactifications of a Tychonoff space.

Let (𝑋, 𝛿) be an EF-proximity space, 𝜏
𝛿
the natural under-

lying topology, U∗ the unique totally bounded uniformity
compatible with 𝛿, and 𝛾(𝑋) the uniform completion of
(𝑋,U∗). Given that 𝛾(𝑋) is obviously the Smirnov compact-
ification of (𝑋, 𝛿) up to homeomorphism, the following is
easily acquired.

Proposition 32. The following properties are equivalent:

(a) Any self-homeomorphism of the underlying topological
space (𝑋, 𝜏

𝛿
) continuously extends to 𝛾(𝑋).

(b) Any self-homeomorphism of 𝑋 is a proximity function
w.r.t. 𝛿.

(c) Any self-homeomorphism of 𝑋 is a uniformly continu-
ous function w.r.t.U∗.

It is to be reminded that a 𝑇
2
-compactification 𝛾(𝑋) of

𝑋 has the lifting property if and only if any self-homeo-
morphism of 𝑋 continuously extends to it. According to the
previous Lemma we naturally say that a proximity has the
lifting property if it satisfies property (b) and that a uniformity
has the lifting property if it satisfies property (c).

It is remarkable that, for each positive integer 𝑛, any met-
ric uniformity compatible with the space R𝑛, equipped with
the Euclidean topology, for which any homeomorphism is
uniformly continuous, or, which is equivalent, with the lifting
property, is totally bounded [38].

9.2. Strong Inclusion. The concept of EF-proximity can be
recasted as strong inclusion, double containment, or nontan-
gential inclusion. For any given EF-proximity 𝛿 on a space𝑋
the relative dual strong inclusion is the binary relation over
the power set Exp(𝑋) of𝑋 defined as follows:

𝐴≪
𝛿
𝐵 iff 𝐴�𝛿𝑋 − 𝐵. (26)

Conversely, for any given binary relation over Exp(𝑋), ≪,
which is a strong inclusion, the relative dual EF-proximity 𝛿
is the binary relation over Exp(𝑋) defined by

𝐴�𝛿𝐵 iff 𝐴≪
𝛿
𝑋 − 𝐵. (27)

The relations 𝛿 and≪
𝛿
are interchangeable.

Furthermore, later on we essentially use the following
betweenness property. Let 𝛿 be an EF-proximity. If 𝐴≪

𝛿
𝐵,

then there exists a 𝜏
𝛿
-closed set 𝐶 such that 𝐴≪

𝛿
int(𝐶) ⊆

𝐶≪
𝛿
𝐵.

9.3. Proximal Set-Open Topologies on H(𝑋). Let U be a
uniformity compatible with 𝑋 and let 𝛼 stand for a family of
nonempty subsets of𝑋. The topology of uniform convergence
on members of 𝛼 derived fromU, which we denote by 𝜏

𝛼, U,

is that admitting as subbasic open sets at any 𝑓 ∈ H(𝑋) the
following ones:

(𝐴, 𝑈, 𝑓) := {ℎ ∈ H (𝑋) : (𝑓 (𝑥) , ℎ (𝑥)) ∈ 𝑈, ∀𝑥 ∈ 𝐴} ,

(28)

where 𝐴 runs through 𝛼 and 𝑈 varies inU.
Since the uniform topologies so far considered are relative

to totally bounded uniformities, it is worthwhile to refor-
mulate them as proximal set-open topologies. To unify the
concepts of compact-open topology, bounded-open topol-
ogy, and topology of proximity convergence [18], Naimpally,
jointly with the author, introduced the unifying tool of prox-
imal set-open topology relative to a network and a proximity
[27].This recasting takes up the opportunity of reformulating
topologies of uniform convergence onmembers of a network,
when the range space carries a proximity. A collection 𝛼 of
subsets of a topological space𝑋 is said to be a network on𝑋
provided that for any point 𝑥 in 𝑋 and any open subset 𝐴 of
𝑋 containing 𝑥 there is amember𝐶 in 𝛼 such that 𝑥 ∈ 𝐶 ⊆ 𝐴.
A network 𝛼 is a closed network if any element in 𝛼 is closed
and is a hereditarily closed network if any closed subset of any
element in 𝛼 is again in 𝛼.

Let (𝑋, 𝛿) be an EF-proximity space and 𝛼 a network in
𝑋, then the proximal set-open topology relative to 𝛼 and 𝛿, in
short denoted by the acronym PSOT

𝛼,𝛿
or, simply, PSOT

𝛿

when 𝛼 is the network CL(𝑋) of all non empty closed subsets
of 𝑋, is that admitting as subbasic open sets the following
ones:

[𝐴,𝑊]𝛿 := {𝑓 ∈ H (𝑋) : 𝑓 (𝐴)≪𝛿𝑊} , (29)
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where 𝐴 runs through 𝛼 and𝑊 is open in 𝑋. When 𝛼 is the
family of all compact subsets of 𝑋, for any proximity we get
the compact-open topology, which is the prototypewithin the
class of set-open topologies.

The proximal set-open topologies have remarkable prop-
erties [27].

Theorem 33. Let 𝛼 be a closed, hereditarily closed network in
𝑋 and 𝛿 an EF-proximity on𝑌.Then𝑃𝑆𝑂𝑇

𝛼,𝛿
is the topology of

uniform convergence on members of 𝛼 derived from the unique
totally bounded uniformity compatible with 𝛿.

9.4. Boundedness plus Proximity. Blending proximity with
boundedness gives local proximity. Local proximities play the
same role in the construction of 𝑇

2
local compactifications of

a Tychonoff space𝑋 as that of EF-proximities in the construc-
tion of 𝑇

2
-compactifications of𝑋.

Let𝑋 be a Tychonoff space. Any given 𝑇
2
local compacti-

fication 𝑙(𝑋) of𝑋 takes up two features of𝑋.Whereas the for-
mer one is the separated EF-proximity on 𝑋 induced by the
one-point compactification of 𝑙(𝑋), the latter one is the
boundedness made by all subsets of𝑋whose closures in 𝑙(𝑋)
are compact. By joining proximity and boundedness in the
unique concept of local proximity, Leader put this example
in abstract [25].

A non empty collectionB of subsets of a set𝑋 is called a
boundedness in𝑋 if and only if

(a) 𝐴 ∈ B and 𝐵 ⊆ 𝐴 imply 𝐵 ∈ B and (b) 𝐴, 𝐵 ∈ B
implies 𝐴 ∪ 𝐵 ∈ B.

The elements of B are called bounded sets. It is to be
underlined that in [24] Hu proposed the notion of space with
a boundedness as a natural generalisation of that of metric
space.

We expressly remark that we look at a local proximity as
localisation of an EF-proximity modulo of a free regular filter
[25]. A local proximity space (𝑋,B, 𝛿) consists of a set 𝑋,
together with an EF-proximity 𝛿 on𝑋 and a boundednessB
in 𝑋 containing all singletons, which satisfies the following
axiom: if 𝐴 ∈ B, 𝐶 ⊆ 𝑋, and 𝐴 ≪ 𝐶, then there exists some
𝐵 ∈ B such that 𝐴 ≪ 𝐵 ≪ 𝐶, where≪ is the strong inclusion
of 𝛿.

It is remarkable that the boundedness in a local proximity
space (𝑋,B, 𝛿) is also a uniformly Urysohn family w.r.t. the
unique totally bounded uniformity naturally associated with
𝛿 [30]. In a local proximity space the closure of a bounded set
is again bounded. Every compact subset of a local proximity
space is bounded. Every local proximity space is also locally
bounded. As a matter of fact, proximity spaces are just those
ones where the underlying set 𝑋 is bounded. Besides, the
following holds true [25].

Theorem 34. For a Tychonoff space 𝑋 there exists a bijection
between the set of all, up to equivalence, 𝑇

2
locally compact

dense extensions of𝑋 and the set of all separated local proxim-
ities on 𝑋 [27]. If 𝑋 is bounded, the 𝑇

2
local compactification

associated with (𝑋,B, 𝛿) is just the Smirnov compactification
relative to 𝛿, while, if 𝑋 is unbounded, it can be obtained
by removing from the Smirnov compactification relative to 𝛿

the point determined in that by the free regular filter
F = {𝑋 \ 𝐵 : 𝐵 ∈ B}.

9.5. Proximity and Homeomorphism Groups. Let (𝑋, 𝛿) be an
EF-proximity space. It is easy to show the following.

Proposition 35. Let G(𝑋) be a subgroup of the full group
H(𝑋) of self-homeomorphisms of the underlying topological
space 𝑋. Assuming that G(𝑋) is equipped with 𝑃𝑆𝑂𝑇

𝛿
, then

the evaluation function 𝑒 : (𝑓, 𝑥) ∈ G(𝑋) × 𝑋 → 𝑓(𝑥) ∈ 𝑋 is
continuous.

Furthermore, given that a proximity-isomorphism or 𝛿-
isomorphism is a self-homeomorphism of 𝑋 that preserves
proximity in both ways, then the following holds.

Proposition 36. If (𝑋, 𝛿) is an EF-proximity space, then
𝑃𝑆𝑂𝑇

𝛿
is a group topology on the full group of 𝛿-isomorphisms

of𝑋.

We summarise the previous two results as follows.

Theorem 37. If (𝑋, 𝛿) is an EF-proximity space, then the full
group of 𝛿-isomorphisms of 𝑋, equipped with 𝑃𝑆𝑂𝑇

𝛿
, is a

topological group which continuously acts on 𝑋 by the evalua-
tion function 𝑒.

Proposition 38. Whenever 𝑋 is a 𝑇
2
locally compact space,

the PSOT associated with the Alexandroff proximity, known as
the 𝑔-topology, is the least admissible group topology onH(𝑋).

Proposition 39. Whenever 𝑋 is a 𝑇
2
, rim-compact, and

locally connected space, the PSOT associated with the Freuden-
thal proximity is the least admissible group topology onH(𝑋).

Proposition 40. Whenever 𝑋 is the rational numbers space
Q, equipped with the Euclidean topology, the PSOT associated
with the C̆ech proximity is the least admissible group topology
onH(Q).

Now, assume that a 𝑇
2
local compactification has the

lifting property if and only if any homeomorphism preserves
both boundedness and proximity; that is, any homeomorphic
image of a bounded set is bounded, and if 𝐵≪

𝛿
𝑊, then

𝑓(𝐵)≪
𝛿
𝑓(𝑊), where 𝑓 runs through H(𝑋), 𝐵 is bounded,

and𝑊 is open.
It is to be recalled that a local proximity space (𝑋,B, 𝛿)

verifies the property (∗∗) if and only if for each non empty
bounded set 𝐵 there exist a finite number of connected bounded
sets 𝐵
1
, . . . , 𝐵

𝑛
such that 𝐵≪

𝛿
int(𝐵
1
) ∪ ⋅ ⋅ ⋅ ∪ int(𝐵

𝑛
).

Whenever (𝑋,B, 𝛿) is a local proximity space, then the
subcollection of B of all closed bounded subsets of 𝑋 is
a closed, hereditarily closed network of 𝑋. Accordingly,
PSOTB,𝛿 is the topology of uniform convergence on mem-
bers of B derived from the unique totally bounded uni-
formity associated with 𝛿. Unfortunately, PSOTB,𝛿 is not in
general an admissible group topology nor a group topology.

Nevertheless, what stated above is sufficient to draw the
following final issue.

Theorem 41. If (𝑋,B, 𝛿) is an unbounded local proximity
space with the property (∗∗) and any self-homeomorphism of
𝑋 preserves both boundedness and proximity, then the topology
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of uniform convergence on bounded sets derived from the
unique totally bounded uniformity associated with 𝛿 is an
admissible group topology onH(𝑋), [21].

This final result can be recasted as follows.

Theorem 42. Whenever (𝑋,B, 𝛿) is a local proximity space
with the property (∗∗) and the 𝑇

2
local compactification

associated with it has the lifting property, then 𝑃𝑆𝑂𝑇B,𝛿 is an
admissible group topology onH(𝑋).
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