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Introduction
It has been suspected for so long that the three typical 

manifestations of bone involvement in rheumatoid arthritis (RA) 
(focal bone erosions, juxta-articular osteoporosis and systemic 
osteoporosis) could be the consequence of a common pathological 
mechanism [1] of both inflammatory and metabolic nature.

It is a matter of fact that the inflammatory pathogenesis does not 
explain all the skeletal manifestations of the rheumatic disease and 
the development of bone involvement is sometimes unconnected 
from the clinical scores of inflammation [2]. On the basis of recent 
studies in this review we would like to make a point of the new 
available evidence about the metabolic pathogenic component of 
bone erosions.

The Patogenesis of Bone Erosions: Not Only 
Inflammation
It is well known that at 5 years from the beginning of RA, 30-50% of 

Abstract
It is a matter of fact that the inflammatory pathogenesis does not 
explain all the skeletal manifestations of Rheumatoid Arthritis 
(RA), and the development of bone involvement is sometimes 
unconnected from the clinical scores of inflammation. On the 
basis of recent studies, we would like to make a point of the new 
available evidence about the metabolic pathogenic component 
of bone erosions. We assume that in this process an additional 
role could be played by metabolic factors, such as the parathyroid 
hormone (PTH), DKK1 (the inhibitor of the Wnt/β catenin pathway) 
and cortical bone mineral density. The result is a new pathogenic 
hypothesis for bone erosion in RA, which supplements the 
inflammatory one: the reduction of osteoblasts activity and the 
increase of the osteoclasts one, involved in the pathogenesis of 
bone erosions and osteoporosis, are not only the consequence of 
the action of inflammatory cytokines, but also of increased levels of 
DKK1 and PTH. On the other hand, osteoporosis, in particular at 
the cortical sites, facilitates the appearance of erosions.

Failing to assess and correct these metabolic alterations may 
explain an insufficient response in terms of prevention or healing of 
bone erosions to the disease modifying antirheumatic drugs.

patients has evidence of focal bone erosions [3]. This phenomenon 
is the result of many complex interactions from the cells and the 
cytokines/chemokines system at the synovial and surrounding 
tissues level, which culminates with bone destruction. In addition 
to the articular crumbling, RA is also associated with a generalized 
bone loss with a higher prevalence of osteoporosis: RA patients have 
double the normal risk of undergoing a femoral fracture [4] and they 
are 4 times more likely to have vertebral fractures [5,6]. Both erosions 
and systemic osteoporosis are related to the unbalance between 
osteoblasts and osteoclasts activity [7,8]. Some of the cytokines 
involved in RA physiopathology, as the tumor necrosis factor alpha 
(TNF-α) and RANKL, are also involved in the pathogenesis of both 
focal and systemic bone lesions [9,10]. The balance between the 
osteoblasts and osteoclasts activity in course of RA is conditioned not 
only from distinctive inflammatory factors (TNF-α, IL1, IL6, IL17, 
IFN-gamma...), but also from metabolic factors (IGF1, estradiol, 
parathyroid hormone, 1,25(OH)2D, leptin, ...) related to the disease 
per se or influenced by the use of some drugs as glucocorticoids.

The erosiveness of RA is typically very precocious and it is at the 
maximum level in the first years of the disease; the rapid establishing 
of the structural damage in RA is determined by a close interaction 
between the synovial joint membrane, cartilage and subchondral 
bone. The fundamental role is played by osteoclasts [8], both 
from the synovial and the medullary side [11]. The activation and 
replication of osteoclasts would be primarily linked to inflammation: 
a significant correlation between the inflammation score and the 
number of osteoclasts was shown [11].

During intense phlogosis the RANK-RANKL system is 
activated by inflammatory citokines (TNF-α, IL-1, IL-6, IL-17, 
PGE2) both at the medullary and at the synovial level and this 
generates the proliferation of osteoclasts [12,13]. Recently, it has 
been also described in RA patients an improved differentiation of 
the mononuclear cells of peripheral blood into osteoclasts, possibly 
due to an increase of osteoclasts blood precursors and a reduced 
apoptotic potential of mature osteoclasts [14]. An additional role 
could be played by the chronic increase of a metabolic factor such as 
the parathyroid hormone (PTH) which, along with 1,25(OH)2D, is 
a known stimulator of the production of RANLK and of osteoclasts 
activity [15,16].
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Lately, it has also been observed that, despite osteoclasts are the 
main actors in the pathogenesis of bone erosions in RA, osteoblasts 
and their regulatory cytokines (especially dickkopf  Wnt signaling 
pathway inhibitor 1, DKK1), whether directly or indirectly, 
participate too. In RA patients it was shown that an increase in serum 
DKK1 levels correlated positively with inflammation markers and 
with the Sharp scores [17]: considering the inhibitory effect of DKK1 
on the Wnt system, and therefore on osteoblasts, this could represent 
a favorable condition for the erosive or the bone mineral density 
reducing the evolution of the disease.

DKK1 concentrations are not only influenced by inflammatory 
factors but also by mineral metabolic ones: for instance the long term 
effects of PTH on DKK1 [18] could justify an undesired suppression 
of osteoblasts activity in conditions of chronic hyperparathyroidism.

The Current Predictive Value of Bone Erosions is Low
Being able to predict a probably irreversible radiological damage 

or its progression is paramount to operate an early intervention and 
to evaluate the opportunity of a more or less aggressive treatment. The 
identification of specific risk factors could also enable the discovery 
of possible pathogenic components; besides, a modest predictive 
value of the already known risk factors could outline the opportunity 
to look for newer ones. A review of the past experiences has led to 
the proposal of predictive models for persistently erosive arthritis 
[19-22]. The main factors considered were: durations of symptoms 
(from 6 weeks and 6 months), morning stiffness ≥ 1 hour, joint count 
(“swollen” and “tender” joints) with arthritis in ≥ 3 joints, a positive 
“squeeze sign” of metatarsophalangeal and metacarpophalangeal 
joints, the positivity of rheumatoid factor, the positivity of anti-
citrullinated antibodies, the presence of erosions at the hands and/or 
feet X-rays. In most of the studies conducted in early RA, a relevant 
factor for the prognosis is the finding of inflammation at the physical 
or instrumental examination (the number of swollen joints or typical 
sonographic or MRI abnormalities). Many studies have also taken 
into account the use of laboratory inflammation markers (such 
as ESR and CRP) as prognostic indicators in an early phase of the 
disease, since there is evidence of a correlation between the intensity 
and persistence of the inflammation and the progression of bone 
damage [23,24]. All this support the relevant pathogenic role played 
by inflammation in respect of bone erosions, focal or systemic. As a 
further confirmation of this it was recently observed that the repair 
of bone erosion can almost exclusively happen in non-swollen joints 
[25]. However, CRP could be a not so good predictive marker since 
this parameter is not infrequently normal in the early phases of the 
disease and some studies have also questioned the predictive ability 
of the determination of ESR and CRP in the early phase towards the 
development of radiological damage at one or two years.

It is also known that the polymyalgia-like onset RA, typical of 
the elderly, is characterized by high ESR and CRP values at the onset 
but a little tendency to develop short term erosions. Finally, there 
can even be radiological progression of the bone damage in absence 
of phlogosis signs, at least as detectable at physical examination [2]. 
Therefore inflammation does not explain everything about the bone 
damage in RA, or at least not every time.

On the other hand even the inclusion of the best prognostic 
known risk factors (RF and/or anti-CCP positivity, previous bone 
erosions), as well as inflammatory markers as CRP, to identify or 
exclude a significant risk of radiological progression, leads to 38% of 
false positives and 9% of false negatives [26].

Recently it was reported that even including in addition to the 
inflammatory markers 10 clinical variables (anti-CCP antibodies, RF, 
BMI, age, duration of symptoms, involvement of lower extremities, 
HLA, number of swollen joints, sex and anti-vimentin antibodies), 
only 32% of the bone erosions risk variance can be explained, thus 
confirming the modest predictive value in terms of erosive risk 
estimation through the multivariate model based on the actual 
known factors [27].

There is evidence that many other factors, besides inflammation, 
are acting and could interfere both in a pathogenic and in a protective 
extent concerning the bone involvement in RA and many of these are 
not well clarified yet. Note actually how, among the predictive factors 
of bone erosion, it’s not considered any variable related to the bone 
or mineral metabolism.

Metabolic Factors Predictive For Bone Erosion
Markers of bone turnover, bone mineral density (BMD), 
PTH and DKK1 might represent new predictive biomarkers 
of bone erosions

Markers of bone turnover: Some parameters of the bone or 
cartilage metabolism have been investigated as possible markers or 
prognostic indicators of bone erosions [23,24,28-31]: they are the 
serum, urinary or synovial concentrations of many proteins connected 
to the bone or cartilage degradation (i.e. fragments of type I or II 
collagen, oligomeric proteins of the cartilage matrix) or regulators 
of osteoclasts (RANKL and osteoprotegerin) or osteoblasts activity 
(DKK1). For instance, it was observed that the urinary pirinolines 
and desoxypiridinolines excretion, expression of an increase in 
osteoclasts activity, relates with the scores of disease activity [29,30], 
confirming the role of the pro-inflammatory cytokines in the 
activation of bone reabsorption. In another study it was found that 
the erosive evolution in RA would occur in patients presenting higher 
levels of serum C-terminal telopeptide of type I collagen (CTX), a 
marker of osteoclastic resorption [31]. The clinical relevance of these 
limited observations is anyhow still uncertain.

Bone mineral density: Another possible candidate among the 
predictors of erosions could be bone mass or bone mineral density 
(Bone Mineral Density, BMD. The connection between RA and 
the reduction of BMD that is osteoporosis has gone defining over 
the years, although it has always been seen as the effect of RA or its 
pharmacological treatment on BMD, and not as the role of BMD 
towards the risk of bone erosions.

Traditionally in RA we speak of juxta-articular osteoporosis, 
generalized osteoporosis and, among the latter, drug-induced 
osteoporosis, corticosteroids in particular. The prevalence of 
osteoporosis in women with RA ranges from 30 to 50%, depending 
on the sites evaluated through bone densitometry [32]. If we also 
consider less severe conditions, such as osteopenia, the prevalence 
rises and touches 80%.

Bone mineral loss in RA appears to depend not only by the 
use of corticosteroids, although most of the available studies have 
been strongly conditioned by the use of corticosteroids: there are 
only few studies conducted in subjects who did not receive similar 
treatments, and either way always in less active diseases. On the other 
hand it should be considered that corticosteroid treatment in RA, 
through reducing the pathogenic component linked to phlogosis 
and especially if at lower dosages, could have neutral or even benefic 
effects, at last in the short-term, both regarding osteoporosis (notably 
the juxta-articular form [33]) and the erosion risk [34]. All this 
despite the well-known deleterious effects of corticosteroids towards 
bone (increase of bone resorption and inhibition of neoformation) 
and mineral metabolism (negativization of the calcium balance by 
reduction of the intestinal calcium absorption and increase of renal 
losses with consequent secondary hyperparathyroidism).

As already observed in 1994 at the vertebral level [35], recently 
as well it was reported that a high disease activity (evaluated through 
CRP or DAS28) represents an independent risk factor for hand BMD 
loss after 5 years [36].

In an Italian experience [32], besides confirming the deleterious 
effect of the corticosteroid treatment used in clinical practice and 
the classical risk factors for osteoporosis (menopause, age, BMI), an 
independent one was documented, represented by Health Assessment 
Questionnaire (HAQ). In premenopausal patients, in which we could 
exclude concomitant effects of an estrogenic deficiency, significantly 
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reduced femur BMD values were reported [37], even after the 
correction for age, BMI and the cumulative dose of corticosteroids, 
thus confirming the disease per se as a risk factor for osteoporosis.

But what is the relationship between BMD and bone erosions? 
The correlation is clear and predictable if one evaluates the hand 
BMD, expression of a contingent juxta-articular osteoporosis. In 
some studies it was actually reported a statistically significant inverse 
correlation of the hand BMD and the prevalence of erosions [38]. There 
is available evidence in this sense also in terms of radiogrammetry: the 
cortical thickness and in particular the internal diameter evaluated at 
the level of the II metacarpal bone was seen to correlate significantly 
with the Sharp score for erosions [39]. The wrist BMD was noted 
to be inversely correlated with the prevalence of erosions too [40]. 
The latter were also seen to be correlated with axial or systemic 
osteoporosis. It is known that subjects who have an erosive disease 
present a higher incidence of osteoporosis, both at lumbar spine and 
femur [32,41,42]. Also Solomon et al. [43] investigated in a cross-
sectional study the relationship between bone erosions and BMD in 
163 postmenopausal women affected by RA [43]. It was observed a 
negative correlation between femur BMD and the erosion risk, but 
the significance of this correlation was lost at multivariate analysis 
when age, disease activity evaluated with DAS-CRP, BMI and the use 
of corticosteroids were included. The results of these studies suggest 
that the functional damage associated with erosions and therefore the 
disease severity could be responsible for the generalized osteoporosis. 
Most of these results derived from cross-sectional studies, with all the 
consequent limits implied.

In one of these studies, for instance, there was a significant 
correlation between the cortical hand BMD reduction evaluated 
through digitalized radiogrammometry and the development of 
erosions through time [44-46]. In another study this correlation was 
observed also with the reduction of systemic BMD and in particular 
at femur level [47]. Recently, a multicentric Italian study involving 
more than 20 rheumatology centers [48], besides confirming the role 
of the severity and the duration of the disease and the positivity of 
anti-CCP and Rheumatoid Factor as risk factors for bone erosions, 
documented that femur BMD is significantly lower in subjects with 
bone erosions than in those without them . Femur BMD remains 
significantly correlated to erosions even when the data were corrected 
for the main variables which could influence bone mass such as age, 

inflammatory markers (ESR, CRP), functional status (HAQ, ADL), 
BMI, blood 25(OH)D levels, corticosteroid or bisphosphonates 
therapy. These results are in contrast with the ones of Solomon et 
al. [43] but are justified by the large size of our series, 7 times higher.

The relationship between femoral BMD and erosions is better 
than the one observed between the latter and lumbar BMD [43,47-49]. 
This observation is, from a certain point of view, unexpected since the 
trabecular bone is more metabolically active and therefore a greater 
influence of proinflammatory cytokines would be expected on this 
site. On the other hand it is also known that with aging there is a loss 
of accuracy of the assessment of vertebral BMD due to concomitant 
osteoarthritis.

From another point of view, however, the greater correlation 
of erosions with the femur BMD, site of mainly cortical bone, is 
not surprising since these skeletal complications affect primarily 
this histological type of bone. The meaning of the direct correlation 
between femur BMD and the incidence of erosions appears to be 
scientifically and clinically relevant: if this observation, a result of a 
cross-sectional study, with all the consequent limits this implies, will 
be confirmed by longitudinal studies, it could mean that a high BMD, 
especially at the level of the cortical bone, has a protective role against 
the risk of bone erosion.

Actually, in a sub-analysis of the BeSt study the progression of 
the erosive score was faster in patients with lower BMD [47] and in 
an another recent study the radiographic erosion score after 3 years 
in patients with osteopenia/osteoporosis at baseline was double the 
patients with normal BMD [49]. Since there is also a positive regression 
between BMD and BMI, the correlation we found could justify the 
protective effect already described in several studies [43,50,51] of a 
high BMI against the risk of occurrence of bone erosions.

BMD and its variations, in addition to the traditional clinical 
mean of assessment of bone mass, could be proposed as indicator for 
severity and prognosis of erosive complications in RA, obviously to 
be placed side by side to the radiographic evaluation, ultrasound and 
magnetic resonance imaging.

Generalized osteoporosis and bone erosions are likely to share 
not only the same pathophysiological mechanisms, but also to 
influence each other. Therefore they require an even more combined 
therapeutic approach.
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Figure 1:  Metabolic pathogenesis of bone erosion. Chronic increase of PTH induces osteoclastogenesis, osteoporosis in cortical bone, and expression of 
DKK1. DKK1 itself leads to inhibition of osteoblast differentiation, and reduces focal and systemic bone formation. Osteoporosis of cortical bone increases the 
risk of bone erosions.



Rossini et al. J Rheum Dis Treat 2015, 1:2 • Page 4 of 5 •ISSN: 2469-5726

PTH: From physiopathology, the risk of osteoporosis associated to 
a chronic condition of hyperparathyroidism is well known, involving 
especially the cortical bone. Secondary hyperparathyroidism, 
probably, but not only, due to a vitamin D deficiency, is particularly 
common among RA patients [49]. It seems now quite relevant 
the recent observation that chronic higher levels of PTH may be 
directly associated, in RA, to a greater risk of erosions [48], perhaps 
due to a greater impairment of the cortical bone. This generates a 
new metabolic hypothesis of the pathogenesis of erosions which 
supplements the inflammatory one. The increased bone resorption 
and the contemporary reduction of bone formation, predisposing the 
erosions, could be attributed to the known chronic effects of PTH, 
stimulator of osteoclast activity and inhibitor of osteoblast activity. 
Moreover the involvement of PTH in the metabolic pathway of 
DKK1 could contribute to the pathogenesis of bone erosions [50].

DKK1: Recent studies documented the important role of DKK1, 
the physiological inhibitor of the Wnt system, in the regulation of 
periarticular bone remodeling [51,52]. The Wnt system is not only 
renowned for promoting bone neo-formation by osteoblasts but also 
for inhibiting bone resorption by osteoclasts [53-55].

Elevated levels of DKK1, under the stimulus of TNF-α, were 
found into the synovial fibroblasts and in the serum of RA patients 
[52,56] in whom they correlate with inflammatory markers and with 
the presence of bone erosions [17,50,57,58]. It has been demonstrated 
that some polymorphisms of genes regulating DKK1 expression 
affect the progression of bone erosions [59] and it also has been 
demonstrated that the DKK1 blockade could prevent bone erosions 
and the systemic loss of bone [60]. A chronic treatment with PTH 
induces an increase of serum DKK1 levels [18] and these positively 
correlate with the PTH levels in different clinical conditions [61-63], 
including RA [50].

The levels of DKK1 in RA also correlate inversely with BMD, in 
particular in the sites of mainly cortical bone as the femur [50].

Conclusions
Recent studies revealed an important role of some factors of 

bone metabolism in the pathogenesis of erosions. The result is a new 
pathogenic hypothesis for bone erosions in RA (Figure 1), which 
supplements the inflammatory one: the reduction of osteoblasts 
activity and the increase of the osteoclasts one, involved in the 
pathogenesis of bone erosions and osteoporosis, are not only the 
consequence of the action of inflammatory cytokines such as TNF-α, 
but also of increased levels of DKK1 resulting from inflammatory 
and also metabolic factors, including PTH. On the other hand 
osteoporosis, in particular the cortical involvement, facilitates the 
appearance of erosions.

Failing to assess and correct these metabolic alterations may 
explain an insufficient response in terms of prevention or healing of 
bone erosions to the drug treatment of RA.
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