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Abstract

Many applications heavily rely on piecewise triangular meshes to describe complex surface geometries. High-quality meshes

significantly improve numerical simulations. In practice, however, one often has to deal with several challenges. Some regions in the

initial mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin or not properly oriented. We present a

novel mesh adaptation procedure which greatly improves the problematic input mesh and overcomes all of these drawbacks. By

coupling surface reconstruction via radial basis functions with the higher dimensional embedding surface remeshing technique, we

can automatically generate anisotropic meshes. Moreover, we are not only able to fill or coarsen certain mesh regions but also align

the triangles according to the curvature of the reconstructed surface. This yields an acceptable trade-off between computational

complexity and accuracy.
c© 2016 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of organizing committee of the 25th International Meshing Roundtable (IMR25).

1. Introduction

Countless numerical methods need to transfer information from a continuous domain to discrete points on a grid.

Most commonly this problem arises when solving partial differential equations numerically but it also appears in the

context of surface approximation [8,14,16,22] or medical image reconstruction [11].

Finding optimal grids is of uttermost importance. Obviously, optimal can mean many things. However, two desirable

features stand out. On the one hand, our grid should be built in such way that the data we are interested in (for instance

the solution of a partial differential equation) is approximated fairly accurate. That is, we want to grasp finer details (for

example along boundary layers) as well as large-scale variations. On the other hand, we want to be able to efficiently

compute the discrete approximation and only use nodes which enhance its quality.

This leads naturally in 2D and 3D to anisotropic grids which are able to achieve a reasonable trade-off between

accuracy and efficiency. Anisotropic grids are often used in the context of finite element and finite volume methods and

thus appear very frequently in practical applications [12,13,15]. However, how to obtain such an anisotropic mesh for a

given application is an open problem. Unfortunately, not many numerical analysts focus on the art of designing precise

grids but rather on discretization techniques for the solution of partial differential equations.
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In this paper, we study how to automatically obtain curvature-adapted surface meshes from low-quality ones. We

explicity point out that curvature-adapted surface meshes may not be necessarily useful in the context of differential

equations (as the curvature may not be a reasonable indicator for where a refinement of the computational domain is

needed). However, curvature-adaptation makes visualizing complex data sets more efficient. The initial low-quality

mesh may be too coarse in certain regions or too dense in others. Also, in practice one has to deal with improperly

oriented triangles. While a strechted triangle is not per se unacceptable, it should not be stretched in the direction

of maximum curvature. Figure 1 shows what our method is capable of. The original mesh on the left is extremely

coarse and uniform. The adapted mesh, on the other hand, is denser and refined where necessary. The stretched

triangles reflect nicely the curvature. For example, the curvature along the dashed arrows varies more than along the

corresponding solid ones. Hence, we need to refine more in the direction of the dashed arrows which means that the

triangles will be stretched along the solid arrows.

Fig. 1: A coarse input mesh on the left and the adapted mesh using the novel adaptation procedure on the right.

The key idea of our method is to combine surface approximation by radial basis functions with the higher dimensional

embedding technique. Radial basis functions (RBFs) have been used for decades in the context of multivariate data

approximation [9,10,18,24]. Ironically, their main selling point is that they can be used to interpolate unstructured data

without relying on a mesh. Even though they are most commonly used in the context of meshfree data approximation,

they sometimes have been employed in the context of mesh repair. Carr et al. [2] used polyharmonic radial basis

functions to fill in incomplete meshes. Similarly, Marchandise et al. [20] developed a method to repair meshes obtained

from a CAD model or an STL triangulation [5].

The higher dimensional embedding (HDE) was introduced by Cañas et al. in [1]. Since then several authors have

expanded their ideas [4,6,19]. HDE produces an anisotropic triangular curvature-adapted surface mesh that fits an

input surface. The anisotropy is obtained by finding a higher-dimensional space in which the mesh is assumed to

be uniform and isotropic. Previously other approaches based on metric tensor fields [14,16] or minimizing objective

functionals [8,22] have been studied. However, in order to be able to apply both of these strategies one needs to have a

priori or a posteriori knowledge of the error, which depends on the problem itself. The HDE, on the other hand, does

not require any information on the error. It is solely based on information provided by the embedding map. Note, in [4]

the original geometry is given via a known CAD model. In this paper, however, we will additionally reconstruct the

original geometry. Hence the only input needed is an initial mesh which might have some of the previously described

issues.

This paper is organized as follows. After introducing the higher dimensional embedding technique and radial

basis functions in the second and third sections, we present our novel surface remeshing approach in the fourth and

supplement it in the fifth section with both classical and real-life examples.

For the rest of the paper, we will assume that the surface Γ is given implicitly by the zero level set of some function

F : Ω ⊆ R
3 → R, i. e.

Γ =
{
(x, y, z)T ∈ Ω | F(x, y, z) = 0

}
, (1)
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for some bounded domain Ω.

2. Higher Dimensional Embedding

In [19], the authors introduce the higher dimensional embedding technique which fits a a triangular surface mesh to

a given geometry by enlarging the space we are originally interested in. The key assumption of HDE is that a uniform

isotropic mesh in a higher-dimensional space will correspond to an anisotropic mesh in a lower-dimensional space.

This concept is best explained with Figure 2. The left image shows a uniform isotropic triangular mesh in R
3.

However, if projected onto R
2 the mesh becomes anisotropic which is shown in the picture on the right.

Fig. 2: An isotropic mesh in the higher-dimensional space R
3 (left) and the corresponding anisotropic mesh in R

2 (right). This picture encapsulates

the key idea behind the higher dimensional embedding technique [19].

To obtain an anisotropic curvature-adapted mesh of an input surface Γ ⊂ R
3, we define the embedding map

Ψ : Γ→ R
6 by

Ψ(x) = (x, y, z, σ nx, σ ny, σ nz)
T , (2)

where n = (nx, ny, nz)
T denotes the unit normal to Γ at x = (x, y, z)T and σ > 0 is a constant that controls the influence

of the normals in the embedding map. For small σ the mapping Ψ is close to the identity in R
3 embedded in R

6, i. e.

Ψ(x) ≈ (x, y, z, 0, 0, 0)T . Larger values of σ put more emphasis on the normal components of the surface Γ.

In the higher-dimensional space points on Γ are enriched with surface normal information. Consider for instance two

generic points a,b ∈ Γ and the edge ab. If the surface is flat, the normals at the endpoints are the same. Consequently,

the length of the edge in R
3, denoted with lab, coincides exactly with the length measured in the higher-dimensional

space l6d
ab. On the other hand, if the surface is curved, the normals at the endpoints are different and l6d

ab becomes much

larger than lab.

2.1. Mesh Generation in Higher Dimensions

There are two established ways to build a uniform isotropic mesh in the higher-dimensional space. In [19], the

authors propose an approach based on the Restricted Centroidal Voronoi Tessellation. In [4,6], a different method was

proposed to construct a uniform isotropic mesh in the higher-dimensional space. The idea behind the latter method is to

exploit the standard scalar product in the higher-dimensional space. Consider three points a, b and c on the surface Γ,

then the lengths and the angles in the higher-dimensional space are defined via

l6d
ab :=

∣∣∣∣∣∣Ψ(a) − Ψ(b)
∣∣∣∣∣∣

6d
:=

√(
Ψ(a) − Ψ(b),Ψ(a) − Ψ(b)

)
6d

and cos
(
θ6d

acb

)
:=

(
Ψ(a) − Ψ(c),Ψ(b) − Ψ(c)

)
6d

l6d
ac l6d

bc
. (3)

Now, one can fix a target edge length l6d in the higher-dimensional space and modify an initial mesh Γini
h in such a way

that

l6d
e ≈ l6d and cos

(
θ6d
α

)
≈ 1

2
∀e ∈ E and ∀α ∈ A , (4)
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where E andA are the sets of edges and angles of all mesh triangles.

Remark 2.1. The method proposed in [4,6] does not embed the mesh in R
6. Only the lengths and angles are computed

in the higher-dimensional space. The mesh is modified in R
3 by standard mesh operations for triangular elements such

as edge flipping, edge splitting/contraction and node smoothing.

3. Geometry Reconstruction with Radial Basis Functions

Radial basis functions are commonly divided into two categories: positive definite and conditionally positive definite

functions. We state both definitions here.

Definition 3.1 (Positive definite function). Let Φ : Rd → R be a continuous function. We define the matrix AΦ,X via
its i jth entry

ai j = Φ(xi − x j) , (5)

for any data set X = {x1, . . . , xN} ⊆ R
d of arbitary length N ≥ 1. The function Φ is called positive definite if the

quadratic form
cT AΦ,Xc (6)

is positive for all vectors c ∈ RN \ {0}.
Definition 3.2 (Conditionally positive definite function). Let Pm(Rd) denote the space of d variate polynomials with
absolute degree at most m and dimension q := dimPm(Rd) =

(
m−1+d

d

)
. For a basis p1, . . . , pq of this space, define the

N × q polynomial matrix PX through its i jth entry

pi j = pi(x j) , (7)

where x j ∈ X. The function Φ is called conditionally positive definite of order m if the quadratic form (6) is positive for
all X and for all c ∈ RN \ {0} which additionally satisfy the constraint PT

Xc = 0.

One typically speaks of radial basis functions if one additionally assumes that Φ is a radial function, i.e. there exists

a function φ : R≥0 → R such that Φ(x) = φ(‖x‖). Trivially, a positive definite function is also a conditionally positive

definite function of order m = 0 and conditionally positive functions of order m are also conditionally positive for any

order higher than m. Hence, the order usually shall denote the smallest positive integer m.

Suppose we want to recover a function f : Rd → R known on some data set X = {xi}Ni=1
. We can solve the

interpolation problem

f (xi) = s(xi), 1 ≤ i ≤ N (8)

for the interpolant s : Rd → R using radial basis functions by making the ansatz

s(x) =

N∑
j=1

α jΦ(x − x j) (9)

in the case of a positive definite Φ and

s(x) =

N∑
j=1

α jΦ(x − x j) +

q∑
k=1

βk pk(x) (10)

in the case of conditionally positive definite functions. The coefficients α = (α j) ∈ R
N ,β = (βk) ∈ R

q need to be

determined by applying the interpolation condition (8) to either (9) or (10). Hence one needs to solve either

AΦ,Xα = f or

(
AΦ,X PX

PT
X 0

) (
α
β

)
=

(
f
0

)
, (11)
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where f = ( f (x j)).

For positive definite functions, the linear system is positive definite by construction. Hence the coefficients can be

determined uniquely. It is also not difficult to verify that the second choice for an interpolant leads to unique coefficients

in the case of conditionally positive definite functions, see [24, Theorem 8.21] for details. In the case of conditionally

positive definite functions the Courant-Fischer theorem guarantees that at least N − q eigenvalues of the matrix AΦ,X
are positive.

Another criterion to classify RBFs is whether they have compact support or not. This is an advantageous feature for

very large data sets since the matrix AΦ,X becomes sparse if the support radius is small enough. It is well known that

for compactly supported RBFs the polynomial part in (10) has to vanish. There are no nontrivial conditionally positive

definite functions with compact support [24, Theorem 9.1]. Wendland [23] presented a class of compactly supported

radial basis functions which consist of polynomials within their support. The degree of the polynomials for a given

space dimension and smoothness parameter is minimal. Compactly supported RBFs lead to sparse matrices AΦ,X which

implies that the condition behave better than for globally supported ones. A deeper analysis of these relationships are

given in [3,24].

Common examples of RBFs are shown in Table 1.

Global support Compact support (d = 3)

e−r2

Gaussian φ3,1(r) = (1 − r)4
+(4r + 1) C2√

1 + r2 Multiquadric φ3,2(r) = (1 − r)6
+(35r2 + 18r + 3) C4

1/
√

1 + r2 Inverse Multiquadric φ3,3(r) = (1 − r)8
+(32r3 + 25r2 + 8r + 1) C6

r3 Polyharmonic Spline due to Wendland [23]

Table 1: Common examples of globally and compactly supported RBFs. All functions are positive definite except the polyharmonic spline which is

conditionally positive definite for d = 3 with (minimal) order 2. For positive r the truncation operator (·)+ leaves its argument unaltered. For negative

arguments it is set to zero. The last row indicates the regularity of the Wendland RBFs.

3.1. Surface reconstruction with RBFs

We cannot simply replace the target function f in (8) with the function F whose zero level set describes the implicit

surface (1) since the right hand sides of the linear systems (11) vanish which implies that the coefficients vanish as well.

Carr et al. [2] therefore made the additional assumption that the normal vectors are known. One then can also prescribe

on-surface and off-surface points. Assume that the points on the surface are denoted with X = {x1, . . . , xN} and the

corresponding normal vectors with M = {n1, . . . ,nN}. Then one can define the surface interpolation problem

s(xi) = F(xi) = 0, 1 ≤ i ≤ N (on-surface points)

s(xi + εni) = F(xi + εni) = ε, N + 1 ≤ i ≤ 2N (off-surface points)
(12)

for some parameter ε > 0. Since the right hand side is no longer zero, we find now nontrivial solutions to the linear

systems (11). Actually, it is enough to define just one off-set point to get a nontrivial solution. Moreover it is even

possible to add more constraints. One possibility is to consider s(xi − εni) = F(xi − εni) = −ε for 2N + 1 ≤ i ≤ 3N.

To reduce the computational cost when solving the linear system (11) or when projecting points onto the surface,

we consider a partition as done in [3]. We denote the number of the patches in the partition by K. These patches may

overlap and the magnitude of the overlap is given by the parameter Ov.

4. A Novel Anisotropic Surface Remeshing Approach

In this section, we describe the novel anisotropic curvature adapted remeshing procedure. More details can be found

in [3]. Starting from a conformal triangular surface mesh Γini
h , we proceed as follows:

(1) Build RBF approximation Γs
0

of the initial surface mesh Γini
h and
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(2) Construct final adapted mesh Γ
f in
h via HDE including:

• several local mesh modifications and

• projections onto the surface Γs
0

In the following three paragraphs we describe the different parts of the remeshing procedure. More details can be found

in [3].

Approximation of Γs
0
. When constructing the continuous approximation of Γini

h , the user has to specify the type of

radial basis function Φ, the parameter ε, the number of partitions K and the overlap parameter Ov. In order to setup the

interpolation problem defined in (12), we use the vertices of Γini
h as interpolation nodes X. By averaging the normals

of the triangles that share a generic vertex xi, we define the normals ni at this point and obtain the set M. Finally, we

construct and solve the linear system (11) to derive the continuous interpolant s. The whole procedure to build the

function s whose zero level set is the smooth surface Γs
0

is described in Algorithm 1

Algorithm 1 The construction of the function s whose zero level set is the smooth surface Γs
0
.

surfaceApproximation(Γini
h ,Φ, ε, K, Ov)

1: compute normals ni

2: define the set X = { x1, x2, . . . , xN , (x1 + εn1), (x2 + εn2), . . . , (xN + εnN) }
3: compute the matrix AΦ,X , see (5)

4: if Φ is conditionally positive then
5: compute the matrix PX , see (7)

6: end if
7: set the r.h.s. f(i) = 0 if i ≤ N otherwise f(i) = ε
8: solve the linear system (11)

Local Mesh Modifications. Next, we modify Γini
h so that it becomes a uniform isotropic mesh in the higher-

dimensional space. To achieve this goal two inputs are required: the parameter σ, appearing in the embedding map Ψ,

as well as the target length in the higher-dimensional space l6d. We consider the adaptation scheme proposed in [3,4,6]

to get a uniform isotropic mesh in the higher dimensional space. In Algorithm 2 we report the pseudo-code of this

adaptation procedure which This adaptation procedure exploits all standard mesh modifications such as edge flipping,

edge splitting/contraction and node smoothing.

Algorithm 2 The anisotropic mesh adaptation.

meshAdaptation(Γini
h , maxIter)

1: for i ∈ {1, ..., maxIter} do
2: repeat
3: contract the edges l6d

e < 0.5 l6d

4: smooth 30% of vertices

5: edge flips improvement

6: until an edge e is contracted

7: split the edges l6d
e > 1.5 l6d

8: edge flips improvement

9: smooth 30% of vertices

10: edge flips improvement

11: end for

Projection of nodes onto Γs
0
. Applying standard mesh operations naively will fail. Consider, for instance, the

edge splitting operation. If we simply halve the edge, the new point lies only under very special circumstances on Γs
0
.

Moreover, since the new point is usually not on the surface, the unit normal is not defined. Node smoothing leads to a

similar problem. To avoid this issue, we exploit a projection algorithm. If we split an edge or move a point using node
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smoothing, we project the resulting point onto the reconstructed surface [17]. Then, we define the normal of the newly

added point via the gradient of the surface interpolant [3].

The edge contraction has a similar issue since the edge can be contracted to different locations. Therefore, we

contract it to one of the endpoints [7] to avoid having to project this point onto Γs
0
. In fact, the endpoints lie on Γs

0
by

construction and the normals at these points are well-defined. Figure 3 provides a two-dimensional example.

(a) (b) (c)

Fig. 3: Figure (a) shows a fine input mesh (solid line) which approximates the reconstructed curve (dashed line). In Figure (b), the edge v1v2 is

contracted to its midpoint v, which does not lie on the reconstructed curve. However, in Figure (c) the edge v1v2 in contracted to the end point v1

which by construction automatically lies on the dashed curve.

5. Numerical Examples

In the following, we study different input meshes. We will show that our method can not only be used to fill in more

detail but also to thin out out very complex meshes. Finally, we apply our method to a mesh coming from a medical

application.

To assess the degree of anisotropy of our mesh, we compute the global aspect ratio

qΓh
:= max

T∈Γh

qT , (13)

where qT := RT /(2 rT ) is the so called aspect ratio of the triangle T . Here RT and rT are the radii of the circumscribed

and inscribed circle of T , respectively [21]. We observe that qT ≥ 1 by construction. If qT = 1, then T is an equilateral

triangle, while if qT  1, the triangle T is stretched.

A sensitivity analysis for the parameters Ov, l6d and σ is provided in [3].

5.1. Bunny

We examine the well-known Stanford bunny, depicted in Figure 4. To construct Γs
0
, we use thin plate splines,

ε = 0.001, K = 200, Ov = 3. We run the anisotropic adaptation procedure with l6d = 0.001 and σ = 1.0. In Figure 4,

we show both the initial and the resulting mesh. The resulting mesh is strongly anisotropic, in fact the global aspect

ratio qΓh
is 3.989e+02 and it is more refined than the initial one. While the initial mesh has 69 451 elements, the final

one has 110 350 triangles.

The triangles are aligned and stretched according to the curvature of the surface. This can be clearly seen when

zooming in on the ears of the bunny, see Figures 5. In the initial mesh Γini
h , the triangles are too big to capture the helix

of the bunny’s ears and their orientation and shape do not reflect the curvature of the surface. However in the final mesh

Γ
f in
h all these features disappear.

Moreover, the final anisotropic adapted mesh makes details in the mesh more apparent. For instance, unlike for the

initial mesh Figure 4 (left), finer details in the fur of the bunny are clearly visible in the final mesh, see Figure 4 (right).

5.2. Lucy

Our anisotropic mesh adaptation procedure can be used to simplify a dense initial mesh by coarsening it in regions

with little curvature variation. We consider the geometry shown in Figure 6. This mesh is another well-known
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initial mesh final mesh

Fig. 4: The initial bunny mesh (left) and the resulting anisotropic adapted one (right).

initial mesh final mesh

Fig. 5: A detail of the initial bunny mesh (left) and the same detail for the anisotropic adapted one (right).

benchmark in surface mesh adaptation ("Lucy"). Here the mesh is so fine that one would not be able to see the faces

of the triangles because of the density of the edges, see Figure 6 left. Hence we only show the faces of the surface

without the edges. To construct the surface approximation, we use thin plate splines, ε = 0.1, K = 3000, Ov = 3 and

the σ = 10. We point out that the number of partitions is rather high. If we want to reduce the number of partitions or

avoid dealing with large dense linear systems, we can employ compactly supported RBFs.

The initial mesh offers a very fine approximation of the input geometry, but managing this huge data set requires an

unacceptably high computational effort. By choosing a large target length l6d our anisotropic adaptation procedure

effectively becomes a mesh simplification method. The details in Figure 7 show that the shape of the initial mesh is still

preserved, however, using considerably fewer elements. To be more precise, we reduce the number of elements by 73%
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for l6d = 30 and by 87% for l6d = 50. The final meshes are more anisotropic compared to the initial one. We increase

the global aspect ratio qΓh from 1.21 to 95.83 and to 65.04, for l6d = 30 and l6d = 50, respectively.

initial mesh l6d = 30 l6d = 50

Fig. 6: The “Lucy” mesh with 510 180 elements (without edges) as well as the thinned out meshes for l6d = 30 and 141 674 elements as well as for

l6d = 50 and 67 888 elements.

initial mesh l6d = 30 l6d = 50

Fig. 7: A detail of the “Lucy” mesh which is thinned out according to different target edge lengths.

5.3. Real-life Example: Bronchus

Finally, we discuss a mesh of the trachea and the main branches of the bronchi [11]. The geometry is rather complex.

It consists of a sequences of branches that become smaller at each bifurcation. Triangles in the initial mesh are not

aligned according to the curvature of the geometry, see Figure 9.

The surface Γs
0

is built using thin plate splines, ε = 0.1, K = 200, Ov = 3. We set σ to 1 and consider three different

target edge lengths

l6d ∈ {0.25, 0.5, 1.0} .
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initial mesh l6d = 30. l6d = 50.

Fig. 8: A detail of the “Lucy” mesh which is thinned out according to different target edge lengths.

After applying our remeshing procedure the previously problematic triangles disappear and are replaced by new

curvature-aligned ones. This example underlines the flexibility of the proposed adaptation procedure. In fact, it is

possible to achieve different tasks by tuning the parameter l6d. On the one hand, if we consider a large value for l6d, the

remeshing process becomes a mesh simplification method, see the detail in Figure 9 corresponding to l6d = 1.0. On the

other hand, if we consider a relatively short target edge length, our algorithm creates a surface mesh that is smoother

and finer than the initial one, see the detail in Figure 9 corresponding to l6d = 0.25. Moreover, if we tune the target

length in such a way that we obtain approximately the same amount of elements as in Γini
h , the computational effort to

deal with this mesh is the same as before but its triangles are curvature-aligned. See Figure 9 with target edge length

l6d = 0.5.

This observation is numerically verified by the data in Table 2. Here we state the number of elements in the initial

and adapted meshes for different target lengths. In this table, we additionally provide the values of the global aspect

ratio qΓh which quantify the degree of anisotropy.

initial mesh l6d = 0.5 l6d = 1.0 l6d = 0.25

#ele
42 692 34 954 12 026 132 784

100% 82% 28% 311%

qΓh 6.00e+01 1.28e+02 7.53e+02 7.08e+02

Table 2: The number of elements for the bronchus meshes. We provide the percentage of the triangles in the mesh with respect to the number of

triangles in the adapted meshes as well as the global aspect ratios.
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initial mesh l6d = 0.5

l6d = 1.0 l6d = 0.25

Fig. 9: The initial bronchus mesh, courtesy Fetita et al. [11], and the adapted ones for different target edge lengths.

6. Conclusion

We presented a new anisotropic surface remeshing algorithm, which can be used to improve problematic inputs

coming from discrete surface data sets. The anisotropy is guided by the curvature of the surface. Depending on the

target edge length parameter, our new method becomes either a mesh simplification, a surface remeshing or a fill-in
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algorithm. In particular, when the initial mesh is extremely coarse, the algorithm increases the resolution of the poor

initial data. At the moment our method will smooth sharp edges and corners. Future research will need to be conducted

to study how to circumvent this problem.
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