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We study the obstacle problem for second order nonlinear equations whose model appears in the stationary diffusion-convection
problem. We assume that the growth coefficient of the convection term lies in the Marcinkiewicz space weak-𝐿𝑁.

1. Introduction

LetΩ be a bounded domain inR𝑁 with𝐶1-boundary,𝑁 > 2,
and letA : Ω ×R𝑁 → R𝑁 be a Carathèodory function; that
is,

𝑥 󳨀→ A (𝑥, 𝜉) is measurable for any 𝜉 ∈ R
𝑁
;

𝜉 󳨀→ A (𝑥, 𝜉) is continuous for almost every 𝑥 ∈ Ω.

(1)

We assume that there exist 0 < 𝛼 < 𝛽 such that for almost
every 𝑥 ∈ Ω we have

󵄨󵄨󵄨󵄨A (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ⩽ 𝛽

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 + 𝜑 (𝑥) with 𝜑 ∈ 𝐿

2
(Ω) , (2)

𝛼
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨

2
⩽ ⟨A (𝑥, 𝜉) −A (𝑥, 𝜂) , 𝜉 − 𝜂⟩

(strong monotonicity)
(3)

for any vectors 𝜉 and 𝜂 in R𝑁. Moreover, we assume that
B : Ω × R → R𝑁 is a Carathèodory function verifying
the following properties.

(i) There exists a nonnegative function 𝑏 : Ω → R
+
in

the Lorentz space 𝑏 ∈ 𝐿𝑁,∞(Ω) such that

|B (𝑥, 𝑠) −B (𝑥, 𝑡)| ⩽ 𝑏 (𝑥) |𝑠 − 𝑡| , (4)

for almost every 𝑥 ∈ Ω and for any 𝑠, 𝑡 ∈ R.
(ii) Consider

𝑏
0 (𝑥) := B (𝑥, 0) ∈ 𝐿

2
(Ω) . (5)

The space 𝐿𝑁,∞ is also known as theMarcinkiewicz space
weak-𝐿𝑁.

Let 𝑔 ∈ 𝑊
1,2
(Ω) and let 𝜓 : Ω → [−∞, +∞]. We define

K
𝜓,𝑔

= {V ∈ 𝑔 +𝑊
1,2

0
(Ω) : V ⩾ 𝜓 a.e. in Ω} . (6)

Definition 1. Given 𝐹 ∈ 𝐿
2
(Ω,R𝑁), one says that 𝑢 ∈ K

𝜓,𝑔
is

a solution of the obstacle problem OP(𝐹, 𝜓, 𝑔) if

∫
Ω

⟨A (𝑥, ∇𝑢) +B (𝑥, 𝑢) , ∇ (V − 𝑢)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹, ∇ (V − 𝑢)⟩ 𝑑𝑥

(7)

for every V ∈ K
𝜓,𝑔

.

For a classical treatment of obstacle problem we refer to
[1, 2]. See also [3, 4] and references therein.

Under assumptions (2) and (4) the left hand side of (7) is
finite by the Sobolev embedding theorem.

We point out that assumptions (1)–(5) do not guarantee
that the operator

A (𝑥, 𝑠, 𝜉) = A (𝑥, 𝜉) +B (𝑥, 𝑠) (8)

for any 𝜉 ∈ R𝑁, 𝑠 ∈ R, and almost every 𝑥 ∈ Ω is coercive
and monotone.

The aim of this paper is to establish existence and unique-
ness of solutions of OP(𝐹, 𝜓, 𝑔) in the sense of Definition 1.
Our first result is the following.
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Theorem 2. Assume that assumptions (3) and (4) are verified,
and let

𝑏 ∈ 𝐿
𝑁,∞

(Ω) . (9)

Then, there exists at most one solution 𝑢 ∈ K
𝜓,𝑔

of problem
(7).

We also prove the following.

Theorem3. Let assumptions (1)–(5) be verified and letK
𝜓,𝑔

̸=

0. Assume that

distLN,∞ (b, L
∞
) <

𝛼

4S2
. (10)

Then, for every 𝐹 ∈ 𝐿
2
(Ω,R𝑁), problem (7) admits a solution

𝑢 ∈ K
𝜓,𝑔

. Here 𝑆
2
is the Sobolev constant.

We remark that 𝐿∞ is not dense in 𝐿
𝑁,∞. Moreover,

condition (10) does not give any smallness control on the
norm of 𝑏 in 𝐿𝑁,∞ (see Section 2.1). This fact is very relevant
when we have to prove a priori estimates for the solutions
of OP(𝐹, 𝜓, 𝑔). Indeed, in order to prove our results we
follow a classical approach. First, we construct a coercive and
monotone operator.Thenwe reduce the existence to applying
a fixed point theorem.

Theorem 3 is new also in case of equations. In [5–8], the
authors considered operators with a lower order term having
the growth coefficient 𝑏 in spaces in which the bounded
functions are dense.

A condition similar to (10) has been used in [9] for
proving the existence of solutions to linear equations. In
that paper, an example shows that, in general, condition (10)
cannot be dropped in order to achieve existence of solutions.
Regularity results for solutions have been obtained in [10].

2. Preliminary Results

2.1. Some Functional Spaces. Let Ω be a bounded domain in
R𝑁. For a measurable 𝐸 ⊂ Ω, we denote by |𝐸| its Lebesgue
measure. For a measurable function 𝑓 : Ω → R we denote
by

𝜇
𝑓 (𝜆) =

󵄨󵄨󵄨󵄨{𝑥 ∈ Ω :
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 > 𝜆}
󵄨󵄨󵄨󵄨 , (𝜆 ⩾ 0) (11)

its distribution function and by

𝑓
∗
(𝑡) = inf {𝜆 : 𝜇

𝑓 (𝜆) ⩽ 𝑡} (12)

its decreasing rearrangement; see [11]. Clearly, 𝑓∗(𝑡) = 0 if
𝑡 > |Ω|. For 0 < 𝑝 < ∞ and 0 < 𝑞 < ∞, we consider the
quantity

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝑞

= {∫

∞

0

[𝑡
1/𝑝

𝑓
∗
(𝑡)]
𝑞 𝑑𝑡

𝑡
}

1/𝑞

(13)

and for 𝑞 = ∞ the obvious modification

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,∞

= sup
0<𝑡<∞

{𝑡
1/𝑝

𝑓
∗
(𝑡)} . (14)

The Lorentz space 𝐿𝑝,𝑞 = 𝐿
𝑝,𝑞
(Ω) consists of all measurable

functions 𝑓 satisfying ‖𝑓‖
𝑝,𝑞

< ∞. The space 𝐿𝑝,∞ is also
known as Marcinkiewicz space𝑀𝑝 or weak-𝐿𝑝. The quantity
‖ ‖
𝑝,𝑞

is equivalent to a norm which makes 𝐿𝑝,𝑞 a Banach
space; see [11, 12]. For 𝑝 = 𝑞, the space 𝐿𝑝,𝑝 coincides with
the usual Lebesgue 𝐿𝑝 space. Moreover,

1 < 𝑝
1
< 𝑝
2
< ∞, 1 ⩽ 𝑞

1
, 𝑞
2
⩽ ∞ 󳨐⇒ 𝐿

𝑝
1
,𝑞
1 ⊃ 𝐿
𝑝
2
,𝑞
2 ,

1 < 𝑝 < ∞, 1 ⩽ 𝑞
1
< 𝑞
2
⩽ ∞ 󳨐⇒ 𝐿

𝑝,𝑞
1 ⊂ 𝐿
𝑝,𝑞
2

(15)

with continuous injections. In particular, if 1 < 𝑟 < 𝑝 < ∞,

𝐿
𝑝
⊂ 𝐿
𝑝,∞

⊂ 𝐿
𝑟
. (16)

The following Hölder-type inequality holds. For 1 < 𝑝
𝑖
< ∞

and 1 ⩽ 𝑞
𝑖
⩽ ∞, 𝑖 = 1, . . . , 𝑛, if

𝑛

∑

𝑖=1

1

𝑝
𝑖

= 1 =

𝑛

∑

𝑖=1

1

𝑞
𝑖

, (17)

then

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=1

𝑓
𝑖 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥 ⩽

𝑛

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝑝
𝑖
,𝑞
𝑖

. (18)

See [9]. An elementary but often useful property is expressed
by the equality

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝛼󵄩󵄩󵄩󵄩󵄩𝑝,𝑞
=
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

𝛼

𝛼𝑝,𝛼𝑞 (19)

which holds for 𝛼 > 0.
We note the equality

󵄩󵄩󵄩󵄩𝜒𝐸
󵄩󵄩󵄩󵄩𝑝,𝑞

= (
𝑝

𝑞
)

1/𝑞

|𝐸|
1/𝑝 (20)

for every measurable 𝐸 ⊂ Ω. Here, for 𝑞 = ∞ we assume
(𝑝/𝑞)
1/𝑞

= 1.
We remark that, for any 𝑝 ∈ ]1,∞[, 𝐿∞ is not dense in

𝐿
𝑝,∞. We consider the distance of a given 𝑓 ∈ 𝐿

𝑝,∞ to 𝐿∞:

dist
𝐿
𝑝,∞ (𝑓, 𝐿

∞
) = inf
𝑔∈𝐿
∞

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩𝑝,∞

. (21)

To find a formula for the distance, we consider the
truncation operator. For 𝑘 > 0, we set

𝑇
𝑘
(𝑦) =

𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

min {󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 , 𝑘} . (22)

Then

dist
𝐿
𝑝,∞ (𝑓, 𝐿

∞
) = lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑓 − 𝑇
𝑘
𝑓
󵄩󵄩󵄩󵄩𝑝,∞

. (23)

Indeed, ∀𝑔 ∈ 𝐿
∞ and ∀𝑘 ⩾ ‖𝑔‖

∞
, we have, for almost every

𝑥 ∈ Ω,
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 ⩾
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑇

𝑘
𝑓 (𝑥)

󵄨󵄨󵄨󵄨 . (24)

For other comments on the distance to 𝐿
∞ and some

applications, we refer to [13].
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Example 4. LetΩ be the unit ball ofR𝑁 and 𝑝 ∈ ]1,∞[. The
function

𝑓 (𝑥) = |𝑥|
−𝑁/𝑝 (25)

belongs to 𝐿𝑝,∞. Setting 𝜔
𝑁
= |Ω|, for 𝑘 > 0 and 𝜆 > 0, we

compute

𝜇
𝑓−𝑇
𝑘
𝑓 (𝜆) = 𝜔

𝑁(𝜆 + 𝑘)
−𝑝
, (26)

(𝑓 − 𝑇
𝑘
𝑓) ∗ (𝑡) =

{{

{{

{

(
𝑡

𝜔
𝑁

)

−1/𝑝

− 𝑘, 0 < 𝑡 < 𝜔
𝑁
𝑘
−𝑝

0, 𝑡 ⩾ 𝜔
𝑁
𝑘
−𝑝
.

(27)

Hence
󵄩󵄩󵄩󵄩𝑓 − 𝑇

𝑘
𝑓
󵄩󵄩󵄩󵄩𝑝,∞

= 𝜔
1/𝑝

𝑁
(28)

does not depend on 𝑘.

On the contrary, for all 1 ⩽ 𝑞 < ∞, starting with
the definition of ‖ ‖

𝑝,𝑞
, a simple application of Lebesgue

dominated convergence theorem shows that 𝐿∞ is dense in
𝐿
𝑝,𝑞. Hence, for 1 ⩽ 𝑞 < ∞, 𝐿𝑝,𝑞, and in particular the

Lebesgue space 𝐿𝑝, is contained in the closure of 𝐿∞ in 𝐿𝑝,∞.
The closure of 𝐿∞ coincides with the closure of 𝐶∞

0
. The

elements of the closure can be characterized by the condition
of having absolutely continuous norm; see [11, Section 1.3].

Fundamental to us will be the Sobolev embedding theo-
rem in Lorentz spaces (see [12]; see also [14, 15]).

Theorem 5. Let one assume that 1 < 𝑝 < 𝑁, 1 ⩽ 𝑞 ⩽ 𝑝;
then every function 𝑔 ∈ 𝑊

1,1

0
(Ω) verifying |∇𝑔| ∈ 𝐿𝑝,𝑞 actually

belongs to 𝐿𝑝
∗

,𝑞, where 𝑝∗ = 𝑁𝑝/(𝑁 − 𝑝), and
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝∗,𝑞

⩽ 𝑆
𝑝

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩𝑝,𝑞

, (29)

where 𝑆
𝑝
= 𝑐(𝑁)(𝑝/(𝑁 − 𝑝)).

2.2. Monotone Operators. Let 𝑋 be a reflexive Banach space
with dual𝑋∗. Let ⟨⋅, ⋅⟩ denote the pairing between𝑋∗ and𝑋.
Let K ⊂ 𝑋 be a closed convex set.

Definition 6. A mapping 𝐴 : K → 𝑋
∗ is called monotone if

⟨𝐴𝑢 − 𝐴V, 𝑢 − V⟩ ⩾ 0 ∀𝑢, V ∈ K. (30)

The monotone mapping 𝐴 is called strictly monotone if

⟨𝐴𝑢 − 𝐴V, 𝑢 − V⟩ = 0 implies 𝑢 ≡ V. (31)

Definition 7. 𝐴 : K → 𝑋
∗ is called coercive on K if there

exists an element 𝜑 ∈ K such that

⟨𝐴𝑢 − 𝐴𝜑, 𝑢 − 𝜑⟩

󵄩󵄩󵄩󵄩𝑢 − 𝜑
󵄩󵄩󵄩󵄩

󳨀→+∞ as ‖𝑢‖ 󳨀→+∞ for any 𝑢 ∈ K.

(32)

The following existence and uniqueness result is con-
tained in [1] (see [1], Cap. III, Theorem 1.7 and Corollary 1.8).

Theorem 8. Let K ̸= 0 and let 𝐴 : K → 𝑋
∗ be strictly

monotone, coercive, and continuous on finite dimensional
subspaces. Then, there exists

𝑢 ∈ K : ⟨𝐴𝑢, V − 𝑢⟩ ⩾ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 V ∈ K. (33)

Such a solution is unique.

2.3. The Leray-Schauder Theorem. We will use the well-
known Leray-Schauder fixed point theorem in the following
form (see [16, Theorem 11.3, page 280]).

A continuous mapping between two Banach spaces is
called compact if the images of bounded sets are precompact.

Theorem 9. Let F be a compact mapping of a Banach space
𝑋 into itself, and suppose there exists a constant 𝐾 such that
‖𝑥‖
𝑋
< 𝐾 for all 𝑥 ∈ 𝑋 and 𝑡 ∈ [0, 1] satisfying 𝑥 = 𝑡F(𝑥).

Then,F has a fixed point.

3. Uniqueness of Solutions:
Proof of Theorem 2

Proof of Theorem 2. Suppose that 𝑢
1
, 𝑢
2
∈ K
𝜓,𝑔

verify (7);
that is, suppose that

∫
Ω

⟨A (𝑥, ∇𝑢
1
) +B (𝑥, 𝑢

1
) , ∇ (V − 𝑢

1
)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹, ∇ (V − 𝑢
1
)⟩ 𝑑𝑥,

(34)

∫
Ω

⟨A (𝑥, ∇𝑢
2
) +B (𝑥, 𝑢

2
) , ∇ (V − 𝑢

2
)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹, ∇ (V − 𝑢
2
)⟩ 𝑑𝑥

(35)

∀V ∈ K
𝜓,𝑔

. We will prove that 𝑢 = 𝑢
1
− 𝑢
2
≡ 0 a.e. in Ω. To

this aim we use as test functions V
𝜀
= 𝑇
𝜀
(𝑢
2
− 𝑢
1
) + 𝑢
1
in (34)

and 𝑤
𝜀
= 𝑇
𝜀
(𝑢
1
− 𝑢
2
) + 𝑢
2
in (35) for a number 𝜀 > 0. Those

functions are admissible since V
𝜀
and𝑤

𝜀
belong to𝑔+𝑊1,2

0
(Ω)

and V
𝜀
⩾ 𝜓, 𝑤

𝜀
⩾ 𝜓 a.e. on Ω. Observing that ∇𝑇

𝜀
(𝑢
1
− 𝑢
2
) =

−∇𝑇
𝜀
(𝑢
2
− 𝑢
1
), we obtain

∫
Ω

⟨A (𝑥, ∇𝑢
1
) −A (𝑥, ∇𝑢

2
) +B (𝑥, 𝑢

1
) −B (𝑥, 𝑢

2
) ,

∇𝑇
𝜀
(𝑢
1
− 𝑢
2
)⟩ 𝑑𝑥 ⩽ 0.

(36)

Now we set

Ω
𝜀
= {𝑥 ∈ Ω : |𝑢| > 𝜀} . (37)
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We have, using (3), (36), and (4),

𝛼∫
Ω

󵄨󵄨󵄨󵄨∇𝑇𝜀(𝑢)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

= 𝛼∫
Ω\Ω
𝜀

󵄨󵄨󵄨󵄨∇(𝑢1 − 𝑢
2
)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

⩽ ∫
Ω

⟨A (𝑥, ∇𝑢
1
) −A (𝑥, ∇𝑢

2
) , ∇𝑇
𝜀
(𝑢
1
− 𝑢
2
)⟩ 𝑑𝑥

⩽ ∫
Ω

𝑏 (𝑥)
󵄨󵄨󵄨󵄨𝑢1 − 𝑢

2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨∇𝑇𝜀 (𝑢1 − 𝑢
2
)
󵄨󵄨󵄨󵄨 𝑑𝑥

⩽ 𝜀∫
0<|𝑢|⩽𝜀

𝑏 (𝑥)
󵄨󵄨󵄨󵄨∇𝑇𝜀 (𝑢)

󵄨󵄨󵄨󵄨 𝑑𝑥

⩽ 𝜀(∫
0<|𝑢|⩽𝜀

|𝑏 (𝑥)|
2
𝑑𝑥)

1/2

(∫
Ω

󵄨󵄨󵄨󵄨∇𝑇𝜀 (𝑢)
󵄨󵄨󵄨󵄨

2
𝑑𝑥)

1/2

.

(38)

Then we have

𝛼
2󵄩󵄩󵄩󵄩∇𝑇𝜀(𝑢)

󵄩󵄩󵄩󵄩

2

2
⩽ 𝜀
2
∫
0<|𝑢|⩽𝜀

|𝑏 (𝑥)|
2
𝑑𝑥. (39)

Now, let 0 < 𝜀 < 𝜂, so that

𝜀
2 󵄨󵄨󵄨󵄨󵄨
Ω
𝜂

󵄨󵄨󵄨󵄨󵄨
= ∫
|𝑢|>𝜂

󵄨󵄨󵄨󵄨𝑇𝜀(𝑢)
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ⩽ 𝑐∫

Ω

󵄨󵄨󵄨󵄨∇𝑇𝜀(𝑢)
󵄨󵄨󵄨󵄨

2
𝑑𝑥, (40)

where 𝑐 = 𝑐(𝑁). Combining (39) and the last inequality we
obtain

𝛼
2 󵄨󵄨󵄨󵄨󵄨
Ω
𝜂

󵄨󵄨󵄨󵄨󵄨
⩽ 𝑐 ∫
0<|𝑢|⩽𝜀

|𝑏 (𝑥)|
2
𝑑𝑥. (41)

Letting 𝜀 → 0
+ we obtain |Ω

𝜂
| = 0, and then, by the

arbitrariness of 𝜂 > 0, we can conclude that 𝑢(𝑥) = 𝑢
1
(𝑥) −

𝑢
2
(𝑥) ≡ 0 for almost every 𝑥 ∈ Ω.

4. Existence of Solutions: Proof of Theorem 3

As K
𝜓,𝑔�= 0, it is not restrictive to assume 𝑔 ⩾ 𝜓 a.e. in Ω.

Moreover, let us observe that if assumption (10) holds true
then by (23) there exists a positive constant𝑀 = 𝑀(𝛼, 𝑏,𝑁)

such that
󵄩󵄩󵄩󵄩𝑏 − 𝑇

𝑀
𝑏
󵄩󵄩󵄩󵄩𝑁,∞

<
𝛼

4𝑆
2

. (42)

Let us fix such a value of𝑀.
Here below we denote

𝜗 (𝑥) =
𝑇
𝑀
𝑏 (𝑥)

𝑏 (𝑥)
, (43)

where as above 𝑇
𝑀
is the truncation operator at level𝑀.

Let A : Ω × R𝑁 → R𝑁 and B : Ω × R → R𝑁 be
Carathèodory functions satisfying (1)–(4). Let us consider the
operatorA : 𝑊

1,2
(Ω) → (𝑊

1,2
(Ω))
∗ defined by

⟨A𝑢, V⟩ = ∫
Ω

⟨A (𝑥, ∇𝑢) + (1 − 𝜃 (𝑥))B (𝑥, 𝑢) , ∇V⟩ 𝑑𝑥,

𝑢, V ∈ 𝑊1,2.
(44)

The operator A is strictly monotone and coercive on
K
𝜓,𝑔

(Ω). In fact for 𝑢, V ∈ K
𝜓,𝑔

(Ω) we have

⟨A𝑢 −AV, 𝑢 − V⟩

= ∫
Ω

⟨A (𝑥, ∇𝑢) −A (𝑥, ∇V) + (1 − 𝜃 (𝑥)) (B (𝑥, 𝑢)

−B (𝑥, V)) , ∇ (𝑢 − V)⟩ 𝑑𝑥

⩾ 𝛼∫
Ω

|∇𝑢 − ∇V|2𝑑𝑥

− ∫
Ω

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑇
𝑀
𝑏 (𝑥)

󵄨󵄨󵄨󵄨 |𝑢 − V| |∇ (𝑢 − V)| 𝑑𝑥

⩾ 𝛼‖∇(𝑢 − V)‖2
2
− 𝑆
2

󵄩󵄩󵄩󵄩𝑏 − 𝑇
𝑀
𝑏
󵄩󵄩󵄩󵄩𝐿𝑁,∞‖

∇(𝑢 − V)‖2
2

= (𝛼 − 𝑆
2

󵄩󵄩󵄩󵄩𝑏 − 𝑇
𝑀
𝑏
󵄩󵄩󵄩󵄩𝐿𝑁,∞

) ‖∇ (𝑢 − V)‖2
2
.

(45)

Then, by (42), we have (𝛼 − 𝑆
2
‖𝑏 − 𝑇

𝑀
𝑏‖
𝐿
𝑁,∞) ⩾ 𝛼/2 > 0.

The following technical lemma will be useful in the
sequel. We shall follow closely the proof of Lemma 4.1 in [7].
We include some details for the sake of completeness.

Lemma 10. Let one assume (1)–(5), 𝐹 ∈ 𝐿
2
(Ω,R𝑛), 𝑔 ∈

𝑊
1,2
(Ω), 𝜓 ⩽ 𝑔, and let 0 < 𝑡 ⩽ 1. Assume that 𝑢 ∈ 𝑊

1,2

is such that 𝑢/𝑡 ∈ K
𝜓,𝑔

(Ω) and verifies

∫
Ω

⟨A(𝑥,
∇𝑢

𝑡
) + (1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
) , ∇ (V −

𝑢

𝑡
)⟩𝑑𝑥

⩾ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇ (V −
𝑢

𝑡
)⟩𝑑𝑥

(46)

for all V ∈ K
𝜓,𝑔

. Then,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
log(1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑡
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2∗

⩽ 𝐶 (‖𝐹‖2 +
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+‖𝑏‖2 +‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

+
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩2
) ,

(47)

where 𝐶 depends only on 𝛼, 𝛽, and𝑁.

Proof. Taking V = 𝑢/𝑡 − (𝑢/𝑡 − 𝑔)/(1 + |𝑢/𝑡 − 𝑔|) ∈ K
𝜓,𝑔

as a
test function in (46), we obtain

∫
Ω

⟨A(𝑥,
∇𝑢

𝑡
) + (1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
) ,

∇(
𝑢/𝑡 − 𝑔

1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨

)⟩𝑑𝑥

⩽ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇(
𝑢/𝑡 − 𝑔

1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨

)⟩𝑑𝑥.

(48)



Abstract and Applied Analysis 5

By assumptions (2)–(5) we have

𝛼∫
Ω

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

2

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥

⩽ 2∫
Ω

⟨A (𝑥, ∇𝑢/𝑡) , ∇ (𝑢/𝑡 − 𝑔)⟩

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2

𝑑𝑥

+ 2∫
Ω

⟨A (𝑥, ∇𝑢/𝑡) , ∇𝑔⟩

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2

𝑑𝑥

+ 2∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨

|∇𝑢/𝑡|

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥 + 2𝛼

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩

2

2

⩽ 2∫
Ω

⟨A (𝑥, ∇𝑢/𝑡) ,
∇ (𝑢/𝑡 − 𝑔)

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
⟩𝑑𝑥

+
𝛼

2
∫
Ω

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

2

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥 + 𝑐 (

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

(49)

with 𝑐 = 𝑐(𝛼, 𝛽). Note that in the last inequality we used also
Young’s inequality.

Noting that

|𝜗 (𝑥)B (𝑥, 𝑢)| ⩽ 𝑇
𝑀
𝑏 (𝑥) |𝑢| +

󵄨󵄨󵄨󵄨𝑏0 (𝑥)
󵄨󵄨󵄨󵄨 (50)

and that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[1 − 𝜗 (𝑥)]B(𝑥,

𝑢

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ (𝑏 (𝑥) − 𝑇

𝑀
𝑏 (𝑥))

|𝑢|

𝑡
+
󵄨󵄨󵄨󵄨𝑏0 (𝑥)

󵄨󵄨󵄨󵄨

(51)

and combining (48) and (49), by Hölder’s inequality, we have

∫
Ω

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

2

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥

⩽
4

𝛼
∫
Ω

|𝐹|

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
𝑑𝑥

+
4

𝛼
∫
Ω

(𝑇
𝑀
𝑏 (𝑥)

|𝑢|

𝑡
+
󵄨󵄨󵄨󵄨𝑏0
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥

+
4

𝛼
∫
Ω

[(𝑏 (𝑥) − 𝑇
𝑀
𝑏 (𝑥))

|𝑢|

𝑡
+
󵄨󵄨󵄨󵄨𝑏0 (𝑥)

󵄨󵄨󵄨󵄨]

×

󵄨󵄨󵄨󵄨∇ (𝑢/𝑡 − 𝑔)
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)
2
𝑑𝑥 + 𝑐 (

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

⩽
4

𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∇ (𝑢/𝑡 − 𝑔)

(1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

× (‖𝐹‖2 + 2
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ ‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

+ 𝑐
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
2

𝛼

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
.

(52)

Then, by the elementary relation 𝑎 ⩾ 0, 𝑏 ⩾ 0, 𝑥2 ⩽ 𝑎𝑥 +

𝑏 ⇒ 𝑥 ⩽ 𝑎 + √𝑏 we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∇ (𝑢/𝑡 − 𝑔)

1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

⩽
4

𝛼
(‖𝐹‖2+2

󵄩󵄩󵄩󵄩𝑏0
󵄩󵄩󵄩󵄩2
+‖𝑏‖2+‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩2
) ,

(53)
with 𝑐 = 𝑐(𝛼, 𝛽). This concludes our proof, observing that by
Sobolev embedding theorem

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
log(1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑡
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2∗
⩽ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∇ (𝑢/𝑡 − 𝑔)

1 +
󵄨󵄨󵄨󵄨𝑢/𝑡 − 𝑔

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

(54)

with 𝐶 = 𝐶(𝑁).

Proof of Theorem 3. Wewill obtain the existence of a solution
to problem (7) by applying the Leray-Schauder fixed point
theorem stated in Section 2.3 to a suitable compact operator
F. Hence, we will now construct such operator.

Let 𝑢 ∈ 𝑊
1,2
(Ω). Using Theorem 8 we have that the

problem

∫
Ω

⟨A (𝑥, ∇𝑢) + (1 − 𝜃 (𝑥))B (𝑥, 𝑢) , ∇ (V − 𝑢)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇ (V − 𝑢)⟩ 𝑑𝑥, ∀V ∈ K
𝜓,𝑔

,

(55)
admits a unique solution 𝑢 ∈ K

𝜓,𝑔
, since the operator A :

𝑊
1,2
(Ω) → (𝑊

1,2
(Ω))
∗ defined by

⟨A𝑢, V⟩ = ∫
Ω

⟨A (𝑥, ∇𝑢) + (1 − 𝜃 (𝑥))B (𝑥, 𝑢) , ∇V⟩ 𝑑𝑥,

𝑢, V ∈ 𝑊1,2

(56)
is strictly monotone and coercive inK

𝜓,𝑔
(see (45)).

Hence we can define an operator

F : 𝑊
1,2

󳨀→ K
𝜓,𝑔

⊆ 𝑊
1,2
,

𝑢 = F (𝑢) .

(57)

We claim that such an operatorF is compact.
Let us prove the compactness. (The proof that F is

continuous is similar.) To this aim, suppose that (𝑢
𝑗
) is a

bounded sequence in 𝑊
1,2
(Ω). Then, up to a subsequence,

there exists 𝑢 ∈ 𝑊
1,2
(Ω) such that 𝑢

𝑗
→ 𝑢 in 𝐿

2
(Ω).

Denoting 𝑢
𝑗
= F(𝑢

𝑗
) and 𝑢 = F(𝑢) we have that

∫
Ω

⟨A (𝑥, ∇𝑢
𝑗
) + (1 − 𝜃 (𝑥))B (𝑥, 𝑢

𝑗
) , ∇ (𝑢 − 𝑢

𝑗
)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢
𝑗
) , ∇ (𝑢 − 𝑢

𝑗
)⟩ 𝑑𝑥,

(58)

∫
Ω

⟨A (𝑥, ∇𝑢) + (1 − 𝜃 (𝑥))B (𝑥, 𝑢) , ∇ (𝑢
𝑗
− 𝑢)⟩ 𝑑𝑥

⩾ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇ (𝑢
𝑗
− 𝑢)⟩ 𝑑𝑥.

(59)
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Hence, adding (59) to (58) and using (3), (50), (51), and
(4) we have

𝛼∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇ (𝑢 − 𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

⩽ ∫
Ω

⟨A (𝑥, ∇𝑢) −A (𝑥, ∇𝑢
𝑗
) , ∇ (𝑢 − 𝑢

𝑗
)⟩ 𝑑𝑥

⩽ ∫
Ω

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑇
𝑀
𝑏 (𝑥)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
∇ (𝑢 − 𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
Ω

𝑇
𝑀
𝑏 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
∇ (𝑢 − 𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

⩽ 𝑆
2

󵄩󵄩󵄩󵄩𝑏 − 𝑇
𝑀
𝑏
󵄩󵄩󵄩󵄩𝑁,∞

󵄩󵄩󵄩󵄩󵄩
∇ (𝑢 − 𝑢

𝑗
)
󵄩󵄩󵄩󵄩󵄩

2

2

+𝑀
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
∇(𝑢 − 𝑢

𝑗
)
󵄩󵄩󵄩󵄩󵄩2
.

(60)

Dividing the last inequality by ‖∇(𝑢 − 𝑢
𝑗
)‖
2
, by (10) and

(42),

󵄩󵄩󵄩󵄩󵄩
∇ (𝑢 − 𝑢

𝑗
)
󵄩󵄩󵄩󵄩󵄩2

⩽
4𝑀

3𝛼

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩2
. (61)

This implies thatF(𝑢
𝑗
) → F(𝑢) in𝑊1,2(Ω) so that we can

conclude thatF is compact.
A fixed point of F is a solution to problem (7). We will

prove that F has a fixed point. In particular, we will find a
constant 𝐾 > 1 such that the a priori estimate ‖𝑢‖

𝑊
1,2 < 𝐾

holds for every 𝑢 ∈ 𝑊
1,2 and 𝑡 ∈ [0, 1] satisfying 𝑢 − 𝑡F(𝑢) =

0.
To this aim let 𝑡 ∈ (0, 1] and let 𝑢 ∈ 𝑊

1,2 be a solution to
the equation 𝑢 = 𝑡F(𝑢). Then, 𝑢/𝑡 ∈ K

𝜓,𝑔
and

∫
Ω

⟨A(𝑥,
∇𝑢

𝑡
) + (1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
) , ∇ (V −

𝑢

𝑡
)⟩𝑑𝑥

⩾ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇ (V −
𝑢

𝑡
)⟩𝑑𝑥,

∀V ∈ K
𝜓,𝑔

.

(62)

Now our aim is to estimate ‖∇𝑇
𝑘
(𝑢/𝑡 − 𝑔)‖

2
.

We use V = 𝑢/𝑡 − 𝑇
𝑘
(𝑢/𝑡 − 𝑔) ∈ K

𝜓,𝑔
as a test function in

(62) obtaining

∫
Ω

⟨A(𝑥,
∇𝑢

𝑡
) + (1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
) , ∇𝑇

𝑘
(
𝑢

𝑡
− 𝑔)⟩𝑑𝑥

⩽ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇𝑇𝑘 (
𝑢

𝑡
− 𝑔)⟩𝑑𝑥.

(63)

Moreover, we observe that by (2) and (3)

𝛼∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

⩽ ∫
{|𝑢/𝑡−𝑔|⩽𝑘}

⟨A(𝑥,
∇𝑢

𝑡
) −A (𝑥, 0) ,

∇𝑢

𝑡
⟩𝑑𝑥

⩽ ∫
{|𝑢/𝑡−𝑔|⩽𝑘}

⟨A(𝑥,
∇𝑢

𝑡
) , ∇ (

𝑢

𝑡
− 𝑔)⟩𝑑𝑥

+ 𝛽∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨∇𝑔
󵄨󵄨󵄨󵄨 𝑑𝑥

+ ∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨 (𝛽

󵄨󵄨󵄨󵄨∇𝑔
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑥

⩽ ∫
{|𝑢/𝑡−𝑔|⩽𝑘}

⟨A(𝑥,
∇𝑢

𝑡
) , ∇ (

𝑢

𝑡
− 𝑔)⟩𝑑𝑥

+
𝛼

2
∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

(64)

with 𝑐 = 𝑐(𝛼, 𝛽). This gives, using (63),

𝛼

2
∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

⩽ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇𝑇𝑘 (
𝑢

𝑡
− 𝑔)⟩𝑑𝑥

+ ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

⩽ ‖𝐹‖2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

+ ∫
Ω

(𝑇
𝑀
𝑏 (𝑥) |𝑢| + 2

󵄨󵄨󵄨󵄨𝑏0 (𝑥)
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
Ω

(𝑏 (𝑥) − 𝑇
𝑀
𝑏 (𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

⩽ ‖𝐹‖2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+ 2

󵄩󵄩󵄩󵄩𝑏0
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

+ ∫
Ω

|𝑏 (𝑥)|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 + 𝑐 (

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
) .

(65)

By (65), using Hölder’s inequality and Theorem 5, we
obtain

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
{|𝑢/𝑡−𝑔|⩽𝑘}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇ (

𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

⩽ 2∫
{|𝑢/𝑡−𝑔|⩽𝑘}

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝑔

󵄨󵄨󵄨󵄨

2
)𝑑𝑥
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⩽
4

𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

× (‖𝐹‖2 + 2
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ 𝑘‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
) .

(66)

Hence, we obtain, for every 𝑘 ∈ N,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

⩽
4

𝛼
(‖𝐹‖2 + 2

󵄩󵄩󵄩󵄩𝑏0
󵄩󵄩󵄩󵄩2
+ 𝑘‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩2
)

(67)

with 𝑐 = 𝑐(𝛼, 𝛽).
Now, let us denote

𝐺
𝑘
(
𝑢

𝑡
− 𝑔) = (

𝑢

𝑡
− 𝑔) − 𝑇

𝑘
(
𝑢

𝑡
− 𝑔) . (68)

And let us set

Ω
𝑘
= {𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑡
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑘} . (69)

At this point our aim is to estimate ‖∇𝐺
𝑘
(𝑢/𝑡 − 𝑔)‖

2
.

Let us preliminarily observe that using V = 𝑢/𝑡−𝐺
𝑘
(𝑢/𝑡−

𝑔) ∈ K
𝜓,𝑔

as a test function in (62) we obtain

∫
Ω

⟨A(𝑥,
∇𝑢

𝑡
) + (1 − 𝜃 (𝑥))B(𝑥,

𝑢

𝑡
) , ∇𝐺

𝑘
(
𝑢

𝑡
− 𝑔)⟩𝑑𝑥

⩽ ∫
Ω

⟨𝐹 − 𝜃 (𝑥)B (𝑥, 𝑢) , ∇𝐺𝑘 (
𝑢

𝑡
− 𝑔)⟩𝑑𝑥.

(70)

Using (2) and (3) and arguing as above by (70) we obtain

𝛼

4
∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

⩽ (‖𝐹‖2 + 2
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

+ ∫
Ω
𝑘

𝑇
𝑀
𝑏 (𝑥) (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+∫
Ω
𝑘

(𝑏 (𝑥)−𝑇𝑀𝑏 (𝑥))(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺
𝑘
(
𝑢

𝑡
−𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝐺
𝑘
(
𝑢

𝑡
−𝑔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

⩽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
{‖𝐹‖2+2

󵄩󵄩󵄩󵄩𝑏0
󵄩󵄩󵄩󵄩2
+‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

+𝑘‖𝑏‖2

+ 𝑆
2

󵄩󵄩󵄩󵄩𝑇𝑀𝑏
󵄩󵄩󵄩󵄩𝐿𝑁,∞(Ω

𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

+ 𝑆
2

󵄩󵄩󵄩󵄩𝑏 − 𝑇
𝑀
𝑏
󵄩󵄩󵄩󵄩𝐿𝑁,∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
}

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

(71)

with 𝑐 = 𝑐(𝛼, 𝛽). Using (42), this leads to the estimate
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

⩽ 𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

× (‖𝐹‖2 +
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ 𝑘‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

)

+ 𝑐
󵄩󵄩󵄩󵄩𝑇𝑀𝑏

󵄩󵄩󵄩󵄩𝐿𝑁,∞(Ω
𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑐 (
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

2
)

(72)

with 𝑐 = 𝑐(𝛼, 𝛽, 𝑏,𝑁,Ω).
On the other hand, since 𝑢 ∈ 𝑊

1,2 is a solution to 𝑢 −

𝑡F(𝑢) = 0, we can apply Lemma 10 to obtain

󵄨󵄨󵄨󵄨Ω𝑘
󵄨󵄨󵄨󵄨 ⩽

𝐶

[log (1 + 𝑘)]
, (73)

where 𝐶 = 𝐶(𝛼, 𝛽,𝑁,Ω, 𝑏, 𝑔, ‖𝑏
0
‖
2
, ‖𝐹‖
2
, ‖𝜑‖
2
). Moreover, by

(20), we have
󵄩󵄩󵄩󵄩𝑇𝑀𝑏

󵄩󵄩󵄩󵄩𝐿𝑁,∞(Ω
𝑘
)
⩽ 𝑀

󵄨󵄨󵄨󵄨Ω𝑘
󵄨󵄨󵄨󵄨

1/𝑁
. (74)

Then, combining (73) and (74), we can now fix 𝑘 = 𝑘
0
,

independent of 𝑡 and such that

󵄩󵄩󵄩󵄩𝑇𝑀𝑏
󵄩󵄩󵄩󵄩𝐿𝑁,∞(Ω

𝑘
0

)
⩽

1

2𝑐
. (75)

By (75) and (72), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
0

(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

⩽ 𝑐 (‖𝐹‖2 +
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ 𝑘
0‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

+
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩2
)

(76)

with 𝑐 = 𝑐(𝛼, 𝛽, 𝑏,𝑁,Ω).
Now we are in a position to estimate ‖∇(𝑢/𝑡 − 𝑔)‖

2
. We

obtain, combining (67) and (76),
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇ (

𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
⩽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝑇
𝑘
0

(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐺
𝑘
0

(
𝑢

𝑡
− 𝑔)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

⩽ 𝑐 (‖𝐹‖2 +
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩2
+ 𝑘
0‖𝑏‖2 + ‖𝑏‖𝑁,∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩2∗ ,2

+
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩2
)

= 𝐾.

(77)

Hence, for all 𝑡 ∈ [0, 1] and all 𝑢 ∈ 𝑊
1,2
(Ω) solution to

𝑢 − 𝑡F(𝑢) = 0, we have ‖𝑢‖
𝑊
1,2

(Ω)
< 𝐾 + ‖𝑔‖

𝑊
1,2 = 𝐾, with

𝐾 = 𝐾(𝛼, 𝛽,𝑁,Ω, 𝑏, 𝑔, ‖𝑏
0
‖
2
, ‖𝐹‖
2
, ‖𝜑‖
2
).

SinceF is a compact operator,Theorem 9 implies thatF
has a fixed point, which is a solution 𝑢 of (7).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



8 Abstract and Applied Analysis

Acknowledgment

Luigi Greco and Gioconda Moscariello are partially sup-
ported by the 2010 PRIN “Calculus of Variations.”

References

[1] D. Kinderlehrer and G. Stampacchia, An Introduction to Vari-
ational Inequalities and Their Applications, vol. 88 of Pure
and Applied Mathematics, Academic Press, Harcourt Brace
Jovanovich, New York, NY, USA, 1980.
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Limites non Linéaires, Dunod, Paris, France, 1969.

[3] M. Chipot, Variational Inequalities and Flow in Porous Media,
Springer, Berlin, Germany, 1984.

[4] J.-F. Rodrigues, Obstacle Problems in Mathematical Phisics, vol.
134 of North-Holland Mathematics Studies, Elsevier, Amster-
dam, The Netherlands, 1987.

[5] J. Droniou, “Non-coercive linear elliptic problems,” Potential
Analysis, vol. 17, no. 2, pp. 181–203, 2002.

[6] G.Moscariello, “Existence and uniqueness for elliptic equations
with lower-order terms,”Advances in Calculus of Variations, vol.
4, no. 4, pp. 421–444, 2011.

[7] L. Boccardo, “Some developments on Dirichlet problems with
discontinuous coefficients,” Bollettino della Unione Matematica
Italiana, vol. 9, no. 2, pp. 285–297, 2009.

[8] G. Zecca, “Existence and uniqueness for nonlinear elliptic
equations with lower-order terms,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 75, no. 2, pp. 899–912, 2012.

[9] F. Giannetti, L. Greco, and G. Moscariello, “Linear elliptic
equations with lower-order terms,” Differential and Integral
Equations, vol. 26, no. 5-6, pp. 623–638, 2013.

[10] L. Greco, G.Moscariello, andG. Zecca, “Regularity for solutions
to nonlinear elliptic equations,” Differential and Integral Equa-
tions, vol. 26, no. 9-10, pp. 1105–1113, 2013.

[11] C. Bennett and R. Sharpley, Interpolation of Operators, Aca-
demic Press, Boston, Mass, USA, 1988.

[12] R. O’Neil, “Integral transforms and tensor products on Orlicz
spaces and L(p, q) spaces,” Journal d’Analyse Mathematique, vol.
21, pp. 1–276, 1968.

[13] M. Carozza and C. Sbordone, “The distance to 𝐿
∞ in some

function spaces and applications,” Differential and Integral
Equations, vol. 10, no. 4, pp. 599–607, 1997.

[14] A. Alvino, “Sulla disuguaglianza di Sobolev in spazi di Lorentz,”
Bollettino della Unione Matematica Italiana A, vol. 5, no. 14, pp.
148–156, 1977.

[15] L. Greco and G. Moscariello, “An embedding theorem in
Lorentz-Zygmund spaces,” Potential Analysis, vol. 5, no. 6, pp.
581–590, 1996.

[16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential
Equations of Second Order, Springer, Berlin, Germany, 1983.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


