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PLANETARY BIRKHOFF NORMAL FORMS
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(Communicated by Anatole Katok)

ABSTRACT. Birkhoff normal forms for the (secular) planetary problem are in-
vestigated. Existence and uniqueness is discussed and it is shown that the
classical Poincaré variables and the RPS–variables (introduced in [6]), after a
trivial lift, lead to the same Birkhoff normal form; as a corollary the Birkhoff
normal form (in Poincaré variables) is degenerate at all orders (answering a
question of M. Herman). Non-degenerate Birkhoff normal forms for partially
and totally reduced cases are provided and an application to long–time sta-
bility of secular action variables (eccentricities and inclinations) is discussed.
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1. INTRODUCTION

Consider the planetary (1+n)-body problem, i.e., the motions of 1+n point-
masses, interacting only through gravity, with one body (“the Sun”) having a
much larger mass than the other ones (“the planets”). A fundamental feature
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of this Hamiltonian system (for negative decoupled energies) is the separation
between fast degrees of freedom, roughly describing the relative distances of
the planets, and the slow (or “secular”) degrees of freedom, describing the rela-
tive inclinations and eccentricities (of the osculating Keplerian ellipses). A sec-
ond remarkable feature of the planetary system is that the secular Hamiltonian
has (in suitable “Cartesian variables”) an elliptic equilibrium around zero in-
clinations and eccentricities. Birkhoff normal form theory1 comes, therefore,
naturally in. Such theory yields, in particular, information on the secular fre-
quencies (first order Birkhoff invariants) and on the “torsion” (or “twist”) of the
secular variables (the determinant of the second-order Birkhoff invariants). In-
deed, secular Birkhoff invariants are intimately related to the existence of max-
imal and lower-dimensional KAM tori2, or, as we will show below (§ 6), one can
infer long-time stability for the “secular actions” (essentially, eccentricities and
mutual inclinations).

A natural question is therefore the construction of Birkhoff normal forms for
the secular planetary Hamiltonian. Already Arnold in 1963 realized that this
is not a straightforward task in view of secular resonances, i.e., rational rela-
tions among the first-order Birkhoff invariants holding identically on the phase
space. Incidentally, Arnold was aware of the so-called rotational resonance (the
vanishing of one of the “vertical” first-order Birkhoff invariants) but did not re-
alize the presence of a second resonance of order 2n −1 discovered by M. Her-
man (compare [10] and [1]). These resonances, apart from being an obstacle
for the construction of Birkhoff normal forms, constituted also a problem for
the application of KAM theory. This problem was overcome, in full generality,
only in 2004 [10] using a weaker KAM theory involving only information on the
first order Birkhoff invariants, waving the check of Kolmogorov’s nondegener-
acy (related to full torsion3); for a short description of the main ideas involved,
see [6, Remark 11.1, (iii)].

In particular the question of the torsion of the secular Hamiltonian remained
open. M. Herman investigated such question thoroughly using Poincaré vari-
ables [11] but declared not to know if some of the second-order Birkhoff invari-
ants are zero even in the n = 2 case (compare the Remark towards the end of p.
24 in [11]).

A different point of view is taken up in [6], where a new set of variables,
called RPS (“Regularized Planetary Symplectic”) variables, is introduced in or-
der to study the symplectic structure of the phase space of the planetary sys-
tem. Such variables are based on Deprit’s action-angles variables ([8, 5]), which
may be used for a symplectic reduction lowering by one the number of degrees
of freedom. A further reduction is possible (at the expense of introducing a new
singularity) leading to a totally reduced phase space, compare [6, §9] and § 5.1

1See [12] for generalities and Appendix A for the theory for rotational invariant systems.
2Compare [2, 16, 10, 7, 6] for maximal tori and [9, 3, 6] for lower-dimensional elliptic tori.
3That is, the nonvanishing of the determinant of the matrix formed by the second order

Birkhoff invariants.
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below. On the reduced phase spaces, one can construct Birkhoff normal forms
([6, Sect 7 and 9]; § 2, § 5.1 below). Following such strategy one can show that
the matrix of second-order Birkhoff invariants (for the reduced system) is non-
degenerate and prove full torsion. In particular, it is then possible to construct
a large measure set of maximal nondegenerate KAM tori ([6, §11]).

In this paper we consider and clarify various aspects of Birkhoff normal forms
for the planetary system. In particular we analyze the connection between the
Birkhoff normal form in the classical setting (Poincaré variables) and in the new
setting of [6]. It turns out that after lifting in a trivial way the RPS variables to
the full-dimensional phase space, such variables and the Poincaré variables are
related in a simple way, namely, through a symplectic map which leaves the
action variables Λ (conjugate to the mean anomalies) fixed and so that the cor-
respondence between the respective Cartesian variables is close to the iden-
tity map (and independent of the fast angles); compare Theorem 3.2 below.
Since, up to such class of symplectic maps, the Birkhoff normal form is unique,
one sees that the Birkhoff normal form in Poincaré variables is degenerate at
all orders, answering negatively the question of M. Herman; see Theorem 2.1
below. We mention also that the construction of Birkhoff normal form for ro-
tational invariant Hamiltonian (such as the secular planetary Hamiltonian) is
simpler than the standard construction: in fact, one needs to assume nonres-
onance of the first-order Birkhoff invariant for those Taylor modes k 6= 0 such
that

∑
i ki = 0 (and not just k 6= 0); compare Appendix A. By this remark one sees

that the secular resonances (both the rotational and the Herman resonance) do
not really affect the construction of Birkhoff normal forms.

In § 5.1 we discuss the construction, up to any order, of the Birkhoff normal
forms in the totally reduced setting (generalizing Proposition 10.1 in [6]) and,
for completeness, we consider (§ 5.2) the planar planetary problem (in which
case the Poincaré and the RPS variables coincide) and, after introducing a (to-
tal) symplectic reduction, we discuss Birkhoff normal forms in such reduced
setting, comparing, in particular, with the detailed analysis in [11].

Finally, in § 6, we use the results of § 5.1 in order to prove that, in suit-
able open nonresonant phase space regions of relatively large Liouville mea-
sure, the eccentricities and mutual inclinations remain small and close to their
initial values for times which are proportional to any prefixed inverse power of
the distance from the equilibrium point (zero inclinations and zero eccentric-
ities): such result is somewhat complementary to Nehorošev’s original result
[13], where exponential stability of the semi major axes was established, but
no information on possible relatively large variation of the secular action was
given.

2. PLANETARY BIRKHOFF NORMAL FORM

After the symplectic reduction of the linear momentum, the (1 + n)-body
problem with masses m0, µm1, · · · , µmn (0 < µ ¿ 1) is governed by the 3n-
degrees-of-freedom Hamiltonian
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Hplt =
∑

1≤i≤n

( |y (i )|2
2Mi

− Mi m̄i

|x(i )|
)
+µ ∑

1≤i< j≤n

(
y (i ) · y ( j )

m0
− mi m j

|x(i ) −x( j )|
)

=: hplt +µ fplt(2.1)

where x(i ) represent the difference between the position of the i th planet and
the position of the Sun, y (i ) are the associated symplectic momenta rescaled by
µ, x · y =∑

1≤i≤3 xi yi and |x| := (x ·x)1/2 denote, respectively, the standard inner
product in R3 and the Euclidean norm;

(2.2) Mi := m0mi

m0 +µmi
, m̄i := m0 +µmi .

The phase space is the “collisionless” domain of R3n ×R3n{
(y, x) = (

(y (1), . . . , y (n)), (x(1), . . . , x(n))
)

s.t. 0 6= x(i ) 6= x( j ) , ∀ i 6= j
}

,

endowed with the standard form

ω=
n∑

i=1
d y (i ) ∧d x(i ) =

n∑
i=1

3∑
j=1

d y (i )
j ∧d x(i )

j

where y (i )
j , x(i )

j denote the j th component of y (i ), x(i ).

When µ = 0, the Hamiltonian (2.1) is integrable: its unperturbed limiting
value hplt is the sum of the Hamiltonians

(2.3) h(i )
plt =

|y (i )|2
2Mi

− Mi m̄i

|x(i )| , (y (i ), x(i )) ∈R3 ×R3
∗ :=R3 × (R3\{0})

corresponding to uncoupled Two-Body Newtonian interactions.
In Poincaré coordinates – which will be reviewed in the next section – the

Hamiltonian (2.1) takes the form

(2.4) HP(Λ,λ,z) = hK(Λ)+µ fP(Λ,λ,z) , z := (η,p,ξ,q) ∈R4n

where (Λ,λ) ∈ Rn ×Tn ; the “Kepler” unperturbed term hK, coming from hplt in
(2.1), becomes

hK :=
n∑

i=1
h(i )

K (Λ) =−
n∑

i=1

m̄2
i M 3

i

2Λ2
i

.

Because of rotation (with respect the k(3)-axis) and reflection (with respect
to the coordinate planes) invariance of the Hamiltonian (2.1), the perturbation
fP in (2.4) satisfies well-known symmetry relations called d’Alembert rules, see
(3.19)–(3.24) below. By such symmetries, in particular, the averaged perturba-
tion

(2.5) f av
P (Λ,z) := 1

(2π)n

∫
Tn

fP(Λ,λ,z)dλ
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is even around the origin z = 0 and its expansion in powers of z has the form4

(2.6) f av
P =C0(Λ)+Qh(Λ) · η

2 +ξ2

2
+Qv (Λ) · p2 +q2

2
+O(|z|4) ,

where Qh , Qv are suitable quadratic forms. The explicit expression of such
quadratic forms can be found, e.g., in [10, (36), (37)] (revised version).

By such expansion, the (secular) origin z = 0 is an elliptic equilibrium for
f av

P and corresponds to coplanar and cocircular motions. It is therefore natural
to put (2.6) into Birkhoff normal form in a small neighborhood of the secular
origin; see, e.g., [12] for general information on Birkhoff normal forms and Ap-
pendix A for Birkhoff theory for rotational invariant Hamiltonian systems.

As a preliminary step, one can diagonalize (2.6), i.e., find a symplectic trans-
formation

(2.7) Φ̃P : (Λ, λ̃, z̃) ∈ M̃ 6n
P → (Λ,λ,z) ∈M 6n

P := Φ̃P(M̃ 6n
P )

(the domain M̃ 6n
P will be specified in (2.12) below) defined by Λ→Λ and

(2.8) λ= λ̃+ϕ(Λ, z̃), η= ρh(Λ)η̃, ξ= ρh(Λ)ξ̃, p = ρv (Λ)p̃, q = ρv (Λ)q̃ ,

with ρh , ρv ∈ SO(n) diagonalizing Qh , Qv . In this way, (2.6) takes the form

(2.9) H̃P(Λ, λ̃, z̃) =HP ◦ Φ̃P = hK(Λ)+µ f̃ (Λ, λ̃, z̃) ,

with the average over λ̃ of f̃ av given by

(2.10) f̃ av(Λ, z̃) =C0(Λ)+
n∑

i=1
σi

η̃2
i + ξ̃

2
i

2
+

n∑
i=1

ςi
p̃2

i + q̃2
i

2
+O(|z̃|4), z̃ = (η̃, ξ̃, p̃, q̃).

The 2n real vector Ω := (σ,ς) = (σ1, · · · ,σn ,ς1, · · · ,ςn) is formed by the eigen-
values of the matrices Qh and Qv in (2.6) and are called the first-order Birkhoff
invariants.

It turns out that such invariants satisfy identically the following two secular
resonances

n∑
i=1

(σi +ςi ) = 0 , ςn = 0 .

Such resonances strongly violate the usual nondegeneracy assumptions that
are needed for the direct construction of Birkhoff normal forms.

The first resonance, discovered by M. Herman, is still quite mysterious (see,
however, [1]), while the second resonance is related to the existence of two non-
commuting integrals, given by the horizontal components C1 and C2 of the to-
tal angular momentum C :=∑n

i=1 x(i ) × y (i ) of the system (compare [2]).
Actually, the effect of rotation invariance is deeper: the vanishing of the ei-

genvalue ςn is just “the first order” of a “rotational” proper degeneracy, as ex-
plained in the following theorem, which will be proved in § 4. Let w := (u, v) =

4Q ·u2 denotes the 2-indices contraction
∑

i , j Qi j ui u j (Qi j , ui denoting the entries of Q,

u).
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(u1, · · · ,u2n , v1, · · · , v2n), w̄ := (u1, · · · ,u2n−1, v1, · · · , v2n−1) and

(2.11) G(Λ, w̄) :=
n∑

i=1
Λi − 1

2

2n−1∑
i=1

(u2
i + v2

i ) .

THEOREM 2.1. For any s ∈N, there exists ε > 0, an open set A ⊆ {a1 < ·· · < an}
such that, if

M 6n
B :=A ×Tn ×B 4n−2

ε ×B 2
2
p

G
,

one can construct a symplectic map (“Birkhoff transformation”),

(2.12) ΦB : (Λ, l , w) ∈M 6n
B → (Λ, λ̃, z̃) ∈ M̃ 6n

P :=ΦB(M 6n
B )

with the following properties. The pullback of the Hamiltonian (2.9) takes the
form

(2.13) HB(Λ, l , w) := H̃P ◦ΦB = hK(Λ)+µ fB(Λ, l , w)

where the average f av
B (Λ, w) := 1

(2π)n

∫
Tn

fB dl is in Birkhoff normal form of order

s:

(2.14) f av
B (Λ, w) =C0 +Ω · r +Ps(r )+O(|w |2s+2) w := (u, v) ri := u2

i + v2
i

2
,

Ps being homogeneous polynomial in r of order s, parameterized by Λ. Such
normal form is unique up to symplectic transformations Φ which leave the Λ’s
fixed and with the z̃-projection independent of l and close to the identity in w,
i.e.,

(2.15) Πz̃Φ= w +O(|w |2) .

Furthermore, the normal form (2.13)–(2.14) is “infinitely degenerate”, in the sense
that HB does not depend on (u2n , v2n). In particular, there exists a unique poly-
nomial P̄s : R2n−1 →R (parameterized by Λ) such that

(2.16) Ps(r ) = P̄s(r̄ ) where r̄ := (r1, · · · ,r2n−1) .

REMARK 2.2.

(i) Note that the w-projection of M 6n
B corresponds to a neighborhood of w =

0, which is small only in the 4n − 2 components of w , while it is large
(maximal) in the remaining 2 components (compare Appendix B for the
natural radius 2

p
G in the variables (u2n , q2n)). Indeed, to construct the

normal form, by rotation invariance, it is not necessary to assume that
all inclinations are small, but one can take the mutual inclinations to be
small. This corresponds to consider 2n − 1 secular degrees of freedom
(roughly, corresponding to n couples of eccentricities–perihelia and n −
1 couples of inclinations–nodes) instead of 2n. The overall inclination–
node of the system (corresponding to the remaining 2 secular variables)
is allowed to vary globally.
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(ii) Theorem 2.1 depends strongly on the rotational invariance of the Hamil-
tonian (2.1), that is, on the fact that such Hamiltonian commutes with the
three components of the angular momentum C. To exploit explicitly such
invariance, we shall use a set of symplectic variables (“RPS variables”), in-
troduced in [6] (in order to describe the symplectic structure of the plan-
etary N-body problem and to check KAM nondegeneracies).

(iii) The RPS variables are obtained as a symplectic regularization of a set of
action-angle variables, introduced by Deprit in 1983 ([8, 5]), which gener-
alize to an arbitrary number n of planets the classical Jacobi’s reduction
of the nodes (n = 2). The remarkable property of the Deprit’s variables is
that there appear a conjugate couple (C3 and ζ below) plus an action vari-
able G which are integrals. Thus, the conjugate integrals are also cyclic
and are responsible for the proper degeneracy of the planetary Hamilton-
ian. Furthermore, the RPS variables have a cyclic couple ((pn , qn) below),
which foliates the phase space into symplectic leaves (the sets M 6n−2

(p?n ,q?n )
in

(3.13) below), on which the planetary Hamiltonian keeps the same form.
So, the construction of the “non degenerate part” of the normal form can
be made up to any order (and is the same) on each leaf [6]. In particular,
the even order of the remainder in (2.14) is due to invariance by rotations
around the C-axis of the system. Finally, we prove that such normal form
can be uniquely lifted to the degenerate normal form (2.14)–(2.16) on the
phase space M 6n

P in (2.7).

The proof is based on the remarkable link between RPS and Poincaré vari-
ables, described in the following section (see Theorem 3.2).

3. POINCARÉ AND RPS VARIABLES

In this section we first recall the definitions of the Poincaré and RPS vari-
ables5 and then discuss how they are related. Recall that the Poincaré variables
have been introduced to regularize around zero eccentricities and inclinations
the Delaunay action-angle variables. Analogously, the RPS variables have been
introduced to regularize around zero eccentricities and inclinations the Deprit
action-angle variables.

• Fix 2n positive “mass parameters6” Mi , m̄i and consider the two-body
Hamiltonians hi (y (i ), x(i )) := h(i )

plt as in (2.3). Assume that hi (y (i ), x(i )) < 0

so that the Hamiltonian flow φt
hi

(y (i ), x(i )) evolves on a Keplerian ellipse
Ei and assume that the eccentricity ei ∈ (0,1). Let ai , Pi denote, respec-
tively, the semi major axis and the perihelion of Ei . Let C(i ) denote the i th

angular momentum C(i ) = x(i ) × y (i ).
– To define Delaunay variables, one needs the “Delaunay nodes”

(3.1) ν̄i = k(3) ×C(i ) 1 ≤ i ≤ n ,

5For full details, see [10], and references therein, and [6].
6The RPS variables will depend upon these mass parameters, which, in the planetary case,

will obviously coincide with (2.2).
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where (k(1),k(2),k(3)) is the standard orthonormal basis in R3.
– To define Deprit variables, consider the “partial angular momenta”

(3.2) S(i ) =
i∑

j=1
C( j ) , S(n) =

n∑
j=1

C( j ) =: C ;

(note that C is the total angular momentum of the system) and define
the “Deprit nodes”

(3.3)


νi+1 = S(i+1) ×C(i+1) , 1 ≤ i ≤ n −1
ν1 = ν2

νn+1 = k(3) ×C =: ν̄ .

For u, v ∈ R3 lying in the plane orthogonal to a vector w , let αw (u, v)
denote the positively oriented angle (mod 2π) between u and v (orienta-
tion follows the “right hand rule”).

• The classical Delaunay action-angle variables (Λ,Γ,Θ,`,g,θ) are defined
as

(3.4)

{
Λi = Mi

p
m̄i ai

`i = mean anomaly of x(i ) on Ei{
Γi = |C(i )| =Λi

√
1−e2

i

gi =αC(i ) (ν̄i ,Pi ){
Θi = C(i ) ·k(3)

θi =αk(3) (k(1), ν̄i )

• The Deprit action-angle variables (Λ,Γ,Ψ,`,γ,ψ) are defined as follows.
The variables Λ, Γ and ` are in common with the Delaunay variables (3.4),
while

(3.5)

γi =αC(i ) (νi ,Pi ) Ψi =
{ |S(i+1)|

C3 = C ·k(3)
1 ≤ i ≤ n −1
i = n

ψi =
{
αS(i+1) (νi+2,νi+1)
ζ=αk(3) (k(1), ν̄)

1 ≤ i ≤ n −1
i = n.

Define also G = |C| = |S(n)|.
Note that:

• Delaunay’s variables are defined on an open set of full measure P 6n
Del?

of
the Cartesian phase space P 6n =R3n ×R3n∗ , namely, on the set where ei ∈
(0,1) and the nodes ν̄i in (3.1) are well defined.

• Deprit’s variables are defined on an open set of full measure P 6n
Dep?

of P 6n

where ei ∈ (0,1) and the nodes νi in (3.3) are well defined.
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• On P 6n
Del?

and P 6n
Dep?

, the “Delaunay inclinations” ii and the “Deprit incli-
nations” ιi , defined through the relations

cosii = C(i ) ·k(3)

|C(i )| , cos ιi =


C(i+1) ·S(i+1)

|C(i+1)||S(i+1)| 1 ≤ i ≤ n −1

C ·k(3)

|C| i = n

are well defined and we choose the branch of cos−1 so that ii , ιi ∈ (0,π).

Finally:

• The Poincaré variables are given by (Λ,λ,z) = (Λ,λ,η,ξ,p,q), with the Λ’s
as in (3.4) and

(3.6)

λi = `i +gi +θi{
ηi =

p
2(Λi −Γi ) cos(θi +gi )

ξi =−p2(Λi −Γi ) sin(θi +gi ){
pi =

p
2(Γi −Θi ) cosθi

qi =−p2(Γi −Θi ) sinθi

• The RPS variables are given by (Λ,λ, z) = (Λ,λ,η,ξ, p, q) with (again) the
Λ’s as in (3.4) and

(3.7)

λi = `i +γi +ψn
i−1{

ηi =
p

2(Λi −Γi ) cos
(
γi +ψn

i−1

)
ξi =−p2(Λi −Γi ) sin

(
γi +ψn

i−1

){
pi =

√
2(Γi+1 +Ψi−1 −Ψi ) cosψn

i

qi =−
√

2(Γi+1 +Ψi−1 −Ψi ) sinψn
i

where

(3.8) Ψ0 = Γ1 , Γn+1 = 0 , ψ0 = 0 , ψn
i = ∑

i≤ j≤n
ψ j .

REMARK 3.1. From the definitions (3.7)–(3.8) it follows that the variables

(3.9)

{
pn =p

2(Ψn−1 −Ψn)cosψn =p
2(G −C3)cosζ

qn =−p2(Ψn−1 −Ψn)sinψn =−p2(G −C3)sinζ

are defined only in terms of the integral C. Thus, they are integrals (hence,
cyclic) in Hamiltonian systems which commute with the three components of
the angular momentum C (or, equivalently, in systems which are invariant un-
der rotations).

Let φP and φRPS denote the maps

(3.10) φP : (y, x) → (Λ,λ,z) , φRPS : (y, x) → (Λ,λ, z) .

The main point of this procedure is that:

JOURNAL OF MODERN DYNAMICS VOLUME 5, NO. 4 (2011), 623–664
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• The map φP can be extended to an analytic symplectic diffeomorphism on
the set P 6n

Del which is defined as P 6n
Del?

, but with ei and ii allowed to be
zero.

• The map φRPS can be extended to an analytic symplectic diffeomorphism
on the set P 6n

Dep which is defined as P 6n
Dep?

, but with ei and ιi allowed to be
zero.

The image sets M 6n
max,P := φP(P 6n

Del) and M 6n
max,RPS := φRPS(P 6n

Dep) are defined by
elementary inequalities following from the definitions (3.6) and (3.7) (details in
Appendix B). Note in particular that

• ei = 0 corresponds to the Poincaré coordinates ηi = 0 = ξi and the RPS

coordinates ηi = 0 = ξi ;
• ii = 0 corresponds to the Poincaré coordinates pi = 0 = qi ;
• ιi = 0 corresponds to the the RPS coordinates pi = 0 = qi . In particular

pn = 0 = qn corresponds to the angular momentum C being parallel to
the k(3)-axis.

• Let z̄ denote the set of variables

(3.11) z̄ := (η,ξ, p̄, q̄) := (
(η1, . . . ,ηn), (ξ1, . . . ,ξn), (p1, . . . , pn−1), (q1, . . . , qn−1)

)
.

(roughly, z̄ are related to eccentricities–perihelia, and mutual inclinations–
nodes of the instantaneous ellipses Ei ). Then M 6n

max,RPS can be written as

(3.12) M 6n
max,RPS :=φRPS(P 6n

Dep) = {(Λ,λ, z̄) ∈M 6n−2
max , p2

n +q2
n < 4G(Λ, z̄)}

where G(Λ, z̄) is just the length of the total angular momentum expressed
in RPS variables as given in (2.11) and M 6n−2

max is a given subset of Rn+×Tn×
R4n−2 (compare the end of Appendix B).

• We have already observed that for rotation-invariant systems the variables
(pn , qn) are cyclic. In this case, the phase space M 6n

max,RPS is foliated into
symplectic leaves

(3.13) M 6n−2
(p?n ,q?n )

:=φRPS(P 6n
Dep) = {(Λ,λ, z) ∈M 6n

max,RPS : pn = p?n , qn = q?n } .

In the next section, for the application to the planetary problem, we shall
substitute the set M 6n−2

max in the definition (3.12) of M 6n
max,RPS with a smaller

set M 6n−2: compare (4.2) below.

Consider the common domain of the maps φP and φRPS in (3.10), i.e., the set
P 6n

Del ∩P 6n
Dep. In particular, on such set, 0 ≤ ei < 1, 0 ≤ ii < π, 0 ≤ ιi < π. On the

φRPS-image of such domain consider the symplectic map

(3.14) φRPS
P : (Λ,λ, z) → (Λ,λ,z) :=φP ◦φ−1

RPS

which maps the RPS variables onto the Poincaré variables. Such a map has a
particularly simple structure:

THEOREM 3.2. The symplectic map φRPS
P in (3.14) has the form

(3.15) λ=λ+ϕ(Λ, z) z =Z (Λ, z)
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where ϕ(Λ,0) = 0 and, for any fixed Λ, the map Z (Λ, ·) is 1:1, symplectic7 and its
projections satisfy, for a suitable V = V (Λ) ∈ SO(n), with O3 = O(|z|3),

(3.16) ΠηZ = η+O3 , ΠξZ = ξ+O3 , ΠpZ = V p +O3 , ΠqZ = V q +O3 .

To prove Theorem 3.2, we need some information on the analytical expres-
sions of the maps φP and φRPS.

• The analytical expression of the Cartesian coordinates y (i ) and x(i ) in terms
of the Poincaré variables (3.6) is classical:

(3.17) x(i ) =R(i )
P x(i )

pl , y (i ) =R(i )
P y (i )

pl

where x(i )
pl , y (i )

pl is the planar Poincaré map and R(i )
P is the Poincaré rota-

tion matrix. Explicitly,
– The planar Poincaré map is given by8

x(i )
pl = (

x(i )
1 ,x(i )

2 ,0
)

, y (i )
pl = (

y(i )
1 ,y(i )

2 ,0
)=βi ∂λi x(i )

pl

where

x(i )
1 := 1

m̄i

(
Λi

Mi

)2 (
cosui − ξi

2Λi

(
ηi sinui +ξi cosui

)
− ηip

Λi

√
1− ηi

2 +ξi
2

4Λi

)

x(i )
2 := 1

m̄i

(
Λi

Mi

)2 (
sinui − ηi

2Λi

(
ηi sinui +ξi cosui

)
+ ξip

Λi

√
1− ηi

2 +ξi
2

4Λi

)

βi := m̄2
i M 4

i

Λ3
i

and ui = ui (Λi ,λi ,ηi ,ξi ) = λi +O(|(ηi ,ξi )|) is the unique solution of
the (regularized) Kepler equation

ui − 1p
Λi

√
1− ηi

2 +ξi
2

4Λi

(
ηi sinui +ξi cosui

)=λi ;

– The Poincaré rotation matrix is given by

R(i )
P =

1−q2
i ci −pi qi ci −qi si

−pi qi ci 1−p2
i ci −pi si

qi si pi si 1− (p2
i +q2

i )ci


where ci := 1

2Λi−η2
i −ξ2

i
and si :=

√
ci (2− (p2

i +q2
i )ci ).

7I.e., it preserves the two-form dη∧dξ+d p ∧d q .
8Compare, e.g., [3].

JOURNAL OF MODERN DYNAMICS VOLUME 5, NO. 4 (2011), 623–664



634 LUIGI CHIERCHIA AND GABRIELLA PINZARI

• The formulae of the Cartesian variables in terms of the RPS variables, dif-
fer from the formulae of the Poincaré map (3.17) just for the rotation ma-
trix. Namely, one has

x(i ) =R(i )
RPS x(i )

pl , y (i ) =R(i )
RPS y (i )

pl

where x(i )
pl , y (i )

pl is the planar Poincaré map defined above. The expression

of the RPS rotation matrices R(i )
RPS is a product of matrices

(3.18) R(i )
RPS =R∗

nR∗
n−1 · · ·R∗

i Ri

where Ri , R∗
i are 3×3 unitary matrices (R1 ≡ id) given by

R∗
i =

1−q2
i c

∗
i −pi qi c

∗
i −qis

∗
i

−pi qi c
∗
i 1−p2

i c
∗
i −pis

∗
i

qis
∗
i pis

∗
i 1− (p2

i +q2
i )c∗i

 , 1 ≤ i ≤ n

Ri =
 1−q2

i−1ci −pi−1qi−1ci −qi−1si

−pi−1qi−1ci 1−p2
i−1ci −pi−1si

qi−1si pi−1si 1− (p2
i−1 +q2

i−1)ci

 , 2 ≤ i ≤ n

where ci , si , c∗j , s∗j are analytic functions of
η2

j+ξ2
j

2 and
p2

j +q2
j

2 ’s, for 2 ≤ i ≤ n,

1 ≤ j ≤ n even in z, with Ri+1, R∗
j independent of (pn , qn), for 1 ≤ j ≤ n−1

(for the analytic expression, see [6, Appendix A.2]). Note that the only
matrix in (3.18) depending on (pn , qn) is R∗

n .

Extending results proven in [6], we now show that φRPS
P in (3.14) “preserves

rotations and reflections” (Lemma 3.4 below).
Consider the transformations

(3.19)

R1↔2

(
Λ, λ, z

)
=

(
Λ,

π

2
−λ, S1↔2 z

)
;

R−
3

(
Λ, λ, z

)
=

(
Λ, λ, S −

34z
)

Rg

(
Λ, λ, z

)
=

(
Λ, λ+ g , Sg z

)
where, denoting the imaginary unit by i,

(3.20)


S1↔2 (η,ξ,p,q) := (−ξ,−η,q,p)

S −
34(η,ξ,p,q) := (η,ξ,−p,−q)

Sg :
(
η j + iξ j ,η j + iξ j

)
→

(
e−ig (η j + iξ j ) , e−ig (p j + iq j )

)
.

Such transformations correspond, in Cartesian coordinates, to, respectively, re-
flection with respect to the plane x1 = x2, the plane x3 = 0 and a positive rota-
tion of g around the k(3)-axis:

(3.21)

R1↔2 : x(i ) → (
x(i )

2 , x(i )
1 , x(i )

3

)
, y (i ) → (− y (i )

2 , −y (i )
1 , −y (i )

3

)
R−

3 : x(i ) → (
x(i )

1 , x(i )
2 , −x(i )

3

)
, y (i ) → (

y (i )
1 , y (i )

2 , −y (i )
3

)
Rg : x(i ) → R3(g ) x(i ) , y (i ) → R3(g ) y (i )
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where R3(g ) denotes the matrix

(3.22) R3(g ) :=
cos g −sin g 0

sin g cos g 0
0 0 1

 , g ∈T .

For future use, consider also the following transformations, which are ob-
tained obtained by suitably combining R1↔2 and Rg :

(3.23)

 R−
1

(
Λ, λ, z

)
:=R− π

4
R1↔2R π

4
=

(
Λ, π−λ, S −

14z
)

R−
2

(
Λ, λ, z

)
:=R π

4
R1↔2R− π

4
=

(
Λ, −λ, S −

23z
)

where

(3.24) S −
14(η,ξ,p,q) := (−η,ξ,p,−q) , S −

23(η,ξ,p,q) := (η,−ξ,−p,q) .

Note in particular:

REMARK 3.3 (D’Alembert rules). Being Hplt-invariant under rotations around
k(3) and under reflections with respect to the coordinate planes, the averaged
perturbation f av

P does not change under the transformations z →S z, where S

is as in (3.20) or in (3.24).

In particular, by D’Alembert rules, the expansion (2.6) follows.

LEMMA 3.4. The map φRPS
P in (3.14) satisfies φRPS

P R =RφRPS
P , for any R =R1↔2 ,

R−
1 , R−

2 , R−
3 , Rg as in (3.19)–(3.24).

Proof. It is enough to prove Lemma 3.4 for the transformations in (3.19) and
(3.20). But this follows from the fact that both in Poincaré variables and in RPS

variables the transformations in (3.21) have the form in (3.19)–(3.20).

Proof of Theorem 3.2. For the proof of (3.15) (since φRPS
P is a regular map), we

can restrict to the open dense set where none of the eccentricities ei or of the
nodes νi+1 or ν̄i vanishes. In such set the angles γi , gi , θi and ψi are well
defined. By the definitions of λi in (3.6) and of λi in (3.7), one has

λi −λi =
(
`i +gi +θi

)
−

(
`i +γi +ψn

i−1

)
= (gi −γi )+θi −ψn

i−1 .

The shifts gi −γi = αC(i ) (ν̄i ,Pi )−αC(i ) (νi ,Pi ) = αC(i ) (ν̄i ,νi ) (compare their defi-
nitions in (3.4) and (3.5)), as well as the angles θi and ψ j depend only on the
angular momenta C(1), · · · , C(n); hence, they do not depend upon λ.

With similar arguments one proves the second equation in (3.15).
Injectivity of Z (Λ, ·) follows from the definitions. That, for any fixedΛ, Z (Λ, ·)

is symplectic, is a general property of any map of this form which is the pro-
jection over z of a symplectic transformation (Λ,λ,z) → (Λ,λ, z) which leaves Λ
unchanged.

Note now that φRPS
P preserves the quantities

|z|2 = |z|2 = 2(|Λ|1 −C3) ,
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and the quantities

(3.25) η2
i +ξ2

i = η2
i +ξ2

i = 2(Λi −Γi )

Therefore, it also preserves

(3.26) |(p,q)|2 = |(p, q)|2 .

From the previous equalities one has that φRPS
P sends injectively (ηi ,ξi ) = 0 to

(ηi ,ξi ) = 0 and (p, q) = 0 to (p,q) = 0.
From the analytical expressions of φP and φRPS it follows that, when (p, q) =

0, the Poincaré variables (η,ξ) and λ and the Deprit’s (η,ξ) and λ respectively
coincide. Therefore, from (3.15) and (3.25), we have ϕ(Λ,0) = 0 and the first
two equations in (3.16) follow. The fact that the remainder is O(|z|3) is be-
cause Z (Λ, ·) is odd in z, as we shall now check. In fact, using Lemma 3.4 with
R = R−

1 or R = R−
2 , one finds that the (η,q)-projection of Z (Λ, ·) is odd in

(η, q), even in (ξ, p); the (ξ,p)-projection of Z is odd in (ξ, p), even in (η, q). In
particular, Z (Λ, ·) is odd in z.

Equation (3.26) and the fact that Z is odd imply that (p,q) =R(p, q)+O(|z|3),
with R ∈ SO(2n). Since p is odd in (ξ, p) and q is odd in (η, q), one has that R is
block diagonal: R = diag[Vp,Vq]. The fact that Vp = Vq := V follows from Lemma
3.4, taking R =R1↔2 .

4. PROOF OF THE NORMAL FORM THEOREM

For the proof of Theorem 2.1, we need some results from [6], to which we
refer for details.

Let HRPS denote the planetary Hamiltonian expressed in RPS variables:

(4.1) HRPS(Λ,λ, z̄) :=Hplt ◦φ−1
RPS = hK(Λ)+µ fRPS(Λ,λ, z̄)

where Hplt is as in (2.1) and φRPS as in (3.10).
Note that, as Hplt is rotation-invariant, the variables pn , qn in (3.9) are cyclic

for HRPS. Hence, the perturbation function fRPS depends only on the remaining
variables (Λ,λ, z̄), where z̄ is as in (3.11).

To avoid collisions, consider the (“partially reduced”) variables in a subset of
the maximal set M 6n−2

max in (3.12) of the form

(4.2) (Λ,λ, z̄) ∈M 6n−2 :=A ×Tn ×B 4n−2

where A is a set of well separated semi major axes

(4.3) A := {
Λ : a j < a j < a j for 1 ≤ j ≤ n

}
where a1, · · · , an , a1, · · · , an , are positive numbers satisfying a j < a j < a j+1 for

any 1 ≤ j ≤ n, an+1 :=∞; B 4n−2 is a small (4n −2)-dimensional ball around the
“secular origin” z̄ = 0.

As in the Poincaré setting, the Hamiltonian HRPS enjoys D’Alembert rules
(namely, the symmetries in (3.20) and in (3.24)). Indeed, since the map φRPS

P
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in (3.14) commutes with any transformations R as in (3.19)–(3.24) and HP is
R-invariant, one has that HRPS is R-invariant:

HRPS ◦R =HP ◦φRPS
P ◦R =HP ◦R ◦φRPS

P =HP ◦φRPS
P =HRPS .

This implies that the averaged perturbation f av
RPS also enjoys D’Alembert rules

and thus has an expansion analog to (2.6), but independent of (pn , qn):

(4.4) f av
RPS(Λ, z̄) =C0(Λ)+Qh(Λ) · η

2 +ξ2

2
+ Q̄v(Λ) · p̄2 + q̄2

2
+O(|z̄|4)

with Qh of order n and Q̄v of order (n −1). Note that the matrix Qh in (4.4) is
the same as in (2.6), since, when p = (p̄, pn) = 0 and q = (q̄, qn) = 0, Poincaré
and RPS variables coincide.

The first step is to construct a normal form defined on a suitable lower-di-
mensional domain

(4.5) (Λ, λ̆, z̆) ∈ M̆ 6n−2 :=A ×Tn × B̆ 4n−2

(where B̆ 4n−2 is an open ball in R4n−2 around z̆ = 0).
The existence of such normal form for the Hamiltonian (4.4) at any order s

defined over a set of the form (4.5) is a corollary of [6, §7]. Indeed (by [6]), one
can first conjugate HRPS = hK +µ fRPS to a Hamiltonian

(4.6) H̃RPS =HRPS ◦ φ̃= hK +µ f̃RPS ,

so that the average f̃ av
RPS has the quadratic part into diagonal form:

(4.7) f̃ av
RPS(Λ, z̃) =C0(Λ)+

n∑
i=1

σi
η̃2

i + ξ̃
2
i

2
+

n−1∑
i=1

ς̄i
p̃2

i + q̃2
i

2
+O(|z̃|4)

where z̃ = (η̃, ξ̃, p̃, q̃) and σi , ς̄i denote9 the eigenvalues of the matrices Qh and
Q̄v in (4.4). Here, φ̃ denotes the “symplectic diagonalization” which lets Λ→Λ

and

(4.8) λ= λ̃+ ϕ̃(Λ, z̃) , η= Uh(Λ)η̃ , ξ= Uh(Λ)ξ̃ , p̄ = Ūv(Λ)p̃ , q̄ = Ūv(Λ)q̃ ,

where Uh ∈ SO(n) and Ūv ∈ SO(n−1) put Qh and Q̄v into diagonal form and will
be chosen later. Note that φ̃ leaves the set M 6n−2 in (4.2) unchanged.

Next, we can use Birkhoff theory for rotation-invariant Hamiltonians, which
allows to construct Birkhoff normal form for rotation-invariant Hamiltonian for
which there are no resonances (up to a certain prefixed order) for those Taylor
indices k such that

∑
ki = 0 (rather than k 6= 0 as in standard Birkhoff theory;

compare Appendix A below). Indeed, as shown in [6, Proposition 7.2], the first-
order Birkhoff invariants Ω̄= (σ, ς̄) ∈Rn ×Rn−1 do not satisfy any resonance (up
to any prefixed order s) over a (s-dependent) set A chosen as in (4.3), other

9In [6], the matrix Qh is denoted by Qh; the (n − 1) components of ς̄ are denoted by ςi .
Beware that here we denote by ςi also the n components of ς in (2.10). Actually, it will turn out
that ςi = ς̄i (for i ≤ n −1): compare (i) in Remark 4.1 below.
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than
∑n

i=1σi +∑n−1
i=1 ς̄i = 0 and ς̄n = 0. Thus, one can find a Birkhoff normaliza-

tion φ̆ defined on the set (4.5), which conjugates H̃RPS = hK +µ f̃RPS to

(4.9) H̆RPS := H̃RPS ◦ φ̆= hK +µ f̆RPS ,

where f̆ av
RPS is in the form (2.14), with r of dimension n + (n − 1) = 2n − 1 and

Ω̄= (σ, ς̄) replacing Ω and P̄s as in (2.16).
It is a remarkable fact, proved in [6], that both the transformations φ̃ and φ̆

above leave G(Λ, z̄) in (2.11) unchanged

(4.10) G ◦ φ̃=G ◦ φ̆=G ,

(i.e., they commute with Rg ). Therefore, if we denote

M 6n :={(Λ,λ, (z̄, pn , qn)) : (Λ,λ, z̄) ∈M 6n−2 , p2
n +q2

n < 4G(Λ, z̄)}

M 6n
B :={(Λ, λ̆, (z̆, pn , qn)) : (Λ, λ̆, z̆) ∈ M̆ 6n−2 , p2

n +q2
n < 4G(Λ, z̆)}

where M 6n−2 and M̆ 6n−2 are as in (4.2) and (4.5), respectively, φ̃ and φ̆ can be
lifted to symplectic transformations

(4.11) Φ̃RPS : M 6n →M 6n , Φ̆RPS : M 6n
B →M 6n

through the identity map on (pn , qn). Moreover:

(i) since HRPS is (pn , qn)-independent,

(4.12) HRPS ◦ Φ̃RPS = H̃RPS , H̃RPS ◦ Φ̆RPS = H̆RPS

where H̃RPS and H̆RPS are as in (4.6) and in (4.9), respectively;
(ii) Φ̃RPS is given by (4.8), with (p̄, pn), (q̄, qn), (p̃, pn), (q̃, qn), Uv := diag[Ūv,1]

replacing p̄, q̄ , p̃, q̃ , Ūv, respectively;
(iii) Φ̆RPS is of the form (2.15) (but with w and z̃ replaced by (z̆, pn , qn) and

(z̃, pn , qn), respectively), since a similar property holds for φ̆.

Proof of Theorem 2.1. We prove only existence of the normal form; uniqueness
follows from the same argument of standard Birkhoff normal form theory: com-
pare [12].

Let H̃P as in (2.9), where Φ̃P is as in (2.7)–(2.8), for suitable fixed matrices
ρh , ρv diagonalizing Qh , Qv in (2.6). If V is as in (3.16), Eqs. (2.6), (4.4) and
Theorem 3.2 imply that

(4.13) V tQvV = Qv := diag[Q̄v,0] .

Thus, Qv is diagonalized by the matrix V tρv . We can therefore choose Uh and
Ūv in (4.8) taking

(4.14) Uh := ρh , Uv := diag[Ūv,1] = V tρv .

Analogously, let Φ̃RPS, Φ̆RPS as in (4.11), φRPS
P as in (3.14). Consider the transfor-

mation

(4.15) ΦB :=Φ′
B ◦ Φ̆RPS

where

(4.16) Φ′
B := Φ̃−1

P ◦φRPS
P ◦ Φ̃RPS .
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By (4.12), ΦB transforms H̃P into

HB := H̃P ◦ΦB

=HP ◦ Φ̃P ◦ΦB

=HP ◦ Φ̃P ◦ Φ̃−1
P ◦φRPS

P ◦ Φ̃RPS ◦ Φ̆RPS

=HP ◦φRPS
P ◦ Φ̃RPS ◦ Φ̆RPS

=HRPS ◦ Φ̃RPS ◦ Φ̆RPS

= H̃RPS ◦ Φ̆RPS

= H̆RPS = hK +µ f̆RPS := hK +µ fB

where f av
B = f̆ av

RPS has just the claimed form.
To conclude, we have to check (2.15). It is sufficient to prove such equality

(with w replaced by (z̃, pn , qn)) for the transformation Φ′
B in (4.15) (by item (iii)

above). But this is an immediate consequence of (2.8), (3.16), (4.14), (4.16) and
item (ii) above.

REMARK 4.1. As a byproduct of the previous proof, we find that the matrices
Qv in (2.6) and Qv = diag[Q̄v,0] in (4.13) have the same eigenvalues, so the
invariants ςi and ς̄i in (2.6) and (4.7) coincide (for i ≤ n −1).

5. FURTHER REDUCTIONS AND BIRKHOFF NORMAL FORMS

In this section we discuss complete symplectic reduction by rotations, to-
gether with the respective Birkhoff normal forms, both in the spatial and planar
cases (indeed, as in the three-body case, the planar case cannot be simply de-
duced from the spatial one in view of singularities). The Birkhoff normal form
constructed in the spatial case (§ 5.1) is at the basis of the dynamical applica-
tion given in § 6.

5.1. The totally reduced spatial case. Proposition 5.1 below is a generalization
at arbitrary order s of [6, Proposition 10.1]; the proof is reported, for complete-
ness, in Appendix C.

Let us consider the system HB = hK +µ fB given by Theorem 2.1. Since the
couple (pn , qn) = (u2n , v2n) does not appear into HB, we shall regard HB as a
function of (6n −2) variables (Λ, l , w̄), where

w̄ = (ū, v̄) := (u1, · · · ,u2n−1, v1, · · · , v2n−1)

is taken in the set M 6n−2
B :=A ×Tn ×B 4n−2

ε . Without changing names to func-
tions, we have a Hamiltonian of the form (compare (2.13)–(2.14))

(5.1)

{
HB(Λ, l , w̄) = hK +µ fB(Λ, l , w̄) with

f av
B (Λ, w̄) =C0 + Ω̄ · r̄ + 1

2 τ̄ · r̄ 2 + P̄3 +·· ·+ P̄ s +P (Λ, w̄)

with P̄ j homogeneous polynomials of degree j in r̄i := ū2
i +v̄2

i
2 and P (Λ, w̄) =

O(|w̄ |2s+2). We recall that HB has been constructed, starting from the Hamil-
tonian HRPS in (4.1), as HB =HRPS ◦ φ̃◦ φ̆ where φ̃, φ̆ are given, respectively, in
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(4.6) and (4.9). Recall also that, since φ̃ and φ̆ satisfy (4.10), the function G in
(2.11) is an integral for HB.

Incidentally, note that, since φ̃ and φ̆ leave Λ’s unvaried, their respective z̄,
z̃-projections actually preserve the Euclidean length of z̃, z̆:

(5.2) |Πz̆ ◦ φ̃(Λ,λ, z̄)| = |z̄| , |Πz̃ ◦ φ̆(Λ,λ, z̆)| = |z̆| .

The Hamiltonian (5.1) is thus preserved under the G-flow, i.e., under the trans-
formations, which we still denote by Rg , defined as in (3.19)–(3.20), with (Λ,λ,z)
replaced by (Λ, l , w̄). It is therefore natural to introduce the symplectic trans-
formation

φ̂ :

{
(Λ,G , l̂ , ĝ , ŵ) → (Λ, l , w̄)

ŵ = (û, v̂) , û = (û1, · · · , û2n−2) , v̂ = (v̂1, · · · , v̂2n−2)

which acts as the identity on Λ and, on the other variables, is defined by the
following formulae

(5.3) φ̂ : l j = l̂ j + ĝ ; u j + i v j =


e−i ĝ (û j + i v̂ j ) , j 6= 2n −1

e−i ĝ
√
%2 −|ŵ |2 , j = 2n −1

where %= %(Λ,G) is defined by

(5.4) %2 := 2
( ∑

1≤ j≤n
Λ j −G

)
.

The map φ̂ is well defined for (G , ĝ ,Λ, l̂ , ŵ) ∈ R+×T×M̂ 6n−4, where M̂ 6n−4 is
the subset of (Λ, l̂ , ŵ) ∈A ×Tn ×R4(n−1) described by the following inequalities

(5.5) |ŵ | < %< ε .

As it immediately follows from (5.3), the action variable G is the integral (2.11).
Hence, its conjugate variable ĝ is cyclic for the Hamiltonian, parametrized by
G ,

(5.6) Ĥ :=HB ◦ φ̂=HRPS ◦ φ̃◦ φ̆◦ φ̂= hK +µ f̂ .

and we may regard Ĥ as a Hamiltonian of (3n −2) degrees of freedom. Note,
however, that Ĥ is no longer in normal form.

Now, let A and ε be, respectively, as in (4.3) and (5.5), and, for 0 < δ̂< δ< ε,
define the following sets10

Ǎ =Ǎ (δ̂,δ) := {Λ ∈A : δ̂< %< δ} ,(5.7)

M̌
6n−4 = M̌

6n−4
(δ̂,δ) := {

Λ ∈ Ǎ (δ̂,δ) , λ̌ ∈Tn , |w̌ | ≤ 1

4
δ̂
}

.(5.8)

PROPOSITION 5.1 (Birkhoff normal form for the fully reduced spatial planetary
system). For any integer s ≥ 2, there exists 0 < δ∗ < ε such that whenever 0 < δ̂<
δ< δ∗ one can find a real-analytic symplectic transformation

φs : (Λ, λ̌, w̌) ∈ M̌ 6n−4(δ̂,δ) → (Λ, λ̂, ŵ) ∈ M̂ 6n−4

10The number 1/4 in (5.8) is arbitrary: one could replace it by any 0 <ϑ< 1.
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such that the planetary Hamiltonian Ĥ in (5.6) (regarded as a function of (6n−
4) variables, parametrized by G) takes the form

(5.9)

{
Ȟ = Ĥ ◦φs(Λ, λ̌, w̌) = hK(Λ)+µ f̌ (Λ, λ̌, w̌) with

f̌ av = P̌s +O(|w̌ |2s+1) , P̌s := Č0 + Ω̌ · ř + 1
2 τ̌ · ř 2 + P̌3 +·· ·+ P̌ s

where w̌ = (ǔ, v̌) = (ǔ1, · · · , ǔ2n−2, v̌1, · · · , v̌2n−2) and the P̌ j ’s are homogeneous

polynomials of degree j in ři = ǔ2
i +v̌2

i
2 , with coefficients depending on Λ.

The first-order Birkhoff invariants Ω̌i of such normal form do not satisfy iden-
tically any resonance and the matrix τ̌ of the second-order Birkhoff invariants is
nonsingular. The transformation φs may be chosen to be δ2s+1-close to the iden-
tity.

5.2. The totally reduced planar case. Let us now restrict to the planar setting,
that is, when the coordinates y (i ), x(i ) in (2.1) are taken in R2 instead of R3. Also
in this case, in view of the presence of the integral

∑n
i=1 x(i )

1 y (i )
2 −x(i )

2 y (i )
1 , a (total)

symplectic reduction is available (compare, also, [9]).
In the case of the planar problem, the instantaneous ellipses Ei defined in

§ 3 become coplanar and both the Poincaré variables (Λ,λ,z) and RPS vari-
ables (Λ,λ, z) reduce to the planar Poincaré variables. Analytically, the planar
Poincaré variables can be derived from (3.6) by setting θi = 0 and disregarding
the p and q.

To avoid introducing too many symbols, we keep denoting the planar Poin-
caré variable

(Λ,λ,z) = (Λ,λ,η,ξ) ∈M 4n :=A ×Tn ×B 2n ⊆Rn
+×Tn ×R2n

where A can be taken as in (4.3) above and B 2n the (2n)-dimensional open ball
around the origin, whose radius (related to eccentricities, as in the spatial case),
is chosen so small to avoid collisions; beware that z = (η,ξ), here, is 2n-dimen-
sional. The planetary Hamiltonian in such variables is given by Hpl(Λ,λ,z) =
hKep(Λ)+µ fpl(Λ,λ,z) obtained from HP in (2.4) by putting, simply, p = 0 = q;
clearly, also the expression of the averaged perturbation, f av

pl , can be derived in
the same way from (2.5).

Since, in particular, the “horizontal” first-order Birkhoff invariants σ do not
satisfy resonances of any finite order s on11 A , the Birkhoff-normalization up
to any order can be constructed in the planar case and it coincides with the
expression of f av

B in (2.14), where one has to take

w = (u, v) =:
(
(η̆, p̆), (ξ̆, q̆)

)= (
(η̆,0), (ξ̆,0)

)
.

We recall in fact that the transformation ΦB in Theorem 2.1 sends injectively
p̆ = 0 = q̆ to p = 0 = q and hence the restriction ΦB|p̆=0=q̆ performs the desired
normalization in the planar case.

Let us denote by

(5.10) H̆pl(Λ, λ̆, z̆) = hK(Λ)+µ f̆pl(Λ, λ̆, z̆) , (Λ, λ̆, z̆) ∈ M̆ 4n
pl :=A ×Tn ×B 2n

ε̆

11Compare [10] or, equivalently, use again [6, Proposition 7.2]).
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the planar Birkhoff-normalized system, that is, the system such that the av-
eraged perturbation f̆ av(Λ, z̆) is in Birkhoff normal form: the Birkhoff normal
form of order 4 is given by

(5.11) f̆ av
pl (Λ, z̆) =C0(Λ)+ ∑

1≤i≤n
σi (Λ)r̆i + 1

2

∑
1≤i , j≤n

τ̄i j (Λ)r̆i r̆ j +O(|z̆|6)

with r̆i := η̆2
i +ξ̆2

i
2 .

The asymptotic evaluation of the first-order invariants σ and especially of
planar torsion τ̄ in (5.11) for general n ≥ 2 can be found in the paper by J. Féjoz
[10] and in the notes by M. Herman [11]. However, since the asymptotics con-
sidered in such papers is slightly different from the one considered in [6] for
the general spatial case12, we collect here the asymptotic expressions of σ and
τ̄ as they follow from [6] (compare also below for a short proof):

• The first-order Birkhoff invariants σ into (5.11) satisfy

(5.12) σ j =


− 3

4
m1m2

a1

a2
2Λ1

( a1

a2
+O(

a1

a2
)2) , j = 1

− 3m j

4Λ j a3
j

∑
1≤i< j

mi a2
i

(
1+O(a−2

j )
)

, 2 ≤ j ≤ n.

• The second-order Birkhoff invariants τ̄ into (5.11) satisfy13, for n = 2,

(5.13) τ̄= m1m2
a2

1

a3
2

( 3
4Λ2

1
− 9

4Λ1Λ2

− 9
4Λ1Λ2

− 3
Λ2

2

)
(1+O(a−5/4

2 )) ,

and14 for n ≥ 3,

(5.14) τ̄=
(
τ̃+O(δ) O(δ)

O(δ) τ̄nn +O(δ2)

)
where δ := a−3

n

12In [10, 11] the semi major axes a1 < ·· · < an are taken well spaced in the following sense: at
each step, namely, when a new planet (labeled by “1”) is added to the previous (n −1) (labeled
from 2 to n) a2, · · · , an are taken O(1) and a1 → 0. In [6] one takes a1, · · · , an−1 =O(1) and
an →∞. The reason for the different choice lies in technicalities related to the evaluation of the
“vertical torsion” (i.e., the entries of the torsion matrix in (2.14) with indices from n +1 to 2n) in
the spatial case. The asymptotics in [10] and [11] does not allow (as in [6]) to evaluate at each
step the new torsion simply picking the dominant terms, because of increasing errors (of O(1)):
compare the discussion in [11, end of p. 23]. To overcome these technicalities (and to avoid too
many computations), Herman introduces a modification of the Hamiltonian and a new fictitious
small parameter δ, also used in [10]. Note that, since Herman computes the asymptotics using
Poincaré variables, by the presence of the 0-eigenvalue ςn , he could not use the limit an →∞,
being such limit singular (not continuous) for the matrices ρv in (2.8).

13The evaluation of the planar three-body torsion (5.13) is due to Arnold. Compare [2, p.138,
Eq. (3.4.31)], noticing that in [2] the second-order Birkhoff invariants are defined as one half the
τ̄i j ’s and that a4

2 should be a7
2 . Compare also with [11, beginning of p. 21], (where a factor a3

2 at

denominator of each entry is missing).
14Compare (5.14) and (5.15) with the inductive formulae obtained in the other asymptotics

in [11, end of p. 21].
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with τ̃ of rank (n −1) and

(5.15) τ̄nn =−3
mn

Λ2
n

∑
1≤ j<n

m j
1

an

( a2
j

a2
n
+O

( a4
j

a4
n

))
.

• Eq. (5.12) implies in particular nonresonance of the σ j ’s into a domain of
the form of (4.3) (with a j , a j depending on s).

• Using (5.13)–(5.15) and Λ2
i = m2

i m0ai (1+O(µ)), one finds that, for n ≥ 2
and 0 < δ? < 1 there exist15 µ̄> 0, 0 < a1 < a1 < ·· · < an < an such that, on
the set A defined in (4.3) and for 0 < µ < µ̄, the matrix τ̄ is nonsingular:
det τ̄= d̄n(1+δn), where |δn | < δ? and

(5.16) d̄n = (−1)n−1 117

48

( 3

m0

)n−1 m2

m0mn

a3
1

a3
2a2

n

n∏
j=2

1

a2
j

.

Proof of (5.12)–(5.15). Eqs. (5.12)–(5.15) can be obtained, e.g., as a particular
case of more general formulae, proved in [6]: For Equation (5.12), for n = 2,
use [6, Eq. (7.5)], and “Herman resonance” σ1 = −ς−σ2; in the case n ≥ 3,
compare the asymptotic expression of σn after [6, Eq. (7.7)]. Equation (5.13)
corresponds16 to [6, Eq. (8.33)]. Equation (5.14) is obtained from [6, Eq. (8.45)]

picking only the entries which are relative to the horizontal variables
η̆2

i +ξ̆2
i

2 . In
particular, the matrix τ̃ of (5.14) is the horizontal part (that is, the upper left
(n − 1)× (n − 1) submatrix) of the matrix τ̂ of [6, Eq. (8.45)]. For Eq. (5.15),
note that τ̄nn is the upper left entry of the 2× 2 matrix τ̄ in [6] and use the
asymptotics for r1(a2, a1) given in [6, Eq. (8.32)].

We describe, now, briefly a (total) symplectic reduction for the planar prob-
lem and discuss the relative Birkhoff normal form. The discussion is based on
tools and arguments similar to those used in § 5.1 above for the spatial case.

Indeed, quite analogously to the spatial case, the Hamiltonian (5.10) is pre-
served under the G-flow, where now G denotes the function in (2.11) with z̄ =
(η,ξ,0,0). Therefore, as in (5.3), one introduces the symplectic transformation
φ̂pl which lets Λ→Λ and

φ̂pl : λ̆ j = λ̂ j + ĝ , (η̆ j + iξ̆ j ) =
e−iĝ (η̂ j + iξ̂ j ) , for j 6= n ,

e−iĝ
√
%2 −|ẑ|2 , for j = n ,

where %2 is as in (5.4) and ẑ has components (η̂1, · · · , η̂n−1, ξ̂1, · · · , ξ̂n−1).
Again, in order for φ̂pl to be well defined, the domain M̂ 4n

pl of (G , ĝ , Λ, λ̂, ẑ)
will be taken of the form

(5.17) (Λ,G) ∈A ×R+ , (λ̂, ĝ ) ∈Tn+1 , ẑ ∈R2n , |ẑ| < %(Λ,G) < ε∗ ≤ ε̆ ,

15µ̄ is taken small only to simplify (5.16), but a similar evaluation hold with µ̄= 1. Note that
the normal planar torsion is not sign-definite [Herman]. A similar results holds also in the spatial
case [6, Eq. (8.38)].

16In [6, Eq. (8.33)], τ̄ is denoted by τpl.
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where H̆ , ε̆ are as in (5.10). We denote by Ĥpl := H̆pl ◦ φ̂pl the planar “reduced
Hamiltonian”.

Adapting the proof of Proposition 5.1 above to the planar case, we then have:

• For any s ∈ N, one can always find a set of symplectic variables (Λ, λ̌, ž)
varying on some domain M̌ 4n−2

pl ⊆ Rn ×Tn ×R2n−2 of the form (5.7)–(5.8)

with 6n −4 replaced by 4n −2, such that, in such variables, the reduced
Hamiltonian Ĥpl is put into the form Ȟpl = hK +µ f̌pl, with the averaged

perturbation f̌ av
pl in normal form of order 2s. The first- and second-order

Birkhoff invariants are given by

(5.18)

{
σ̂i (Λ;G) =σi (Λ)−σn(Λ)+O(%2) ,

ˆ̄τi j (Λ;G) = τ̄i j (Λ)− τ̄i n(Λ)− τ̄ j n(Λ)+ τ̄nn(Λ)+O(%2) .

Using (5.12)–(5.15), one immediately sees that

• The invariants σ̂ and ˆ̄τ in (5.18) are asymptotically close (for a1, · · · , an−1 =
O(1), an →∞ and %→ 0) to the unreduced σi and τ̄i j (for i , j ≤ n −1).

Therefore, the following corollary follows at once.

COROLLARY 5.2. Fix n ≥ 2 and 0 < δ? < 1, s ≥ 4. Then there exist µ̄> 0, 0 < a1 <
a1 < ·· · < an < an such that for any µ < µ̄ and for any Λ ∈A G, where AG is the
set in (5.17), the first-order Birkhoff invariants σ̂ are nonresonant up to order s
and the matrix τ̂ is nonsingular: det τ̂= ďn(1+δn), with |δn | < δ? and

ďn =


m1m2

a2
1

a3
2

3

4Λ2
1

, n = 2 ,

d̄n−1 , n ≥ 3 ,

where d̄n is as in (5.16).

6. LONG-TIME STABILITY OF PLANETARY ACTIONS

In the 70’s N. N. Nehorošev [13] proved exponential stability of the semi ma-
jor axes in the planetary problem: during the motion, the semi major axes17

ai (t ) stay close to their initial values for exponentially long times, i.e.,

|ai (t )−ai (0)| <Cµb , ∀ |t | ≤ 1

Cµ
exp

( 1

Cµa

)
,

for suitable positive constants C , a,b, provided µ is sufficiently small and that
the initial values ai (0) are in the well separated regime (4.3). The numbers C , a
and b given by Nehorošev, were later improved in [14].

Note that, while the semi major axes stay close to their initial values, the
“secular” Poincaré variables z = (η,ξ,p,q) in (3.6) (also used by Nehorošev in
describing the motion) may, in principle, vary on a relatively large ball B 4n

r
around the origin: indeed, in [13] and [14] no information is given on possi-
ble “order one” variations of eccentricities and relative inclinations.

17Which are related to the Poincaré variables Λ as in (3.4).
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Here, we prove a complementary result, namely, that in a suitable partially18

nonresonant open set in phase space, the secular actions related to eccentrici-
ties and inclinations stay close to their initial values for arbitrarily long times
compared to the distance from the secular equilibrium. More precisely, we
have:

THEOREM 6.1. Let A be as in (4.3); let s ≥ 2, τ> n −1 and δ∗ be as in Proposi-
tion 5.1. Then there exist c? > 1 and 0 < ε? < δ∗/2 such that, for 0 < ε̂ < ε < ε?,
(c?ε̂)3 <µ< (ε̂/c?)3/2 and κ> 0 there is an open set A? ⊆A of Lebesgue measure

(6.1) measA? ≥ (1− c?

κ

p
ε̂)measA ,

such that the following holds. Let Mpn, and M ′
pn be the phase space regions

in (5.7), (5.8) given, respectively, by M̌ 6n−4(ε̂,ε) with A replaced by A? and by
M̌ 6n−4(ε̂/2,2ε) with with A replaced by A? and 1/4 replaced by 3/4. Then any
trajectory generated by Ȟ with initial datum in Mpn remains in M ′

pn and sat-

isfies19

(6.2) max
i

{|Λi (t )−Λi (0)|} < ε̂2 , max
j

{|ř j (t )− ř j (0)|} < κε̂2

for all

(6.3) |t | ≤ t := κ

c?µ ε̂2s−1 .

In particular, the action variables ř j satisfy max j {|ř j (t )− ř j (0)|} < ε̂9/4 provided
ř j (0) ≤ ε2 and Λ j (0) belong to a set of density (1− c?ε1/4).

REMARK 6.2. Stability estimates hold up exponentially long times in completely
nonresonant regions, i.e., essentially in an open neighborhood of KAM tori. Let
K ⊆Mpn denote the Kolmogorov set (i.e., the union of KAM tori) of Ȟ . Then
for initial data on the open set Kd around K , hence, of measure20

measKd ≥ measK ≥ (1−
p
ε̂)measMpn

one can replace (6.3) with |t | ≤ texp(d) := κε̂2

c?dσ′ e
1

c?dσ (for some 0 <σ< 1 <σ′).

Here is a sketch of proof. The set Kd is a high-order nonresonant set, being
equivalent to the direct product Nd ×T3n−2, where Nd is (α,K ) ∼ (d 1−σ,d−σ)
nonresonant for the frequency map (Λ, ř ) →$1(Λ, ř ) = ∂(Λ,ř )(hK(Λ)+µP̌2(Λ, ř )).
Here, hK and P̌2 are as in (5.9).

By Averaging Theory, one can find an open set Ǎ 1 ⊆Ǎ , a number 0 < c < 1
and a real-analytic symplectic transformation

Φ :
(
(Λ,r ),ϑ

) ∈Ǎ 1 ×I 2n−2
δ̂/8

×T3n−2 →Φ
(
(Λ,r ),ϑ

) ∈ M̌ 6n−4 ,

18I.e., Λ-nonresonant, but possibly resonant in the secular variables.

19Recall that w̌ = (ǔ, v̌) = (ǔ1, · · · , ǔ2n−2, v̌1, · · · , v̌2n−2) and that ř j =
ǔ2

j +v̌2
j

2 .
20See [6].
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where M̌ 6n−4 is as in (5.7)–(5.8) and Iδ is the interval Iδ = (cδ,δ) ⊆ R+, which
conjugates the Hamiltonian (5.9) (with s = 2) to a new Hamiltonian of the form

H
(
(Λ,r ),ϑ

)
:= Ȟ ◦Φ(

(Λ,r ),ϑ
)= hK(Λ)+µP̌2(Λ,r )+O

(
µ2; (Λ,r ),ϑ

)
.

Consider the frequency map (Λ, ř ) →$1(Λ, ř ) := ∂(Λ,ř )(hK +µP̌2) and, for any
0 < γ2 ≤ γ1 and τ′ > 3n − 2, consider the generalized (γ1,γ2,τ′)-Diophantine
numbers of the form21

Dγ1,γ2,τ′ := ⋂
0 6=k=(k1,k2)∈Zn×Z2n−2

{
ω ∈R3n−2 : |ω ·k| ≥


γ1

|k|τ′ if k1 6= 0

γ2

|k2|τ′ otherwise

}
.

By KAM theory22, for any ω ∈ Dγ1,γ2,τ′ lying in the $1-image of Ǎ 1 ×I 2n−2
δ̂/8

,

one can find a Lagrangian, analytic torus Tω :=φ(T3n−2;ω) ∈K , defined by an
embedding

φ(·,ω) : ϑ ∈T3n−2 →φ(ϑ;ω) = (v(ϑ;ω),ϑ+u(ϑ;ω)) ∈Ǎ 1 ×I 2n−2
δ̂/8

×T3n−2

with ϑ→ ϑ+u(ϑ;ω) a diffeomorphism of T3n−2, such that, on Tω the Hamil-
tonian flow is ϑ̇=ω. Being Tω Lagrangian, the embedding φ(·;ω) can be lifted
to a symplectic transformation (y,ϑ) → φ̄(y,ϑ;ω) defined around Tω such that
φ̄(0,ϑ;ω) = φ(ϑ;ω) which – since Tω = φ(T3n−2;ω) = φ̄(0,T3n−2;ω) is invariant
and is run with frequency ω – puts H in Kolmogorov normal form

(6.4) Kω := H ◦ φ̄(y,ϑ,ω) = c(ω)+ω · y +Q(y,ϑ;ω)

namely, with c(ω) independent of ϑ and Q(y,ϑ;ω) = O(y2). Note incidentally
that the matrix

∫
T3n−2 Qy y dϑ, being close to the block-diagonal matrix Q0 =

diag[∂2hK ◦$−1(ω), τ̌ ◦$−1(ω)], satisfies the so-called Kolmogorov condition to
be not singular, which, together with (6.4), says that the tori of K are indeed
Kolmogorov tori. From (6.4) using standard Averaging Theory (since ω is Dio-
phantine), one sees that, if |y | ≤ d = const γ2

K τ′+1 , one can conjugate Kω to

K av
ω = c(ω)+ω · y +Q̄(y ;ω)+Q̂(y,ϑ;ω) .

where Q̄ does not depend on ϑ and

|Q̂(y,ϑ)| ≤ constd 2e−ĉK = constd 2e−( c
d )1/(τ′+1)

.

This implies the claim with σ= 1/(τ′+1) and σ′ = 2.

Proof of Theorem 6.1. Let κ> 0 and ϑ ∈ (0,1). Let, also, ε, θ and µ be such that

(6.5) ε̂< ε< ε? < min{
3

64
δ∗,

3

64
δ∗} , θ ∈ (2,3] ,

(
c

64

3
ϑε̂

)θ <µ<
( 64

3 ϑε̂

c

) θ
θ−1

,

with c and δ∗ to be defined below; finally, let

(6.6) ε̂< ε< ε? , ϑε̂< ε̃< ε̂ ,
ϑε̂

ε̃
< ϑ̃< 1 , ε̌2 := ε2 + ε̂2 − ε̃2

21The set Dγ1,γ2,τ′ has been used for the first time in [2]. For γ1 = γ2 it corresponds to the

usual Diophantine set.
22Compare [4, Theorem 1.4].
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Note that, by the choice of ε? in (6.5), ε̌ verifies ε< ε̌< 2ε.
Pick two positive numbers γ̄0 and η̄, with γ̄−1

0 and η̄ so small that

(6.7) η̄≤ 1

2
,

(
1+ 2

γ̄0
+ η̄

)
ϑε̂≤ ϑ̃ε̃ ,

nc

γ̄0

(64

3
ϑε̂

)2 ≤ 1

4
(ε̂2 − ε̃2) ,

and, moreover,

(6.8)
(ϑη̄)2

4(n −1)
+ c

γ̄0

64

3
ϑ2

(
2(1+ η̄+ 1

γ̄0
)+ c

γ̄0

64

3

)
< κ .

The number c in (6.5) and (6.8) will be defined below, independently of η̄, γ̄0,
θ, κ, ε̂ and ε. Note that, because of the definition of ε̃ in (6.6), the numbers γ̄0

and η̄ depend on ϑ, ϑ̃, κ, but not upon ε̂ and, moreover, that the number γ̄0

can be chosen to be

(6.9) γ̄0 = const(ϑ)

κ
.

Now, let M̌ 6n−4
reg := A ×Tn × B 4(n−1)

64
3 ϑε̂

; let Ȟ be as in Proposition 5.1 and let

Ȟreg : M̌ 6n−4
reg → R be an analytic extension of Ȟ on M̌ 6n−4

reg , namely a real-

analytic Hamiltonian on M̌ 6n−4
reg such that

(6.10) Ȟreg = Ȟ = hK +µ f̌ on M̌ 6n−4
ϑ̃

(ε̃, ε̌) ,

where, for ϑ̃, ε̃ and ε̌ as in (6.6),
(6.11)

M̌ 6n−4
ϑ̃

(ε̃, ε̌) := {Λ ∈A , |w̌ | < ϑ̃ε̃, ε̃< %< ε̌}×Tn ⊆A ×Tn ×B 4(n−1)
ϑ̃ε̃

⊆ M̌ 6n−4
reg .

Since f̌ av is in (2s)-Birkhoff normal form (5.9) and the polynomial P̌s = Č0 +
Ω̌ · ř + 1

2 τ̌ · ř 2+P̌3+·· ·+P̌ s is obviously analytic on M̌ 6n−2
reg , we can choose Ȟreg

of the form Ȟreg = hK+µ f̌reg with f̌ av
reg = P̌s+O(|w̌ |2s+1), having the same normal

form P̌s as f̌ av.
By (6.10), all the motions of Ȟreg which remain confined to M̌ 6n−4

ϑ̃
(ε̃, ε̌) are

indeed motions of Ȟ .
Put n1 := n, n2 := 2(n−2), H0 := hK, P := f̌reg, ρ0 := γ̄0

c̄0
max{

√
µ
ε̂ ,
p
ε̂}, V :=A −

ρ0
,

ε̄ := 64
3 ϑε̂, a := 1

2θ(τ+1) , where c̄0 will be defined below and A −
ρ0

denotes the set{
Λ ∈A : Bρ0 (Λ) ⊆A

}
. Note that A −

ρ0
is nonempty for small ε?, because of the

choice of µ in (6.5). Let ε? be as in Proposition D.1 in Appendix D and take, in
(6.5), δ? := ε?, so that, by the above choice of ε̄, ε̄= 64

3 ϑε̂< 64
3 ε

? < ε?; compare
(D.2) in Proposition D.1. Note that

1. f̌ av
reg has the same Birkhoff normal form as f̌ av, hence, in particular, the

first-order Birkhoff invariants are nonresonant;
2. that assumptions (D.2) of Proposition D.1 are trivially implied by (6.5) and

the above choice of a and θ.

This allows to apply Proposition D.1 with n1, n2, H0, P , · · · as above.
We then find suitable c0, c?, ρ?, A? ⊆ A −

ρ0
⊆ A , φ? as in the statement of

Proposition D.1. Take in (6.5) and (6.8), c := c? and, in the definition of ρ0,
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c̄0 := c0, so that ρ0 = ρ?. Note also that: ρ? := γ̄0

c0
max{

√
µ
ε̂ ,

p
ε̂} ≥ ĉ

p
ε̂; by (D.7),

the definition of ρ0, the assumption on µ in (6.5) and, finally (6.9), A? is easily
seen to satisfy (6.1); the transformation φ? acts as

(6.12) φ? : (A?)ρ? ×Tn
s0/24 ×B 4(n−1)

2ϑε̂ → (V?)31ρ? ×Tn1
s0/6 ×B 4(n−1)

64
3 ϑε̂

and transforms Ȟreg into H? := Ȟreg ◦φ? with

(6.13) H?(Λ?, l?, w?)

= hK(Λ?)+µN?(Λ?,r?)+µP?(Λ?,u?, v?)+ µc?e−( 1
c?µ

)a

f?(Λ?, l?, w?).

In applying Proposition D.1, take in (D.5) γ0 = γ̄0 and η= η̄, where γ̄0, η̄ satisfy
(6.7)–(6.8) above, with c = c?. By (D.5), the transformation φ? satisfies

(6.14) φ?

(
(A?)ρ?/2 ×Tn

s0(1+ 1
γ̄0

)/48
×B 4(n−1)

ϑε̂(1+ 1
γ̄0

)

)
⊇ (A?)ρ?/4 ×Tn

s0/48 ×B 4(n−1)
ϑε̂

and, by the first inequality in (6.7),

(6.15) φ?

(
(A?)ρ?(1+η̄)/2 ×Tn

s0(1+η̄+ 1
γ̄0

)/48
×B 4(n−1)

ϑε̂(1+η̄+ 1
γ̄0

)

)
⊆ (A?)3ρ?/4+ρ?η̄/2 ×Tn

s0(1+η̄+ 2
γ̄0

)/48
×B 4(n−1)

ϑ̃ε̃
.

Let ϑ, ε̂ and ε be as in (6.5) and define the set

(6.16) M̌ 6n−4
?ϑ (ε̂,ε) := {Λ ∈A? , |w̌ | <ϑε̂ , ε̂< %< ε}×Tn ;

note that M̌ 6n−4
?ϑ

(ε̂,ε) ⊆A?×Tn ×B 4(n−1)
ϑε̂

⊆ M̌ 6n−4
reg .

From the above definitions (see (6.6), (6.7), (6.11)) the following inclusions
follow

M̌ 6n−4
∗ϑ (ε̂,ε) ⊆ M̌ 6n−4

ϑ̃
(ε̃, ε̌) ⊆ M̌ 6n−4

reg .

We prove that motions of Ȟreg with initial data (Λ(0), ľ (0), w̌(0)) in M̌ 6n−4
?ϑ

(ε̂,ε)

remain in M̌ 6n−4
ϑ̃

(ε̃, ε̌) for |t | ≤ t. At the end, to obtain the statement of the

theorem, we shall take θ = 3, ϑ= 1/4 ,ε̃= ε̂/2 and ϑ̃= 3/4.
Consider now motions of Ȟreg with initial data in M̌ 6n−4

?ϑ
(ε̂,ε). Taking the

real part in (6.14), all such motions are the φ?-images of some subset of mo-
tions of H? with initial data (Λ?(0), l?(0), w?(0)) ∈ (A?)ρ?/2 ×Tn ×B 4(n−1)

ϑε̂(1+ 1
γ̄0

)
.

Using (6.3), (6.13), one finds that for |t | ≤ t, the actions Λ?(t ) and r?(t ),

where r? := u2
?+v2

?

2 , with w? = (u?, v?), satisfy, for a possibly smaller value of
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ε?,

(6.17)

|(Λ?)i (t )− (Λ?)i (0)| ≤µc?e−( 1
c?µ

)a |t |

≤µc?e−( 1
c?µ

)a

t≤ c?
c?

e−( 1
c?

)a ( c?
ε̂

)θ/(θ−1)

ε̂2s−1

≤ min{ĉ
η̄

2

p
ε̂,
ε̂2 − ε̃2

4n
}

≤ min{
η̄

2
ρ?,

ε̂2 − ε̃2

4n
} .

Similarly, taking the derivatives of (6.13) with respect to w? = (u?, v?) and us-
ing that, on the domain of φ? in (6.12), |P?| ≤ c̄(2ϑε̂)2s+1, for some constant c̄
depending only on P , one finds that, for a possibly larger value of c? in (6.3),

(6.18) |(r?) j (t )− (r?) j (0)| ≤µ
(
c̄(2ϑε̂)2s+1 + c?e−( 1

c?µ
)a )

t≤ (ϑε̂η̄)2

4(n −1)
.

(6.17)–(6.18) imply that for |t | ≤ t, the motion t → (Λ?(t ), l?(t ), w?(t )) remains
confined to the set (A?)ρ?(1+η̄)/2 ×Tn ×B 4(n−1)

ϑε̂(1+η̄+ 1
γ̄0

)
. In particular,

(6.19) |w?|∞ ≤ |w?|2 <ϑε̂
(
1+ η̄+ 1

γ̄0

)
.

By (6.15) and the fact that η̄≤ 1
2 , the φ?-images t → (Λ(t ), ľ (t ), w̌(t )) of such mo-

tions remain confined to (A?)3ρ?/4+ρ?η̄/2 ×Tn ×B 4(n−1)
ϑ̃ε̃

⊆ (A?)ρ? ×Tn ×B 4(n−1)
ϑ̃ε̃

.

We now prove that such trajectories are confined to M̌ 6n−4
ϑ̃

(ε̃, ε̌), and hence, by

(6.10), they are actually motions of Ȟ . By the definition of M̌ϑ̃(ε̃, ε̌), we have to
prove that

(6.20) ε̃< %(Λ(t ),G) < ε̌ , ∀ |t | ≤ t .

Using (D.6), (6.7) and that, by (6.5), µ< (ε̂/c?)3/2, one finds the following bound
for the Λ-projection of φ?:

|Λ−Λ?|1 ≤ nc?
γ̄0

µa/2

√
µ

64

3
ϑε̂≤ 1

4
(ε̂2 − ε̃2) .

By this inequality and the first bound in (6.17), we have

2|Λ(t )−Λ(0)|1 ≤ 2|Λ?(t )−Λ?(0)|1 +2sup |Λ?−Λ|1 ≤ ε̂2 − ε̃2 ,

proving the first inequality in (6.2). Moreover, since, by (6.16), ε̂< %(Λ(0),G) < ε,

ε̃2 = ε̂2 − (ε̂2 − ε̃2)

< %(Λ(0),G)2 +2|Λ(t )|1 −2|Λ(0)|1
= %(Λ(t ),G) < ε2 + ε̂2 − ε̃2 = ε̌2 ,

which proves (6.20). To conclude, it remains to prove the bound in (6.2) for the
actions ř j .

JOURNAL OF MODERN DYNAMICS VOLUME 5, NO. 4 (2011), 623–664



650 LUIGI CHIERCHIA AND GABRIELLA PINZARI

Assumption (6.5) and the bounds in (D.6) imply that w? and w̌ are at most
at distance

(6.21) |w̌ −w?|∞ ≤ c?
γ̄0

64

3
ϑε̂ .

It follows from (6.19) and (6.21) that

|w̌(t )|∞ ≤ |w?|∞+|w?(t )− w̌(t )|∞ <ϑε̂(1+ η̄+ 1

γ̄0
)+ c?

γ̄0

64

3
ϑε̂,

giving finally, by (6.8) and (6.18),

|ř (t )− ř (0)|∞ ≤ |r?(t )− (r?)(0)|∞+|w̌ −w?|∞(|w?|∞+|w̌ |∞)

≤ (ϑε̂η̄)2

4(n −1)
+ c?
γ̄0

64

3
(ϑ)2(ε̂)2

(
2(1+ η̄+ 1

γ̄0
)+ c?

γ̄0

64

3
ϑ
)

≤ κε̂2 < ε̂2 .

Theorem 6.1 actually implies stability of eccentricities e1, · · · , en and of the
mutual inclinations ι̂1, · · · , ι̂n−2, where ei and ι̂ j are defined as23

ei =
√

1− (
|C(i )|
Λi

)2 , cos ι̂ j = C( j+1) ·S( j )

|C( j+1)|S( j )| ,

C( j+1) and S( j ) being as in (3.2). Indeed, we have the following

COROLLARY 6.3. For any c > 0, there exists C > 0 such that, for all motions start-
ing in the set M? of Theorem 6.1, ei and ι̂ j satisfy

(6.22) max{|ei (t )−ei (0)|, |ι̂ j (t )− ι̂ j (0)|} ≤ cε , ∀ |t | ≤ C

µε2s−1 .

Proof. For ease of computations, we shall consider the functions

ei := e2
i and i j := 1−cos2 ι̂ j

and we shall check that, for any c̄ > 0, one has

(6.23) max{|ei (t )− ei (0)|, |i j (t )− i j (0)|} ≤ c̄ε2 ,

which implies, clearly, (6.22). The proof of (6.23) comes from the relation be-
tween ei , i j and the variables (Λ, ľ , w̌); in particular, on how ei and i j are related
to the stable actions Λ1, · · · , Λn , ř1, · · · , ř2n−2.

Recall that the RPS variables (Λ,λ, z̄) are related to the variables (Λ, ľ , w̌) by
(Λ,λ, z̄) =φ(Λ, ľ , w̌) with

(6.24) φ := φ̃◦ φ̆◦ φ̂◦ φ̌

23Note that in the completely reduced setting the number of independent inclinations is (n−
2). Indeed, the overall inclination of C has no physical meaning by rotation invariance and the
inclination ι̂n−1 between S(n−1) and C(n) is a function of Λ1, · · · , Λn , e1, · · · , en , ι̂1, · · · , ι̂n−2 and
G .
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where φ̃, φ̆ and φ̂ are as in § 5.1 and where we have denoted by φ̌ the (6n −2)-
dimensional transformation obtained from the (6n − 4)-dimensional transfor-
mation φs given by Proposition 5.1, lifted on G and ĝ in the obvious way (see
the proof of Theorem 5.1 in Appendix C). Let us remark the following facts:

(i) The transformation φ̃ in (6.24), is defined in (4.8). Its Λ-projection is the
identity and, we claim, its z̄-projection of φ̃ is Λ−5/2

2 -close to the iden-
tity. Indeed, such projection is defined by the matrices Uh and Ūv in (4.8),
which make the quadratic part in (4.4) diagonal. By induction: For n = 2,
Q̄v is of order 1, so Ūv = 1, and Qh is 2×2. Its explicit expression can be
found in [6, Appendix B]. Using such expression one readily checks that,
for n = 2, Uh is actually Λ−5/2

2 -close to the identity. For n ≥ 2, as proven
in [6, Eq. (8.10), with δ just after Eq. (7.7)], the matrices U+

h and Ū+
v at

rank n are related to the corresponding ones Uh and Ūv at rank (n −1) by
U+

h = diag[Uh,1]+O(Λ−6
n ), U+

v = diag[Uv,1]+O(Λ−6
n ) and the claim follows.

(ii) φ̆ is the Birkhoff transformation defined in (4.9) which acts as the identity
on Λ (Appendix A), and is O(|w̄ |3)-close to the identity in the w̄-variables
(parity). By items (iii) and (iv) below, the projection Πz̃ ◦ (φ̆ ◦ φ̂ ◦ φ̌) is ε3-
close to the identity, where ε is any number such that %(Λ,G) < ε;

(iii) φ̂ is explicitly given in (5.3); recall that the Euclidean length |w̄ |2 is sent
into %(Λ,G)2, with %(Λ,G)2 as in (5.4);

(iv) φ̌ is constructed in (the proof of) Proposition 5.1. In particular, it leaves
(Λ,G) fixed and is ε2s+1-close to the identity in w̌ ;

(v) In terms of the RPS variables (Λ,λ, z̄), the functions ei = ei (Λ,ρ, r), i j =

i j (Λ,ρ, r) are rational functions of Λi and of ρi := η2
i +ξ2

i

2
and r j :=

p2
j +q2

j

2
explicitly given by

ei = ρi

Λi
(2− ρi

Λi
) , i j = 2r j c j+1 , c j+1 := 2L j −|z j−1|2 − r j

2(Λ j+1 −ρ j+1)(2L j+1 −|z j |2)

where

Li := ∑
1≤ j≤i

Λ j , zi = (η1, . . . ,ηi+1,ξ1, . . . ,ξi+1, p1, . . . , pi , q1, . . . , qi ).

Such expressions may be found from (3.7) above; compare also [6, Appen-
dix A.2], for more details.

From (i)–(v) above there follows that ei , i j , expressed in the variables (Λ, ř ) have
the form, respectively ei (Λ, ř )+ ẽi (Λ, ř ), i j (Λ, ř )+ ĩ j (Λ, ř ) where ẽi , ĩ j are func-
tions of order O(ε2Λ−5/2

2 +ε3). This, by (6.2), implies (6.23) and hence (6.22).

APPENDIX A. BIRKHOFF NORMAL FORMS AND SYMMETRIES

In this appendix we analyze the properties of Birkhoff-normalizations φ̆ used
in (4.9) for, respectively, partial and total reduction in case of symmetries.
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Let us consider24 again the transformation Rg , R1↔2 and R−
3 in (3.19)–(3.20),

but generalized replacing λ, η, ξ, p, q with λ̃ ∈Tn , (η̃, ξ̃) ∈R2m1 , (p̃, q̃) ∈R2m2 , for
some n, m1 and m2 ∈N. Put m := m1 +m2. Let A be an open, bounded set of
parameters in Rn ; consider a function f : A ×B 2m

ε̃ → R of the form of f̃ av
RPS in

(4.7), with the numbers n, n −1 into the summands replaced by m1, m2.

PROPOSITION A.1. Let f be Rg , R1↔2 and R−
3 -invariant. Assume that the first-

order Birkhoff invariants Ω̄= (σ, ς̄) satisfy, for some integer s,

inf
A

|Ω̄ ·k| > 0, ∀ k ∈Zm :
m∑

i=1
ki = 0 , 0 < |k|1 :=

m∑
i=1

|k j | ≤ 2s .

Then there exists 0 < ε̆≤ ε̃ and a symplectic transformation

φ̆ : (Λ, λ̆, z̆) = (Λ, λ̆, (η̆, ξ̆, p̆, q̆)) ∈A ×Tn ×B 2m
ε̆ → (Λ, λ̃, z̃) ∈A ×Tn ×B 2m

ε̃

which puts f into Birkhoff normal form up to the order 2s. Furthermore, φ̆ leaves
the Λ-variables unchanged, acts as a λ̆-independent shift on λ, is λ̆-independent
on the remaining variables, preserves the function G(Λ, z̆) := |Λ|1 − |z̆|22/2 and
finally verifies

(A.1) φ̆◦R =R ◦ φ̆
for any R =Rg , R1↔2 , R−

3 . Moreover, (A.1) holds for any of such φ̆’s.

REMARK A.2.

(i) Since φ̆ commutes with R−
3 , its (p̃, q̃)-projection

Π(p̃,q̃)φ̆= (p̆, q̆)+O(|(p̆, q̆)|3)

is odd in (p̆, q̆); its (η̃, ξ̃) and λ̃-projections

Πλ̃φ̆= λ̆+ ϕ̆(Λ, z̆) , Π(η̃,ξ̃)φ̆= (η̆, ξ̆)+O(|(η̆, ξ̆)|3)

are even in (p̆, q̆). Using also the commutation with Rπ, one finds that
the (η̃, ξ̃)-projection of φ̆ is odd in (η̆, ξ̆).

(ii) It is not difficult to derive Rg , R1↔2 and R−
3 -invariance of f̃ av

RPS from that of
fRPS in (4.1) (or see the comments between [6, Eq. (7.24) and Eq. (7.25)]).

(iii) Proposition A.1 is closely related25 to [6, Proposition 7.3]. The difference
being that, in [6], (A.1) was proven only for Rg . To extend the proof in [6],
we briefly recall the setting, referring to [6] for full details.

Proof of Proposition A.1. We recall that φ̆ can be constructed in s −1 steps, as
a product φ2 ◦ · · · ◦φ2s−2. The first step is as follows. To uniform notations, put

24Clearly, Proposition A.1 below is general. However, to avoid to introduce too many symbols,
we use notations (i.e., A , n, Ω̄= (σ, ς̄), ε̆, φ̆, λ̃, z̃ = (η̃, ξ̃, p̃, q̃), λ̆, z̆ = (η̆, ξ̆, p̆, q̆)) already used in the
paper, which make the application transparent: compare the second item in Remark A.2 below.

25In [6] A , Ω̄, Λ, λ̃, z̃, λ̆, z̆, Rg , ε̆, ε̃ are denoted B, Ω, I , ϕ, w , ϕ̆, w̆ , Rg , r̆ , r , respectively.
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w = (u, v) :=
(
(η̃, p̃), (ξ̃, q̃)

)
. One introduces the “Birkhoff coordinates”

(t , t∗) = (
(t1, . . . , tm), (t∗1 , . . . , t∗m)

)
:

 t j = u j−iv jp
2

t∗j = u j+iv jp
2i

.

Consider then the polynomial of degree 4 (f is even in w since it is Rg -invariant)
into the expansion of f in powers of w :

(A.2) P4 =
∑

|α|1+|α∗|1=4
c(4)
α,α∗

∏
1≤ j≤m

t
α j

j t∗j
α∗

j .

Let φ2 be the time-one flow generated by the Hamiltonian

(A.3) K4
(
Λ, (t , t∗)

)= ∑
|α|1=|α∗|1=2

c(4)
α,α∗

iΩ̄ · (α−α∗)

∏
1≤ j≤n

t
α j

j t∗j
α∗

j .

Since f is Rg -invariant, K4 is so, hence G is an integral for the K4-flow; taking
this flow at time θ = 1, we have that φ2 preserves G . Note that f being R1↔2 –
invariant implies that the coefficients c(4)

α,α∗ in (A.2) satisfy c(4)
α,α∗ = c(4)

α∗,α, So, the

function K4 in (A.3) is skew-symmetric in (t , t∗): K4
(
Λ, (t , t∗)

) = −K4
(
Λ, (t∗, t )

)
.

Writing the motion equations of K4 with initial datum (Λ,π/2 −λ, t∗, t ), the
claim follows. The function f2 := f◦φ2 = f(Λ, ·)◦Z2(Λ, ·) where Z2(Λ, ·) is the pro-
jection on (t , t∗) of φ2, is now in normal form of order 4 and it is easy to seen
to be again R1↔2 – invariant; so that the procedure can be iterated. The com-
mutation with R−

3 is proved similarly. The (standard) proof of independence of
(A.1) upon the choice of φ̆ is omitted.

APPENDIX B. DOMAINS OF POINCARÉ AND RPS VARIABLES

In this appendix, for completeness, we describe analytically the global do-
mains M 6n

max,P, M 6n
max,RPS.

• The domain M 6n
max,P is the subset of (Λ,λ,z) ∈ Rn+ ×Tn ×R4n where their

respective action variables satisfy

0 < Γi ≤Λi , −Γi <Θi ≤ Γi

where the action variables Γi , Θi are regarded as functions of the Poincaré
variables in (3.6) i.e.,

Γi =Λi −
η2

i +ξ2
i

2
, Θi =Λi −

η2
i +ξ2

i

2
− p2

i +q2
i

2

• The domain M 6n
max,RPS is the subset of (Λ,λ, z) ∈Rn+×Tn ×R4n where26 the

action variables satisfy

(B.1)


0 < Γi ≤Λi , 1 ≤ i ≤ n ,

|Ψi−1 −Γi+1| <Ψi ≤Ψi−1 +Γi+1 , 1 ≤ i ≤ n −1 ,

−Ψn−1 <Ψn ≤Ψn−1 .

26Recall: Γi = |C(i )| =Λi

√
1−e2

i ; Ψn−1 = |C |; Ψn := C3 = C ·k(3); Ψi = |S(i+1)| = |S(i ) +C(i+1)|.
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Here, Γi , Ψi are regarded as functions of the RPS-variables as in (3.7):

(B.2)


Γi =Λi − η2

i +ξ2
i

2 , 1 ≤ i ≤ n ,

Ψi =∑i+1
j=1Λ j −∑i+1

j=1

η2
j+ξ2

j

2 −∑i
j=1

p2
j +q2

j

2 , 1 ≤ i ≤ n −1 ,

Ψn =Ψn−1 − p2
n+q2

n
2 .

Note in particular that the only inequality in (B.1) involving (pn , qn) is the third
one. Using (compare (B.2))

Ψn + p2
n +q2

n

2
=Ψn−1 = |C| =G(Λ, z) = |Λ|1 −

|z|22
2

one has that such inequality is just the second one in (3.12), i.e.,
√

p2
n +q2

n <
2
p

G . The set M 6n−2
max in (3.12) is then defined by the first two inequalities into

(B.1), with Γ1, · · · , Γn , Ψ1, · · · , Ψn−1 functions of Λ and z as in (B.2).

APPENDIX C. PROOF OF PROPOSITION 5.1

The proof is obtained as a generalization of [6, Proposition 10.1]: in [6] the
proof is divided into four steps, and here we just remark how to modify such
steps, in order to get the generalization at arbitrary order. For the purpose of
this proof we shall use the notations adopted in [6], which we now recall. The
variables (Λ, l̂ , ŵ) = (

Λ, l̂ , (û, ŵ)
)

defined in (5.3) are denoted there by (Λ, λ̂, ẑ),
with again ẑ = (û, v̂). The variables ř1, · · · , ř2n−2 correspond to Ř1, · · · , Ř2n−2

in [6, Proposition 10.1]. Moreover, in [6], the variables (Λ,G), (λ̂, ĝ ) are called
I , ϕ̂, respectively, and the same convention is next used during the proof: ϕ?,
ϕ∗, ϕ̆ are names for (λ?, g?), and so on. Note also that functions Ĥ , f̂ , in (5.6)
and the function P in (5.1) for 2s = 4 are called, in [6], ĤG, f̂G, P̆ , while the
average f̂ av is denoted f̂G,av, compare [6, Eqs. (7.30), (9.7), (10.1)].

Step 1. Fix s ∈N, ϑ ∈ (0,1). We shall prove Proposition 5.1 with ϑ at the place of
1/4 in (5.8); at the end we shall take ϑ= 1/4. Let η ∈ (0,1) be so small such that
the number ϑ+2sη is still in (0,1), δ∗ < ε, where ε is as in (5.5).

Take the number θ in [6, Eq. (10.15)] to be θ :=ϑ+2sη. Replace the function
f (%) defined just after [6, Eq. (10.16)] by the function
(C.1)

f (%) = Ĉ0(Λ,%)+%2
(
Ω̂ · Ř+ %2

2
τ̂(Λ) · Ř2 + P̂3(Ř;Λ)+·· ·+ P̂ s(Ř;Λ)+%2sQ(Λ, ž,%)

)
.

where27

f (%) −%2s+2Q = Ĉ0(Λ,%)+%2
(
Ω̂ · Ř+ %2

2
τ̂(Λ) · Ř2 +·· ·+P s(Ř;Λ)

)
27Note incidentally that the monomials P̂1 := Ω̂ · Ř, P̂2 := 1

2 τ̂Ř2, · · · , P̂ s in (C.1) are related to

the corresponding monomials P̄1 := Ω̄ · r̄ , P̄2 := 1
2 τ̄r̄ 2, · · · , P̄ s in (5.1) simply replacing in P̄ j r̄i

with ři for i 6= 2n −1 and r̄2n−1 with %2 −∑2n−2
1 ř j . Such invariants may be taken to be, up to

O(%2), as the first approximation of the invariants Ω̌, τ̌, · · · , P̌ s in (5.9).
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is a polynomial in the variables Ři = ǔ2
i +v̌2

i
2 , which is of degree 2s in (ǔ, v̌). Next,

comparing to [6, Eq. (10.26)], the remainder α2s+2Q in (C.1) is

α2s+2Q(Λ, ž,α) =P (Λ,αφ̌
(1)
z̄ (ž)) ,

with P as in (5.1) and, quite analogously to [6, Eq. (10.17)], φ̌
(1)
z̄ denotes the

projection on z̄ of the transformation (5.3) with ĝ = 0, % replaced by 1 and w̄
replaced by z̄. Note that the functions Ω̂ and τ̂ are %2-close to the functions
defined in [6, Eq. (10.6)–(10.7)]. In particular, Ω̂ do not satisfy resonances up to
order 2s, for small δ∗. Replace then the definition of the function F just before
[6, Eq. (10.19)] with

F (ž,α) := ∂ž ( f (α) − Ĉ 0(Λ,α))α−2

= ∂ž

(
Ω̂(Λ,α) · Ř+ α2

2
τ̂(Λ) · Ř

2 +·· ·+α2s−2P s(R;Λ)+α2sQ(Λ, ž,α)
)

.

Then, quite similarly, for small values of α, by the Implicit-Function Theorem,
one finds an equilibrium point že(Λ,α) for F which satisfies, instead of [6, Eq.
(10.21)], the following estimate (with possibly a bigger value of c4)

|že| ≤ 2m|F (0,α)| ≤ c4α
2s ,

with m as in [6, Eq. (10.19)]. Thus, the function f̂G,av has an equilibrium point
ẑe(Λ,G) := %(Λ,G)w̌e(Λ,%(Λ,G)) satisfying |ẑe(Λ,G)| ≤C%(Λ,G)2s+1, with a suit-
able constant C independent of Λ and G .

Next, instead of taking % < ε2, where ε2 is an upper bound for % with the
property at the end of [6, Step 1], take %(Λ,G) ≤ δ∗, where δ∗ is so small that,
for %(Λ,G) ≤ δ∗, the following inequality holds

(C.2) |ze(Λ,G)| ≤C%(Λ,G)2s+1 ≤ η%(Λ,G) .

Step 2. Define a change of variables (I ,ϕ?, z?) → (I ,ϕ̂, ẑ) defined by [6, Eq.
(10.22)] and by the last equation at the end of [6, Step 2], but modify the choice
of the domain of φ? as follows

(C.3) I ∈A ×R+ , ϕ? ∈Tn+1 , |z?| ≤ (ϑ+ (2s −1)η)%= (θ−η)%≤ δ∗

By the triangular inequality, (C.2) and Equation [6, Eq. (10.22)], φ? is well de-
fined on such domain. Exploiting the definition of φ? and (C.2) one finds that
φ? (acts as the identity on I = (Λ,G), as a ϕ?-independent shift on ϕ? and
moreover) verifies

|φ?(I ,ϕ?, z?)− (I ,ϕ?, z?)| ≤C%(Λ,G)2s+1 ,
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with C independent of ϕ? and z?. Finally, letting H ? := Ĥ ◦φ? = hK +µ f ?,
one has that the averaged perturbation becomes28

(C.4)

( f ?)av(I , z?) := ( f ◦φ?)av = f̂ av ◦φ?

=C?(I )+Ω?(Λ) ·R?+ 1

2
τ?(Λ) · (R?)2 +·· ·+P ?

s (R?,Λ)

+ Q?(I , z?) ,

for suitable Ω?, τ?, · · · , P ?
s , which are %2-close to Ω̂, τ̂, · · · , P s in (C.1) and Q?

defined as in [6, Eqs. (10.25)–(10.26)], with P̆ replaced by the function P in
(5.1). In particular, Ω? do not satisfy resonances up to order 2s, provided δ∗ is
suitably small.

Step 3. Replace [6, Eqs. (10.27)–(10.30)] as follows. Denote by

(C.5) Q?(I , z?) = ∑
k∈{0,··· ,2s},k 6=1

Q?
k +O(|z?|2s+1)

the Taylor expansion around z? = 0 of Q in (C.4). In the case 2s = 4, Q?
0 , Q?

2 ,
Q?

3 , Q?
4 correspond to the functions Q?

0 , Q?, C?, F? of [6, Eq. (10.27)]. By the
definition of Q?, it is not difficult to see that Q?

k are %(2s−k+2)-close to zero.
Since Q?

2 is %2s-close to zero, for a possibly smaller δ∗, one can find a sym-
plectic transformation φ∗ : (I ,ϕ∗, z∗) → (I ,ϕ?, z?) which leaves I unvaried, as
a ϕ∗-independent shift on ϕ∗, is linear on w∗ and puts Ω? ·R?+Q?

2 into the
normal form Ω? ·R?, where Ω∗ are %2s-close to Ω? and hence do not satisfy
resonances up to order 2s for a possibly smaller δ∗. Such transformation φ∗ is
easily seen to be %2s+1-close to the identity and the transformed hamiltonian
H ∗ :=H ? ◦φ∗ = hK(Λ)+µ f ∗(Λ.l∗, w∗) g∗-independent and has the quadratic
part of ( f ∗)av = ( f ?)av ◦φ∗ in diagonal form. Finally, since φ? is %2s+1-close to
the identity, with an eventually small δ∗ for which |z?− z∗| ≤C%2s+1 ≤ η%, one
can take as domain of φ∗ the set

(C.6) I ∈A ×R+ , ϕ∗ ∈Tn+1 , |z∗| ≤ (ϑ+ (2s −2)η)%= (θ−2η)%(Λ,G) ≤ δ∗ ,

which implies that z? satisfies (C.3). Moreover, φ∗ puts f ?av into the form

f ∗
av = f ?av ◦φ∗ =C∗(I )+Ω∗ ·R∗+ 1

2
τ∗ · (R∗)2 +·· ·P ∗

s (R∗,Λ)

+ ∑
k∈{3,··· ,2s}

Q∗
k (I , z∗)+O(|z?|2s+1)

where Q∗
k are monomials of degree k in z∗, which are %2s-close to Q?

k in (C.5)

and hence %2s+2−k -close to zero. This implies in particular that Ω∗ are (2s) non-
resonant and the matrix τ∗ is %2-close to τ̂ in (C.1), hence, nonsingular. Note
that, in the case 2s = 4, C?, Ω∗, τ∗ correspond to the functions Č0, Ω̌, τ̂ in the
last equation in [6, Step 3]; Q∗

3 , Q∗
4 to the functions C∗, F∗.

28The operation of composition with φ? commutes with λ?-averaging, since φ? acts ϕ?-
independent shift on ϕ?. This fact is common to the transformations φ∗, φ̆2s−2 below and it
will not be mentioned anymore.
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Step 4. Apply now a Birkhoff transformation φ̆2s−2 in (2s − 2) steps (which is
possible thanks to nonresonance of Ω∗). From the claimed properties of the
polynomials Q∗

k in Step 3 above, one has that φ̆2s−2 can be chosen to be %2s+1-
close to the identity, and acting as a the identity on I , as a ϕ̆-independent shift
on ϕ̆. Letting δ∗ to be so small that |z̆−z∗| ≤C%2s+1 ≤ (2s−2)η, one has that the
domain of φ̆2s−2 may be chosen to be I ∈ A ×R+ϕ̆ ∈ Tn+1, |z̆| ≤ ϑ%(Λ,G) ≤ δ∗,
so that z∗ satisfies (C.6). This implies in particular that φ̌ := φ? ◦φ∗ ◦ φ̆2s−2 is
well defined on the domain defined in (5.7) above, with ϑ = 1/4 and arbitrary
δ̂< δ≤ δ∗. Moreover, the (Λ, λ̌, ž)-projection of φ̌, φs :=Π(Λ,λ̌,ž)◦φ̌ is easily seen

to be symplectic with respect to the 2-form dΛ∧d λ̌+dǔ ∧d w̌ and satisfying
the statement of the Theorem.

APPENDIX D. PROPERLY-DEGENERATE AVERAGING THEORY

In this Appendix we shall prove a result in Averaging Theory, which is needed
in the proof of Theorem 6.1.

Let us fix some standard notations: B m
r (z) denotes the complex ball of radius

r in Cm , centered in z; the ball around the origin B m
r (0) is simply denoted by

B m
r . If V ⊆ Rm is an open set, Vρ denotes the complex set

⋃
x∈V B m

ρ (x) and Tm
s

denotes the complex neighborhood of Tm given by {x ∈ Cm : | Im x j | < s,1 ≤
j ≤ m}/(2πRm). Also, if f (u,ϕ) = ∑

k∈Zn fk (u)e ik·ϕ is a real-analytic function on
Wv,s =Vv ×Tn

s , ‖ f ‖v,s denotes its “sup-Fourier” norm:

‖ f ‖v,s := ∑
k∈Zn

sup
Vv

| fk |e i|k|s ,

where |k| := |k|1 :=∑n
i=1 |ki |.

PROPOSITION D.1. Let n1, n2 ∈N; let V be an open set in Rn1 ;

Wρ0,ε0,s0
:=Vρ0 ×Tn1

s0
×B 2n2

ε0
;

let H(I ,ϕ, p, q ;µ) : Wρ0,ε0,s0 → C be a real-analytic Hamiltonian on Wρ0,ε0,s0 of
the form

(D.1) H(I ,ϕ, p, q ;µ) := H0(I ;µ)+µP (I ,ϕ, p, q ;µ)

where the average Pav := ∫
Tn1 P (I ,ϕ, p, q ;µ) dϕ

(2π)n1 has an elliptic equilibrium in

p = q = 0 for all I ∈V . Assume that the map I → ∂2H0(I ;µ) is a diffeomorphism
of V ; that the first-order Birkhoff invariants Ω of Pav do not satisfy resonances
on V up to the order 2s. Let τ> n −1.

There exist positive numbers c?, c0 such that, for all 0 < a < 1
4(τ+1) one can

find a number 0 < ε? < 1 such that for all

(D.2) γ0 ≥ 1 , 0 < ε̄< ε? and (c?ε̄)
1

2a(τ+1) <µ< (
ε̄

c?γ0
)

1
1−2a(τ+1)

one can find an open set V? ⊆ Vρ0/32 a positive number c and a real-analytic
symplectic transformation

(D.3) φ? : (V?)ρ? ×Tn1
s0/24 ×B 2n2

3ε̄/32 → (V?)31ρ? ×Tn1
s0/6 ×B 2n2

ε̄
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where ρ? := γ0

c0
max{

√
µ
ε̄ ,

p
ε̄}µa/2 ≤ ρ0

32 , which carries H into H? := H ◦φ?, where

(D.4) H?(I ,ϕ, p, q) = H0(I )+µN?(I ,r )+µP?(I , p, q)+ cµe−( 1
c?µ

)a

f?(I ,ϕ, p, q) ,

where N? is a polynomial of degree s in ri = pi
2 +qi

2

2
whose coefficients are

(ε̄,µ/ε̄)-close to those of the Birkhoff normal form associated to Pav; P? has a
zero of order (2s +1) in (p, q) = 0 for all I ∈ (V?)ρ? and f? is uniformly bounded
by 1.

The transformation φ? may be chosen so as to satisfy

(D.5) φ?

(
(V?)ρ?/2 ×Tn1

s0(1+ 1
γ0

)/48
×B 2n2

3ε̄(1+ 1
γ0

)/64

)
⊇ (V?)ρ?/4 ×Tn1

s0/48 ×B 2n2
3ε̄/64

φ?

(
(V?)ρ?(1+η)/2 ×Tn1

s0(1+η+ 1
γ0

)/48
×B 2n2

3ε̄(1+η+ 1
γ0

)/64

)
⊆

(V?)3ρ?/4+ρ?η/2 ×Tn1

s0(1+η+ 2
γ0

)/48
×B 2n2

3ε̄(1+η+ 2
γ0

)/64

for all η ∈ (0,1) and, moreover, if (I?,ϕ?, p?, q?) is short for φ?(I ,ϕ, p, q), the
following bounds

(D.6)

|I?− I | ≤ c?
γ0

min{
√
µε̄,

µp
ε̄

}µa/2

|ϕ?−ϕ| ≤ c?
γ0
µa(6τ+5)/2

max{|p?−p| , |q?−q|} ≤ c?
γ0

max{ε̄,
µp
ε̄

} .

The set V? can be chosen to have Lebesgue measure

(D.7) measV? ≥ (1− f?(ε̄,µ)µ−a(τ+1/2))measV ,

with f?(ε̄,µ) :=p
c?γ0 max{

√
µ
ε̄ ,

p
ε̄}.

If, instead of (D.2), one assumes

(D.8) γ0 ≥ 1 , 0 < ε̄< ε? and 0 <µ< 1

c?γ0
ε̄ (log ε̄−1)−2(τ+1)

(where ε? and c? depend only on s) then ρ?, (D.4), (D.6) and (D.7) are respec-

tively replaced by ρ̄? = γ0

c0
max{

√
µ
ε̄ ,

p
ε̄},

(D.9)

H?(I ,ϕ, p, q) = H0(I )+µN?(I ,r )+µP?(I , p, q)+ cµε2s+1Q?(I ,ϕ, p, q)
|I − I∗| ≤ c∗

γ0
min{

√
µε̄, µp

ε̄
}(log ε̄−1)−1

|ϕ−ϕ∗| ≤ c∗
γ0

min{ε̄, µ
ε̄ }(log ε̄−1)−1

|p −p∗| , |q −q∗| ≤ c∗
γ0

min{ε̄, µ
ε̄ }(log ε̄−1)−1

measV? ≥ (
1− f?(ε̄,µ)(log ε̄−1)τ+1)measV

where N? and P?, f? are as above and |Q?| ≤ 1.

The proof is based upon a technical result proven in [15] or [4].
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LEMMA D.2 (Averaging Theory). Let K̄ , s̄, s > 0 be such that K̄ s ≥ 6; let α > 0
and ` ∈ N. Let H(u,ϕ) = h(I )+ f (u,ϕ), with f (u,ϕ) = ∑

k fk (u)e i k·ϕ, be real-
analytic on Wv,s̄+s := Ar ×Brp ×B ′

rq
×T`s̄+s , where A×B ×B ′ ⊆R`×Rm ×Rm and

v = (r,rp ,rq ). Finally, let Λ be a (possibly trivial) sub-lattice of Z` and let ω
denote the gradient ∂I h. Assume that

|ω ·k| ≥α ∀ I ∈ Ar , ∀ k ∉Λ , |k| ≤ K̄(D.10)

E := ‖ f ‖v,s̄+s < αd

27cmK̄ s
, where d = min{r s, rp rq } , cm := e(1+em)

2
.(D.11)

Then there exists a real-analytic, symplectic transformation

Ψ : (I ′,ϕ′, p ′, q ′) ∈Wv/2,s̄+s/6 → (I ,ϕ, p, q) ∈Wv,s̄+s

such that

H∗ := H ◦Ψ= h + g + f∗ ,

with g in normal form and f∗ small:

(D.12)
g = ∑

k∈Λ
gk (I ′, p ′, q ′)e i k·ϕ′

, ‖g −ΠΛTK̄ f ‖v/2,s̄+s/6 ≤ 12

11

27cm E 2

αd
≤ E

4
,

‖ f∗‖v/2,s̄+s/6 ≤ e−K̄ s/6 E .

Moreover, denoting by z = z(I ′,ϕ′, p ′, q ′), the projection of Ψ(I ′,ϕ′, p ′, q ′) onto
the z-variables (z = I , ϕ, p or q) one has

(D.13) max{αs|I − I ′| , αr |ϕ−ϕ′| , αrq |p −p ′| , αrp |q −q ′|} ≤ 9E .

Proof of Proposition D.1. Assume (D.2). Pick two numbers C0 and C ≥ 1; let the

numbers c?, ε? of the statement satisfy c? ≥ (2CC0)2 and ε? ≤
(

1
(2CC0)2

) 1
1−4a(τ+1)

.

The proof will be based on the following inequalities (implied by (D.2)) for ε̄
and µ and the definition of γ̄= γ̄(ε̄,µ):

(D.14)


ε̄<

(
1

(2CC0)2

) 1
1−4a(τ+1)

(
(2CC0)2ε̄

) 1
2a(τ+1) <µ<

(
ε̄

(2CC0)2

) 1
1−2a(τ+1)

γ̄ := 2Cγ0 max
{√

µ
ε̄ K̄ τ+1/2,

p
ε̄ K̄ τ+1/2

}
with K̄ := 1

µa .

The numbers C0 and C will be chosen later, independently of γ0, a and, obvi-
ously, on ε̄ and µ.

Step 1 (Averaging over the “fast angles” ϕ). Let (I0,ϕ0, p0, q0) denote the vari-
ables in (D.1). We can assume that Pav(p0, q0; I0) is in Birkhoff normal form
of order 2s. The first step consists in removing, in H , the dependence on ϕ

up an exponential order (namely, up to O(e−1/µa
)). Let ρ0, ε0, s0 denote the

analyticity radii of H in I0, (p0, q0), ϕ0, respectively and take ε̄ ≤ ε0. We ap-
ply Lemma D.2, with equal scales, i.e., taking α1 = α2 := α (see below). Next,
we take ` := `1 + `2 = n1, m = n2 h = H0, B = B ′ = {0}, rp = rq = ε0, s = s0,
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s̄ = 0, Λ= {0} ∈Zn1 , A = D̄ , r= ρ̄, where D̄ , ρ̄ are defined as follows. Let τ> n1,

M̄ := maxi , j supVρ0
|∂2

i j H0(I0)|, c0 := 32M̄
C , ρ̂ := max{

√
µ
ε̄ ,

p
ε̄}µa/2. Take

(D.15) D̄ := ω̄−1
0

(
D

n1
γ̄,τ

)
∩V and ρ̄ := 32

γ0

c0
ρ̂ = γ̄

2M̄K̄ τ+1
≤ ρ0 ,

where Dγ̄,τ ⊆Rn1 is the set of (γ̄,τ)-diophantine numbers in Rn1 , i.e.,

Dγ̄,τ :=
{
ω ∈Rn1 : |ω ·k| ≥ γ̄

|k|τ for all k ∈Zn1 , k 6= 0
}

.

Let now ρ?, V? be defined as

(D.16) ρ? = ρ̄

32
= γ0

c0
ρ̂ , V? := D̄ρ? .

The following measure estimate is standard, since ω̄0 = ∂H0 is a diffeomor-
phism of V and τ> n −1.

meas
(
V àV?

)
≤ meas

(
V à D̄

)
≤ C̄0γ̄meas(V )

where C̄0 is a suitable number depending only on V . Take in (D.14) C0 ≥ C̄0

and C > 2−1
√

s0M̄29cn2‖P‖(ρ0,ε0,ε0),s0 .

By a standard argument, for I0 ∈ D̄ρ̄ , the unperturbed frequency map ω̄0 =
∂H0 verifies (D.10), with α1 = α2 = α := γ̄

2K̄ τ , r and A as above. The smallness

condition (D.11) is easily checked by the choices (D.14): since ε̄K̄ = ε̄µ−a <
ε1−1/(2a(τ+1)) < 1 and C > 2−1

√
s0M̄29cn2‖P‖(ρ0,ε0,ε0),s0 ,

E =µ‖P‖(ρ0,ε0,ε0),s0 <
4C 2

s0M̄29cn2

µ

ε̄K̄
≤ γ̄2

s0M̄29cn2 K̄ 2τ+2
≤ αρ̄

27cn2 K̄ s0
.

Inequality K̄ s0 ≥ 6 is also trivially satisfied. Thus, by Proposition D.2, we find a
real-analytic symplectomorphism

φ̄ : (Ī ,ϕ̄, p̄, q̄) ∈ D̄ρ0/2 ×Tn1
s0/6 ×B n2

ε0/2 → (I0,ϕ0, p0, q0) ∈ D̄ρ0 ×Tn1
s0
×B n2

ε0

and H is transformed into

H̄(Ī ,ϕ̄, p̄, q̄) = H ◦ φ̄(Ī ,ϕ̄, p̄, q̄) = H0(Ī )+µ N̄ (Ī , p̄, q̄)+µe−K̄ s/6 P̄ (Ī ,ϕ̄, p̄, q̄) .

By (D.12), ‖P̄‖v̄,s̄ ≤ C̄ and

(D.17) sup
D̄ ρ̄/2

|N̄ −Pav| ≤ C̄
µK̄ 2τ+1

γ̄2 .

Since ε̄ < ε0, in particular, φ̄ is defined on the smaller set W(ρ̄/2,ε̄/2),s̄ , and the
following inclusion holds

(D.18) φ̄ : D̄ ρ̄/2 ×Tn1
s0/6 ×B n2

ε̄/2 → D̄ ρ̄×Tn1
s0
×B n2

ε̄
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as it follows from the following inequalities

(D.19)

|I0 − Ī | ≤ C̄
µK̄ τ

γ̄
= µC̄

2Cγ0K̄ 1/2
min{

√
ε̄

µ
,

1p
ε̄

} ≤
2Cγ0 max{

√
µ
ε̄ ,
p
ε̄}

128
= ρ̄

128

|p0 − p̄|, |q − q̄| ≤ C̄
µK̄ τ

γ̄
= µC̄

2Cγ0K̄ 1/2
min{

√
ε̄

µ
,

1p
ε̄

} ≤ 3

256γ0
ε̄< ε̄

2

|ϕ0 − ϕ̄| ≤ C̄
µK̄ 2τ+1

γ̄2 = C̄

4C 2γ2
0

min{ε̄,
µ

ε̄
} ≤ s0

192γ0
.

Note that the former bounds in each line follow from (D.13); the latter ones
follows from the definition of ρ̄ in (D.15), from (D.14), Cauchy estimates and
γ0 ≥ 1.

Step 2 (Determination of the elliptic equilibrium for the “secular system”).
In view of (D.17), N̄ −Pav is of order µK̄ 2τ+1γ̄−2. Using the Implicit-Function
Theorem and standard Cauchy estimates for small values of this parameter, for
any fixed Ī ∈ D̄ ρ̄/2, N̄ also has an equilibrium point (pe(I ), qe(I )) which satisfies,

by (D.14) and taking C ≥
√

64C̃ /3 and using γ0 ≥ 1

(D.20) |(pe(I ), qe(I ))| ≤ C̃
µK̄ 2τ+1

γ̄2 = C̃

4C 2γ2
0

min{ε̄,
µ

ε̄
} ≤ 3

256γ2
0

min{ε̄,
µ

ε̄
} < ε̄

8

Consider now a neighborhood of radius 3ε̄/8 around (pe(I ), qe(I )). We let

(D.21) φ̃ : (Ĩ ,ϕ̃, p̃, q̃) ∈ D̄ ρ̄/4 ×Tn1
s0/12 ×B n2

3ε̄/8 → (Ī ,ϕ̄, p̄, q̄) ∈ D̄ ρ̄/2 ×Tn1
s0/6 ×B n2

ε̄/2

the transformation which acts as

Ī = Ĩ , p̄ = pe(Ĩ )+ p̃ , q̄ = qe(Ĩ )+ q̃ , ϕ̄= ϕ̃−∂Ĩ

(
p̃ +pe(Ĩ )

)
·
(
q̄ −qe(Ĩ )

)
.

Such transformation is easily seen to be symplectic, having

s̃(Ĩ , p̃,ϕ̄, q̄) = Ĩ · ϕ̄+
(
p̃ +pe(Ĩ )

)
·
(
q̄ −qe(Ĩ )

)
as generating function. Note that φ̃ is well defined, since, in view of (D.14),
(D.20), Cauchy estimates, one has

(D.22)

|p̄ − p̃| = |pe| ≤ 3

256γ2
0

min{ε̄,
µ

ε̄
} , |q̄ − q̃ | = |qe| ≤ 3

256γ2
0

min{ε̄,
µ

ε̄
}

|ϕ̄− ϕ̃| ≤ C̃ max
{ ε̄2K̄ τ+1

γ̄
,
µε̄K̄ 3τ+2

γ̄3

}
≤ C̃

2Cγ0
µa(6τ+5)/2 ≤ s0

192γ0
< s0

12

where we have used µ< 1 and C ≥ 192
s0

C̃ .

Finally, φ̃ puts H̄ into the form

H̃ := H̄ ◦ φ̃= H0(Ĩ )+µÑ (Ĩ , p̃, q̃)+µe−K̄ s/6P̃ (Ĩ ,ϕ̃, p̃, q̃),

with Ñ := N̄ ◦ φ̃ , P̃ := P̄ ◦ φ̃. Observe that ‖P̃‖ṽ,s̃ ≤C and Ñ has an elliptic equi-
librium point into the origin and, being µK̄ 2τ+1γ̄−2-close to Pav (see (D.17)), its
quadratic part is µK̄ 2τ+1γ̄−2-close to be diagonal.
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Step 3 (Symplectic diagonalization of the secular system). We now proceed to
diagonalize the quadratic part (in (p̃, q̃)) of Ñ . By (D.17), since Pav is in Birkhoff
normal form, one has that Ñ is µK̄ 2τ+1γ̄−2-close to be diagonal. Therefore, one
finds a symplectic transformation

(D.23) φ̂ : (Î ,ϕ̂, p̂, q̂) ∈ D̄ ρ̄/8 ×Tn1
s0/24 ×B n2

3ε̄/16 → (Ĩ ,ϕ̃, p̃, q̃) ∈ D̄ ρ̄/4 ×Tn1
s0/12 ×B n2

3ε̄/8

which is estimated by

(D.24)

|p̃ − p̂|, |q̃ − q̂| ≤ Ĉ
µε̄K̄ 2τ+1

γ̄2 = Ĉ

4C 2γ2
0

min{ε̄2,µ} ≤ 3

256γ2
0

min{ε̄2,µ} < 3ε̄

16

|ϕ̃− ϕ̂| ≤ Ĉ
µε̄2K̄ 3τ+2

γ̄3 ≤ Ĉ

2Cγ0
µa(6τ+5)/2 ≤ s0

192γ0
< s0

24

having used again Cauchy estimates, γ0 ≥ 1, ε̄2 < ε̄ < 1 and the second in-
equality in (D.22). By construction, the quadratic part of N̂ , where N̂ is defined
by the equality

Ĥ := H̃ ◦ φ̂= H0(Î )+µN̂ (Î , p̂, q̂)+µe−K̄ s/6P̂ (Î ,ϕ̂, p̂, q̂), (P̂ := P̃ ◦ φ̂) ,

is in diagonal form. Moreover, choosing a possibly bigger c?, one has that
the first-order Birkhoff invariants Ω̂ of N̂ , being µK̄ 2τ+1γ̄−2-close to the cor-
responding ones of Pav, are nonresonant of order (2s). Note that, since N̂ is
µK̄ 2τ+1γ̄−2-close to N̄ , by (D.17), is also µK̄ 2τ+1γ̄−2-close to be in (2s)-Birkhoff
normal form.

Step 4 (Birkhoff normal form of the secular part). We finally use Birkhoff the-
ory to put N̂ in Birkhoff normal form of order 2s. This is possible since, as
above remarked, the first-order Birkhoff invariants Ω̂ of N̂ are nonresonant up
to the order (2s). Recalling that N̂ is µK̄ 2τ+1γ̄−2-close to be in (2s)-Birkhoff nor-
mal form, we then find a real-analytic and symplectic transformation

(D.25) φ̌ : (Ǐ ,ϕ̌, p̌, q̌) ∈ D̄ ρ̄/16 ×Tn1
s0/48 ×B n2

3ε̄/32 → (Î ,ϕ̂, p̂, q̂)D̄ ρ̄/8 ×Tn1
s0/24 ×B n2

3ε̄/16

which acts as the identity on the Ǐ -variables and, on the other variables, is es-
timated by

(D.26)

|p̂ − p̌|, |q̂ − q̌| ≤ Č
µε̄2K̄ 2τ+1

γ̄2 = Č

4C 2γ2
0

min{ε̄3,µε̄} ≤ 3

256γ2
0

ε̄< 3

32
ε̄

|ϕ̂− ϕ̌| ≤ Č
µε̄3K̄ 3τ+2

γ̄3 ≤ Č

2Cγ0
µa(6τ+5)/2 ≤ s0

192γ0
< s0

48

by Cauchy estimates, µ< 1 and again by the second inequality in (D.22).
Moreover, φ̌ puts Ĥ into the form

(D.27) Ȟ := Ĥ ◦ φ̌ := H0(Ǐ )+µŇ (Ǐ , ř )+µP̌ +µe−K̄ s/6 f̌

where Ň is a polynomial of degree s in ři =
p̌2

i + q̌2
i

2
and P̌ has a zero of order

(2s +1) in (p̌, q̌) = 0.
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Step 5 (Conclusion). Take the transformation φ? in (D.3) as φ? := φ̆ ◦ φ̃ ◦ φ̂ ◦
φ̌ where φ̄, φ̃, φ̂, φ̌ are as above, H? = Ȟ , N? = Ň , P? = P̌ as in (D.27) and
f? by default. The transformation φ? is easily seen to be well defined by the
definitions of V? and of ρ? in (D.16) and by the inclusions (D.18), (D.21), (D.23)
and (D.25). Moreover, the bounds (D.19), (D.22), (D.24) and (D.26) and usual
telescopic arguments easily imply (D.5) and (D.6). This completes the proof of
the first part of the proposition.

The proof that (D.8) implies (D.9) in place of (D.4), (D.6) and (D.7) proceeds
along the same lines above, replacing the “power low” choice of K̄ and γ̄ in
(D.14) with the following “logarithmic” ones

K̃ := 6(2s +1)

s0
(log(ε−1))−1 , γ̃ := 2Cγ0 max{

√
µ

ε̄
,
p
ε̄} K̃ τ+1 .
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