

RECEIVED: March 14, 2012 ACCEPTED: March 14, 2012 PUBLISHED: April 2, 2012

Erratum: the energy of the analytic lump solution in SFT

L. Bonora, a,b,c S. Giaccaria,b and D.D. Tolla d

- ^a International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- ^bINFN, Sezione di Trieste,

Trieste, Italy

- ^c Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
- ^dDepartment of Physics and University College, Sungkyunkwan University, Suwon 440-746, South Korea

E-mail: bonora@sissa.it, giaccari@sissa.it, ddtolla@skku.edu

ERRATUM TO: JHEP08(2011)158

After this paper was published in JHEP, a reconsideration of all the problems tackled in it led us to [2]. In the latter we confirm all the results of this paper as well as of [1], but we correct the interpretation of ϵ as a gauge parameter contained in section 7.2 and in the last paragraph of 9.2. In [2] we provide evidence that $\langle \psi_{\epsilon}, \psi_{\epsilon} \psi_{\epsilon} \rangle^{(s)}$, $\langle \psi_{u}, \psi_{\epsilon} \psi_{\epsilon} \rangle^{(s)}$ and $\langle \psi_{\epsilon}, \psi_{u} \psi_{u} \rangle^{(s)}$ all depend on ϵ . Consequently ϵ is simply a regulator and cannot be interpreted as a gauge parameter. The only meaningful results are obtained in the limit $\epsilon \to 0$. Concerning the claim that "The obstruction to integrating by part is the UV divergence or the corresponding subtraction, which . . . are ϵ -independent." in the last paragraph of section 9.2, it is true, but this does not lead by itself to the implicit conclusion that one can integrate by part the expression $\langle \psi_{\epsilon}, Q\psi_{u} \rangle - \langle \psi_{u}, Q\psi_{\epsilon} \rangle$ and get 0, because the UV subtraction is applied to the three-points correlators, not to the string field $\psi_{\cdot}\psi_{\epsilon}$, to which Q applies.

References

- [1] L. Bonora, S. Giaccari and D.D. Tolla, Analytic solutions for Dp branes in SFT, JHEP 12 (2011) 033 [arXiv:1106.3914] [INSPIRE].
- [2] L. Bonora, S. Giaccari and D.D. Tolla, *Lump solutions in SFT. Complements*, expanded version, arXiv:1109.4336 [INSPIRE].