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Discovering the models explaining the hidden relationship between genetic material and tumor pathologies is one of the most
important open challenges in biology and medicine. Given the large amount of data made available by the DNA Microarray
technique, Machine Learning is becoming a popular tool for this kind of investigations. In the last few years, we have been
particularly involved in the study of Genetic Programming for mining large sets of biomedical data. In this paper, we present
a comparison between four variants of Genetic Programming for the classification of two different oncologic datasets: the first one
contains data from healthy colon tissues and colon tissues affected by cancer; the second one contains data from patients affected by
two kinds of leukemia (acute myeloid leukemia and acute lymphoblastic leukemia). We report experimental results obtained using
two different fitness criteria: the receiver operating characteristic and the percentage of correctly classified instances. These results,
and their comparison with the ones obtained by three nonevolutionary Machine Learning methods (Support Vector Machines,
MultiBoosting, and Random Forests) on the same data, seem to hint that Genetic Programming is a promising technique for this
kind of classification.

Copyright © 2009 Leonardo Vanneschi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

High-throughput microarrays have become one of the most
important tools in functional genomics studies, and they
are commonly used to address various biological questions,
like disease classification and treatment prognosis. Although
cancer detection and class discovery have often been studied
over the past years, no general way to work out this problem
has been found yet, probably because there can be many
pathways causing cancer, and a tremendous number of
varieties exist. Recently, array technologies have made it
straightforward to measure and monitor the expression levels
of thousand of genes during cellular differentiation and
response. It has been shown that specific patterns of gene
expression occur during different biological states such as
embryogenesis, cell development, and during normal phys-
iological responses in tissues and cells [1]. The expression
of a gene provides a measure of its activity under certain
biochemical conditions. The key problem of evaluation of
gene expression data is to find patterns in the apparently
unrelated values measured. With increasing numbers of

genes spotted on microarrays, visual inspection of these
data has become impossible, and, hence, the importance
of computer analysis, in particular by means of Machine
Learning, has substantially increased in recent years. Well-
studied datasets of different phenotypes are publicly available
to train and evaluate supervised pattern analysis algorithms
for classification and diagnosis of unknown samples. There-
fore, there is a strong need to build molecular classifiers made
of a small number of genes, especially in clinical diagnosis,
where it would not be practical to have a diagnostic assay to
evaluate hundreds of genes in one test.

In this study, we present an application of Genetic
Programming (GP) [2] for molecular classification of cancer.
In particular, we study two publicly available oncologic
datasets: the first one contains data from healthy colon tissues
and colon tissues affected by cancer; the second one contains
data from patients affected by two different kinds of leukemia
(acute myeloid leukemia and acute lymphoblastic leukemia).
Four versions of GP are studied on those datasets; those GP
variants differ by the way of handling the training set and
by the fact that they may or may not affect training data
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with noise. We test the usefulness of GP using two different
fitness functions: the receiver operating characteristic (ROC)
area under curve (AUC) and the measure of correctly
classified instances (CCIs). For both these performance
measures, results returned by GP are compared with the ones
returned by three well-known nonevolutionary Machine
Learning methods: Support Vector Machines, MultiBoosting
and Random Forests.

Even though (as described in the next section) GP has
been previously applied by other authors to microarray data,
we believe that the present manuscript contains the following
interesting sources of novelty: it contains a study of various
different GP versions with two different fitness measures on
two different datasets, and it compares the results returned
by GP with the ones of other, nonevolutionary, Machine
Learning methods.

The paper is structured as follows. Section 2 presents an
overview of previous and related contributions. Section 3
presents the datasets that we have used, describes the four
presented GP frameworks, and also introduces the three
nonevolutionary Machine Learning methods whose results
have been compared with the GP ones. Section 4 reports
experimental results. In Section 5 we present the genotype
of some of the best solutions found by GP. Finally, Section 6
concludes the paper and proposes some ideas for future
research. The paper is terminated by two appendices where
the most recurrent genes contained in the best solutions
found by GP are defined.

2. State of the Art

Given the large amount of data coming from DNA microar-
ray analysis, in the last few years researchers have started
paying a growing attention to cancer classification using gene
expression. Studies have shown that gene expression changes
are related with different types of cancers. Many different
stochastic Machine Learning methods [3] have already been
applied for microarray data analysis, like k-nearest neighbors
[4], hierarchical clustering [5], self-organizing maps [6],
Support Vector Machines [7, 8], or Bayesian networks [9].
All this different classification methods share some common
issues that make classification a nontrivial task applied on
gene expression data. In fact, the attribute space, or the
number of genes, of the data is often huge: there are usually
thousands to hundred thousands of genes present in each
dataset. Also, if the samples are mapped to points in the
attribute space, they often can be viewed as very sparse
points in a very high dimensional space. Most of existing
classification algorithms were not designed with this kind
of data characteristics in mind. Thus, such a situation
represents a challenge for most classification algorithms.
Overfitting is a major problem due to the high dimension,
and the small number of observations makes generalization
even harder. Furthermore, most genes are irrelevant to
cancer distinction: some researchers proposed to perform a
gene selection prior to cancer classification to reduce data
size, thus improving the running time and remove a large
number of irrelevant genes which improves the classification
accuracy [3].

In the last few years Evolutionary Algorithms (EAs)
[10] have been used for solving both problems of selection
and classification in gene expression data analysis. Genetic
Algorithms (GAs) [11] have been employed for building
selectors where each allele of the representation corresponds
to one gene, and its state denotes whether the gene is selected
or not [12]. GP on the other hand has been shown to work
well for recognition of structures in large datasets [13]. GP
has been applied to microarray data to generate programs
that reliably predict the health/malignancy states of tissue
or classify different types of tissues. An intrinsic advantage
of GP is that it automatically selects a small number of
feature genes during the evolution [14]. The evolution of
classifiers from the initial population seamlessly integrates
the process of gene selection and classifier construction. In
fact, in [15] GP is used to cancer expression profiling data to
select potentially informative feature genes, build molecular
classifiers by mathematical integration of these genes, and
classify tumour samples. Furthermore, GP has been shown
a promising approach for discovering comprehensible rule-
based classifiers from medical data [16] as well as gene
expression profiling data [17]. Results presented in those
contributions are encouraging and pave the way to a further
investigation of GP for this kind of datasets, which is the goal
of this paper.

3. Material and Methods

3.1. Dataset. We test our methods on two publicly available
oncologic datasets: the first one contains data from healthy
colon tissues and colon tissues affected by cancer and will be
called Colon Dataset from now on; the second one contains
data from patients affected by two different kinds of leukemia
(acute myeloid leukemia and acute lymphoblastic leukemia)
and will be called Leukemia Dataset from now on. These two
datasets are described as follows.

3.1.1. Colon Dataset. The Colon Dataset is a collection
of expression measurements from colon biopsy samples
reported in [5]. The dataset consists of 62 samples of
colon epithelial cells collected from colon-cancer patients.
In particular the “tumour” biopsies were extracted from
tumours, and the “normal” biopsies were collected from
healthy parts of the colons of the same patients. The final
assignments of the status of biopsy samples were made by
pathological examination. Gene expression levels in these 62
samples were measured using high-density oligonucleotide
arrays. Of the about 6000 genes represented in these arrays,
2000 genes were selected based on the confidence in the
measured expression levels. The dataset, 62 samples over
2000 genes, is available at http://microarray.princeton.edu/
oncology/affydata/index.html.

3.1.2. Leukemia Dataset. The Leukemia Dataset (first
introduced in [18]) contains data from 72 patients, half of
which affected by acute myeloid leukemia and the remaining
ones affected by lymphoblastic leukemia. For these patients,
7070 genes have been monitored. For measuring the
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expression level of those genes, oligonucleotides microarrays
produced by Affimetrix have been used. Thus, the dataset
is composed by 7070 columns and 72 lines, each of which
labelled with “myeloid” or “lymphoblastic” in order to
separate these two kinds of leukemia. This dataset and a
detailed description of it can be found at http://genecruiser
.broadinstitute.org/cgi-bin/cancer/publications/pub paper
.cgi?mode=view&paper id=43.

3.2. Classification Methods. After a discussion of our GP
framework and variants, the Machine Learning methods
used for comparing results, that is, Support Vector Machines
(SVM), MultiBoosting, and Random Forests, are described
here in a deliberately synthetic way, since they are well-
known and well-established techniques. References to master
those methods are quoted.

3.2.1. Genetic Programming for Classification. Candidate
classifiers (individuals) that are evolved by GP are Lisp-like
tree expressions built using the function set F = {+, ∗,−, /}
and a terminal set T composed by M floating point variables,
where M is the number of columns in the dataset (i.e., M =
2000 for the Colon Dataset and M = 7070 for the Leukemia
Dataset). Thus, GP individuals are arithmetic expressions
(exactly the same method as in [19] has been used to
avoid expressions containing divisions with a denominator
equal to zero). These expressions can be transformed into
binary classifiers (class “normal” for healthy tissues and class
“tumour” for ill ones for the Colon Dataset; class “myeloid”
for acute myeloid leukemia and class “lymphoblastic” for
acute lymphoblastic leukemia for the Leukemia Dataset) by
using a threshold. Here, we use two fitness functions: ROC-
AUC and CCI. In the first case each classifier is evaluated by a
fitness function defined as the area under the ROC curve [20,
21]. In this work, the ROC curve is obtained by considering
20 different threshold values uniformly distributed in the
interval [−1, 1]. For each one of these threshold values, a
point is drawn having as abscissa the false positive rate and
as ordinate the true positive rate obtained by the candidate
classifier using that threshold. The area is calculated using
the trapezoids method. The second type of fitness function is
instead obtained by fixing a particular threshold value (equal
to 0.5 in this work, following [14]) and calculating the CCI.
CCI is defined as the correctly classify instances rate, that
is, CCI = (TP + TN)/N , where TP indicates True Positives,
TN specifies True Negatives, and N is the number of rows in
the dataset.

For calculating both these fitness values during the
presented GP simulations, we have considered a static and
a dynamic way of handling the training set, and we have
considered training data as they are (i.e., without any explicit
modification) or perturbing them with noise. These different
strategies, used for improving GP generalization ability as
suggested in [19], are described as follows.

Static Training Set Handling. Fitness has been calculated
using each line in the training set at each generation for all
individuals in the population.

Dynamic Training Set Handling. The training set is parti-
tioned into 5 subsets, and at each generation only 4 of those
subsets are used to calculate fitness, while one of them is
not used. At each 5 generations, one of the 4 used subsets
is selected and replaced by the subset that was previously
left unused. In this way, the training set is modified in a
cyclic way at each 5 generations. The number of subsets in
which the dataset has been partitioned (5) and the period of
training set modifications (5 generations) have been chosen
by means of a set of experiments, whose results are not
reported here.

No Noise Added to Data. When calculating fitness, each GP
terminal symbol xi has been replaced exactly by the values in
the ith column of the training set.

Gaussian Noise Added to Data. Data have not been used
exactly as they are in the original dataset, but a Gaussian
noise (with average equal to zero and with a standard
deviation equal to the datum value divided by 100) has been
added to them. Each time a GP terminal symbol has to
be evaluated, a new Gaussian perturbation of the original
value is generated (in this way, the same variable is likely
to have two slightly different values in two different fitness
evaluations).

Combining these different methods of handling training
set and data have lead us to define four different versions of
GP, that we call GP0, GP1, GP2, and GP3 for simplicity.

(i) GP0 uses the static training set handling and data
with no noise. This corresponds to standard GP.

(ii) GP1 uses the static training set handling and data
perturbed with Gaussian noise.

(iii) GP2 uses the dynamic training set handling and data
with no noise.

(iv) GP3 uses the dynamic training set handling and data
perturbed with Gaussian noise.

The other parameters we have used in our GP exper-
iments are population size of 200 individuals, ramped
half-and-half initialization, tournament selection of size 7,
maximum tree depth equal to 10, subtree crossover rate pc =
0.95; subtree mutation rate pm = 0.1, maximum number
of generations equal to 500; furthermore, we have used
generational tree-based GP with elitism, that is, unchanged
copy of the best individual on the training set into the next
population at each generation.

3.2.2. Other Machine Learning Methods. In this paragraph we
briefly describe the other machine learning methods used for
our tests. For more details on these algorithms and their use,
the reader is referred to the respective references quoted here
and after.

Support Vector Machines. Support Vector Machines (SVMs)
were originally introduced in [22]. Their aim is to device a
computationally efficient way of learning separating hyper-
planes in a high dimensional feature space. In this work we
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use the implementation of John Platt’s [23] sequential mini-
mal optimization (SMO) algorithm for training the support
vector classifier. Training an SVM requires the solution of a
large quadratic programming (QP) optimization problem.
SMO works by breaking this large QP problem into a series
of smallest ones. Parameter values used in this work are
complexity parameter c equal to 1.0, size of the kernel cache
equal to 1000003, epsilon value for the round-off error equal
to 1 · 10−12, exponent for the polynomial kernel equal to 1.0,
and tolerance parameter equal to 0.001. All these parameter
values correspond to the standard values offered by the Weka
software [24]. These parameters are defined, for instance, in
[23].

MultiBoosting. MultiBoosting is an extension to the clas-
sification method Adaptive Boosting (AdaBoost) [25].
AdaBoost is a meta-algorithm and can be used in con-
junction with other learning algorithms to improve their
performance. AdaBoost is adaptive in the sense that subse-
quent classifiers built are tweaked in favor of those instances
misclassified by previous classifiers. Multiboosting can be
viewed as combining AdaBoost with wagging. It is able to
harness both AdaBoost’s high bias and variance reduction
with wagging’s superior variance reduction. Using C4.5 as
the base learning algorithm, multiboosting is demonstrated
to produce decision committees with lower error than either
AdaBoost or wagging significantly more often than the
reverse over a large representative cross-section of data-
sets. It offers the further advantage over AdaBoost of
suiting parallel execution. For more information, see [26].
Parameter values used in this work are 100 iterations, 3
subcommittees, and weight threshold for weight pruning
equal to 100. All these parameter values correspond to the
standard values offered by the Weka software [24].

Random Forests. Random Forests is an improved Classifica-
tion and Regression Trees method [27]. It works by creating a
large number of classification trees or regression trees. Every
tree is built using a deterministic algorithm, and the trees
are different owing to two factors. First, at each node, a
best split is chosen from a random subset of the predictors
rather than all of them. Secondly, every tree is built using
a bootstrap sample of the observations. The out-of-bag
data, approximately one-third of the observations, are then
used to estimate the prediction accuracy. Unlike other tree
algorithms, no pruning or trimming of the fully grown tree
is involved. In this work we use the Breiman implementation
presented in [28]. A number of trees equal to 300 have been
used in this work. All the other parameters that we have used
have been set to the standard values offered by the Weka
software [24].

4. Experimental Results

Results obtained by the nonevolutionary methods and by
the different GP variants on the Colon Dataset and on
the Leukemia Dataset are reported in Sections 4.1 and 4.2,
respectively.

To obtain these results, we have generated 10 different
partitions of the dataset into training and test set. For each
one of these partitions, 70% of the lines in the dataset chosen
at random (with uniform probability distribution) form the
training set and the remaining 30% the test set (we have
explicitly checked that the same training-test partition does
not appear more than once). To report results in this paper,
for each one of these partitions we have proceeded as follows.

(i) For nondeterministic methods such as GP, Multi-
boosting and Random Forest, we have performed 100
independent executions, and we have retained the
best values of CCI and ROC found on the test set.

(ii) For SVM, which is deterministic in this work, we have
retained the values of CCI and ROC on the test set of
the returned solution.

Thus, we have 10 values of CCI and 10 values of ROC for
each method. We finally report the best, the average, and the
standard deviation of these 10 solutions, both for CCI and
ROC.

Furthermore, we have also randomly generated 500
different training-test set partitions (also in this case 70%
of the lines in the dataset chosen at random with uniform
probability distribution form the training set and the
remaining 30% the test set, where we have explicitly checked
that the same training-test partition does not appear more
than once), and we have executed one run of each one of
the studied methods (both nonevolutionary ones and GP)
for each one of these partitions. Results of these further
experiments are reported in Section 4.3.

Note on Computational Time. We have calculated the com-
putational time for all the executions whose results are
reported in Section 4.3. (i.e., 500 different executions for
each Machine Learning method, each one with a different
training-test partition) on a dedicated machine Intel Pen-
tium III-500 with 128 M RAM, and we have calculated the
averages of all these computational times. The various GP
runs returned an average time of about 153 seconds; approx-
imately the same average amount of time was requested by
Boosting (about 155 seconds). Random Forests requested
a larger average amount of time for one run (about 260
seconds); finally SVM was the fastest method (one run of
SVM requested about 12 seconds on average).

4.1. Results on the Colon Dataset. Table 1 summarizes the
experimental results obtained by the non-evolutionary
methods on the Colon Dataset.

SVM is the method that returns the best average results,
both for CCI and ROC, while the best CCI results are
returned by Random Forests and SVM, and the best ROC
results are returned by Random Forests. We point out
that we have applied these classification methods to our
datasets without any explicit feature selection algorithm nor
preprocessing. The motivation for this is that we wanted to
compare these results with the ones obtained by GP, pointing
out that GP is able to perform an automatic feature selection,
while the other non-evolutionary methods do not have this
capability.
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Table 1: Results returned by the nonevolutionary methods on the
Colon Dataset. 10 different partitions of the dataset into training
and test set have been considered. The best, average and standard
deviations of the best CCI and ROC results obtained on each one of
these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9444 0.7417 0.0810 1 0.8250 0.0755

SVM 0.9444 0.8778 0.0438 0.9545 0.8525 0.0874

Multi
Boosting

0.8889 0.7850 0.0577 0.9861 0.8152 0.0488

Table 2: Results returned by the studied GP variants on the Colon
Dataset. The same 10 partitions of the dataset into training and
test set as in Table 1 have been considered. The best, average and
standard deviations of the best CCI and ROC results obtained on
each one of these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8926 0.038 1 0.9437 0.0472

GP1 1 0.8946 0.042 1 0.9444 0.0455

GP2 1 0.8947 0.039 1 0.9437 0.0455

GP3 1 0.895 0.042 1 0.9555 0.0466

Table 2 reports the results obtained by the different GP
variants studied using the same 10 training-test partitions
as in Table 1. Comparing the results reported in Table 2
with the ones reported in Table 1, we can remark that all
GP variants are able to find an ideal solution both for CCI
and ROC, which is not the case for the non-evolutionary
methods (with the exception of Random Trees for ROC).
Also comparing the average values, we can remark that all
GP variants outperform all non-evolutionary methods, and
the respective standard deviations seem to hint that the
difference between GP performances and the ones of the
other methods is statistically relevant.

Differences between the various GP variants seem
marginal, which hints that both the dynamic dataset han-
dling and the use of Gaussian noise are not useful to improve
GP generalization ability, at least for this application. By the
way, it has to be remarked that performances of standard
GP (GP0) are already (informally) rather “high”, and thus
difficult to improve. In the future, we plan to investigate
the gain in using GP1, GP2, and GP3 for more complex
problems, where GP0 is not able to find good solutions.

4.2. Results on the Leukemia Dataset. Results obtained by
the studied non-evolutionary methods are summarized in
Table 3. For the Leukemia Dataset, MultiBoosting is the
method that has returned both the best results and the best
average results, both for CCI and ROC.

Table 4 reports the results obtained by the different GP
variants studied using the same 10 training-test partitions
as in Table 3. Also in this case, all GP variants outperform
all non-evolutionary methods, and standard deviation values

Table 3: Results returned by the nonevolutionary methods on the
Leukemia Dataset. 10 different partitions of the dataset into training
and test set have been considered. The best, average, and standard
deviations of the best CCI and ROC results obtained on each one of
these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9048 0.7191 0.0939 0.9500 0.6999 0.1270

SVM 0.8571 0.7476 0.0552 0.8375 0.7274 0.0924

Multi
Boosting

0.9524 0.7548 0.0733 1 0.7500 0.0895

Table 4: Results returned by the studied GP variants on the
Leukemia Dataset. The same 10 partitions of the dataset into
training and test set as in Table 3 have been considered. The best,
average and standard deviations of the best CCI and ROC results
obtained on each one of these 10 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8323 0.0390 1 0.8491 0.0047

GP1 1 0.8592 0.0425 1 0.8777 0.0400

GP2 1 0.8325 0.0395 0.9778 0.8500 0.0392

GP3 1 0.8607 0.0407 0.9904 0.8778 0.0381

seem to hint that the differences between the average results
obtained by GP and the average ones obtained by the best
non-evolutionary method on this dataset (MultiBoosting)
are statistically relevant.

All GP variants have been able to produce ideal solutions
for CCI, while only GP0 and GP1 have been able to generate
ideal ROC values. We finally remark that, also for the
Leukemia Dataset, perturbing data with Gaussian noise or
handling the training set in a dynamic way is not beneficial.

4.3. Further Experiments. In Sections 4.1 and 4.2, 10 different
training-test set partitions were considered and, for each
partition, 100 independent runs of each one of the nondeter-
ministic methods (random forests, multiboosting and GP)
were executed.

In this section we present the results that we have
obtained by considering 500 different training-test partitions
and executing one run of each method for each different
partition. Best, average, and standard deviations of the
obtained results are reported. The other used parameters are
exactly the same as the ones used to produce the results of
Sections 4.1 and 4.2.

Table 5 shows the results obtained by the nonevolution-
ary methods on these 500 different training-test partitions
for the Colon dataset. The method that returns the best
average results is SVM, both for CCI and ROC, even though
SVM is the only method that is not able to obtain 1 as the
best ROC.

Results obtained by the GP variants on the same 500
training-test set partitions are shown in Table 6. All the
GP variants have returned better average CCI and ROC
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Table 5: Results returned by the non-evolutionary methods on the
Colon Dataset. 500 different partitions of the dataset into training
and test set have been considered. The best, average, and standard
deviations of the CCI and ROC results obtained on each one of these
500 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9444 0.8368 0.0688 1 0.8578 0.0627

SVM 0.9444 0.8567 0.0396 0.9545 0.864 0.075

Multi
Boosting

0.9444 0.8295 0.051 1 0.823 0.0436

Table 6: Results returned by the studied GP variants on the
Colon Dataset. The same 500 partitions of the dataset into
training and test set as in Table 5 have been considered. The best,
average, and standard deviations of the best CCI and ROC results
obtained executing one run on each one of these 500 partitions
are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8999 0.0497 1 0.9472 0.0440

GP1 1 0.9038 0.0499 1 0.9596 0.0345

GP2 1 0.9042 0.0446 1 0.9528 0.0385

GP3 1 0.9017 0.0454 1 0.9600 0.0368

than the non-evolutionary methods. Furthermore, all the
GP variants have returned a best CCI and best ROC equal
to 1. The differences between the GP variants seem to be
marginal. Finally, all the GP variants show a rather stable
behavior given by the relatively small values of the standard
deviations.

Table 7 reports the values returned by the non-
evolutionary methods on 500 different training-test par-
titions of the Leukemia dataset. This time, the method
that has returned the best average ROC and CCI results is
MultiBoosting.

The results returned by the GP variants on the same
500 training-test set partitions of the Leukemia dataset are
presented in Table 8. Also in this case, all the studied GP
versions overcome all the studied non-evolutionary methods
both for the average CCI and the average ROC. A best CCI
and a best ROC value equal to 1 is found by each GP variant,
and standard deviations are rather small, thus confirming
that also on this dataset the studied GP variants have a rather
stable behavior.

5. The Best Solutions Found by GP

In this section, we report the genotype of some of the best
solutions found by GP in the form of expressions in infix
notation, and successively we describe the most recurrent
genes contained in them (Appendices A and B). These
expressions are reported here to allow the reader to have
an idea of how the best solutions found by GP on the test
sets look like; we do not pretend them to necessarily be the

Table 7: Results returned by the non-evolutionary methods on
the Leukemia Dataset. 500 different partitions of the dataset into
training and test set have been considered. The best, average, and
standard deviations of the CCI and ROC results obtained on each
one of these 500 partitions are reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

Random
Forests

0.9048 0.7728 0.0747 1 0.7581 0.0873

SVM 0.9444 0.8153 0.0438 0.8375 0.7368 0.0835

Multi
Boosting

0.9444 0.8267 0.0611 1 0.7974 0.081

Table 8: Results returned by the studied GP variants on the
Leukemia Dataset. The same 500 partitions of the dataset into
training and test set as in Table 7 have been considered. The best,
average, and standard deviations of the best CCI and ROC results
obtained executing one run on each one of these 500 partitions are
reported.

CCI ROC

Best Average Std. Dev. Best Average Std. Dev.

GP0 1 0.8348 0.0419 1 0.8469 0.0488

GP1 1 0.8569 0.0427 1 0.8890 0.0481

GP2 1 0.8304 0.0477 1 0.8406 0.0413

GP3 1 0.8560 0.0392 1 0.8871 0.0470

model explaining the relationships between gene expressions
and the studied pathologies. In order to build such a model,
collaborations with domain experts are needed (and we are
planning them in our future activity). Nevertheless, we hope
that reporting those expressions here may be a starting point
for this new and challenging research. Furthermore, we also
report scatterplots of the Z-scores of the different genes
contained in the best solutions found by GP (like, e.g., in
[15]), and we show how those values are correlated when
ROC and CCI are used as fitness functions.

5.1. Colon Dataset. We first report a solution with CCI = 1
on the test set found by GP0. Reported as an expression in
infix notation, this solution is found in Algorithm 1.

We remark that GP has performed an automatic feature
selection; in fact, this solution contains only 15 over the 2000
possible genes. This fact distinguishes GP from the other
studied Machine Learning, that can use a subset of features
only if an explicit feature selection algorithm is executed
before training (preprocessing).

One of the solutions with area under the ROC curve on
the test set equal to 1 returned by GP0 is

K03460%X59131∗ (X66924 + H20709)
- (T74896 + U28963)∗ (R61359 + T86444)
- (U20659 - T81460)∗ R53941.

In this case, GP’s feature selection has been even stronger:
only 11 of the 2000 available genes are used by GP.
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IF ((X51416+R99200∗X06614)%(H23544∗X61123
-T47213+M34344+(H79575-R50864)∗U18920
+R46739%(U20659+H04333)

-R53941+L09604)>0.5)
THEN Class = "tumour"

ELSE Class = "normal"

Algorithm 1

IF (X05409%M28130+(U94855-M84526)%(U04270

∗X55668%D28473

-(D38498-Z37976)%M96326)> 0.5)

THEN Class = "tumour"

ELSE Class = "normal"

Algorithm 2

It is a widely agreed upon idea that only a restricted
number of genes are correlated with tumour pathologies
(those genes are often identified by domain experts as
biomarkers). For this reason, the ability of GP to retain
a limited number of genes into the proposed solutions is
interesting. In order to identify and study the most important
genes found by GP, for each one of the 4000 GP independent
runs that we have performed to obtain the results reported
in this paper (100 independent runs for each one of the 10
training-test different partitions and for each one of the 4 GP
variants), we have retained the best solution found on the
test set, both for CCI and ROC. In all those 8000 solutions,
we have counted the number of occurrences of each gene in
the dataset. We finally have extracted the 30 most recurrent
genes. A detailed description of those genes is contained in
Appendix A.

Furthermore, we have considered all the genes that have
appeared in at least one best solution found by GP using
CCI and in at least one best solution found by GP using
ROC (i.e., we have considered the set of genes contained
in the best solutions found by GP using CCI, set of genes
contained in the best solutions found by GP using ROC, and
we have considered the intersection between these two sets).
In Figure 1 we show the normalized Z-Score of these genes.

Gene’s normalized Z-Score has been studied, for
instance, in [15], and it is defined as follows: for a given gene
i, Z-Score = (Si − E(Si))/σ , where Si denotes the number of
times genes i being contained in the studied GP solutions,
E(Si) is the expected number of times for gene i being
contained in those solutions, and σ denotes the square root
of the variance. The calculation of E(Si) is ESi = (number
of genes contained in the studied GP solutions)/(number of
genes in the initial gene pool).

Figure 1 shows the correlation between gene’s normal-
ized Z-Score for the two fitness criteria for the four versions
of GP that we have studied. For all these GP versions,
normalized Z-scores seem positively correlated (Figure 1

also reports the axis bisector, which represents the ideal
correlation).

5.2. Leukemia Dataset. The genotype of one of the solutions
with CCI = 1 found by GP0 is found in Algorithm 2.

Also in this case, GP has operated an automatic feature
selection, given that this solution contains only 10 of the 7070
possible genes.

The genotype of a solution with area under the ROC
curve on the test set equal to 1 returned by GP0 is

(U15782 - J04990)%X04707
+ X62822 - M27891∗ M96326.

It contains only 6 of the 7070 possible genes.
Also for the Leukemia dataset for each one of the 4000

GP independent runs, we have retained the best solutions
found on the test set, both for CCI and ROC. In all those
8000 solutions, we have counted the number of occurrences
of each gene in the dataset. We finally have extracted the 30
most recurrent genes. A detailed description of those genes is
contained in Appendix B.

In Figure 2 we report the correlation between the nor-
malized Z-Scores of the genes that appear at least once in
the best solutions found by GP using CCI and at least once
in the best solutions found by GP using ROC. Also in this
case, Z-Scores seem positively correlated (we also report
the axis bisector in figure, to give an intuition of the ideal
correlation).

6. Conclusions and Future Work

Four different variants of Genetic Programming (GP) for
classification have been presented in this paper. The differ-
ence between these four versions is that they may/may not
use a cyclic algorithm to dynamically handle the training set
and they may/may not perturb input data with (Gaussian)
noise. These GP variants have been applied to two publicly
available biomedical microarray datasets representing a
collection of expression measurements from colon biopsy
experiments and leukemia. One the main characteristic of
these datasets is that they both contain a large number
of features—that is, information about gene expressions—
(2000 in the case of the colon dataset and 7070 in the case
of the leukemia dataset) and a low number of samples (62
in the case of the Colon dataset and 72 for the leukemia
one). We believe that GP may be a suitable method to mine
these datasets, given the ability of GP to deal with complex
expressions and structures and to perform an automatic
feature selection.

GP experiments have been executed using two different
fitness functions: the ROC and the CCI. The first one of
these fitness measures is calculated using a set of threshold
values (20 uniformly distributed values in the range [−1, 1]
in this work), while the second one is obtained by fixing
a predefined threshold value (0.5 in this work, following
[14]). Both those fitness measures have received a note-
worthy attention in past literature, but (to the best of our
knowledge) they have never been studied together before in
GP applications.
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Figure 1: Normalized Z-score of the most recurrent common genes in the best solutions found by GP using CCI and ROC as fitness functions
for the Colon dataset. (a): GP0, (b): GP1, (c): GP2, (d): GP3.

The experimental results returned by GP have been
compared with the ones of three non-evolutionary Machine
Learning methods (Support Vector Machines, MultiBoost-
ing, and Random Forests). They show that GP is able to find
better CCI and ROC results than the best non-evolutionary
methods for both datasets. Even more interestingly, average
results returned by GP (over a number of runs performed
with different training-test partitions of the dataset) are
better than the best ones returned by all the other non-
evolutionary methods.

Furthermore, the reported results have shown no clear
difference in the performances of the different GP variants,
and this seems to hint that using the proposed dynamic
algorithm to handle the training set or perturbing input
data with Gaussian noise is not helpful to improve GP
generalization ability, at least for this particular applica-
tion.

We suspect that this is due to the fact that “standard GP”
has good performances on these datasets, which are difficult

to improve. The other GP variants deserve to be further
tested on more difficult problems, where standard GP fails
to find good quality solutions or requests too large amounts
of computational resources.

These results are promising, even though they represent
just a first preliminary step of a long term work, in which
we wish to employ GP for cancer classifications in a more
structured way and large scale. Many future activities are
planned. First of all, we will train our GP system in a more
sophisticated way, in order to improve its generalization
ability. For instance, we could use more than one fitness
criteria on the training set, following the idea presented
in [29], where multioptimization on training is shown to
increment GP generalization ability in many applications.
For classification, it would be particularly interesting to use
both ROC and CCI during training. Furthermore, we are
planning to improve GP using more sophisticated methods
for seeding the initial population compared to the standard
ramped half and half method used here.
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Figure 2: Normalized Z-score of the most recurrent common genes in the best solutions found by GP using CCI and ROC as fitness functions
for the Leukemia dataset. (a): GP0, (b): GP1, (c): GP2, (d): GP3.

One of the main limitations of this work is that we
did not use any application specific problem knowledge: a
“semantic” analysis of the best solutions found by GP could
have helped us to generate new and possibly more effective
solutions. We are currently working in this direction: we
are trying to develop a sort of “application-based” feature
selection, and in parallel we are trying to give a biological
interpretation to solutions found by GP, trying to infer
interesting properties.

Appendices

A. Most Recurrent Genes Contained in the Best
Solutions Found by GP for the Colon Dataset

In Table 9 we describe the most recurrent genes con-
tained in the best solutions on the test set of the Colon
Dataset returned by GP. For a more detailed discussion of
these genes, see http://microarray.princeton.edu/oncology/
affydata/index.html.

The first column of this table contains the gene
IDs. They are entries of the GenBank database (see e.g.,
http://www.ncbi.nlm.nih.gov/Genbank/ for a description
of this database of known genes). Other informations
about these genes can be obtained by using these IDs as
entries at the page: http://smd.stanford.edu/cgi-bin/source/
sourceBatchSearch.

B. Most Recurrent Genes Contained in
the Best Solutions Found by GP for
the Leukemia Dataset

In Table 10 we present the most recurrent genes contained
in the best solutions on the test set of the Leukemia Dataset
returned by GP. For a more detailed discussion of these
genes, see http://genecruiser.broadinstitute.org/cgi-bin/can-
cer/publications/pub paper.cgi?mode=view&paper id=43.

Also in this case, as for the table presented in Appendix A,
the first column of this table contains the gene IDs.



10 Journal of Artificial Evolution and Applications

Table 9: Definition of the most recurrent genes contained in the best solutions found by GP for the Colon Dataset.

GENE ID Gene description

H75955
C2H2-type zinc finger proteins, such as ZNF238, act on the molecular level as transcriptional activators or repressors and
are involved in chromatin assembly.

L41268

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and
subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome
19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The KIR proteins are classified by the number of extracellular
immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. The ligands for
several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in
regulation of the immune response.

R99200

The protein encoded by this gene is a beta-amyloid peptide-binding protein. Beta-amyloid peptide has been established to
be a causative factor in neuron death and the consequent dimunition of cognitive abilities observed in Alzheimer’s disease.
This protein may be a target of neurotoxic beta-amyloid peptide and may mediate cellular vulnerability to beta-amyloid
peptide toxicity through a G protein-regulated program of cell death.

R53941
The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins.
Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth,
cytoskeletal reorganization, and the activation of protein kinases.

R51502

This gene encodes one of four subunits of the splicing factor 3B. The protein encoded by this gene cross-links to a region in
the pre-mRNA immediately upstream of the branchpoint sequence in pre-mRNA in the prespliceosomal complex A. It also
may be involved in the assembly of the B, C, and E spliceosomal complexes. In addition to RNA-binding activity, this
protein interacts directly and highly specifically with subunit 2 of the splicing factor 3B.

X61123
The BTG1 gene locus has been shown to be involved in a t(8;12)(q24;q22) chromosomal translocation in a case of B-cell
chronic lymphocytic leukemia. It is a member of a family of antiproliferative genes. BTG1 expression is maximal in the
G0/G1 phases of the cell cycle and downregulated when cells progressed through G1. It negatively regulates cell proliferation.

H05814
This gene encodes a DEAD box protein. DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp
(DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA
secondary structure.

X66363 It may play a role in signal transduction cascades in terminally differentiated cells. This gene is thought to escape X
inactivation.

K03460 Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain
and one at a nonexchangeable site on the alpha-chain.

K02566

The active peptide bradykinin that is released from HMW-kininogen shows a variety of physiological effects: (4A) influence
in smooth muscle contraction; (4B) induction of hypotension; (4C) natriuresis and diuresis; (4D) decrease in blood glucose
level; (4E) it is a mediator of inflammation and causes (4E1) increase in vascular permeability; (4E2) stimulation of
nociceptors (4E3) release of other mediators of inflammation (e.g., prostaglandins); (4F) it has a cardioprotective effect
(directly via bradykinin action, indirectly via endothelium-derived relaxing factor action).

H05978
It could have a dual role in dynein targeting and in ACTR1A/Arp1 subunit of dynactin pointed-end capping. It could be
involved in ACTR1A pointed-end binding and in additional roles in linking dynein and dynactin to the cortical
cytoskeleton.

U20659
This gene encodes the seventh largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger
RNA in eukaryotes. In yeast, the association of this subunit with the polymerase under suboptimal growth conditions
indicates that it may play a role in regulating polymerase function.

X17042

This gene encodes a protein best known as a hematopoietic cell granule proteoglycan. Proteoglycans stored in the secretory
granules of many hematopoietic cells also contain a protease-resistant peptide core, which may be important for
neutralizing hydrolytic enzymes. This encoded protein was found to be associated with the macromolecular complex of
granzymes and perforin, which may serve as a mediator of granule-mediated apoptosis.

Z49269
This gene, CCL14, is one of several CC cytokine genes clustered on 17q11.2. The CC cytokines are secreted proteins
characterized by two adjacent cysteines. The cytokine encoded by this gene induces changes in intracellular calcium
concentration and enzyme release in monocytes.

H41017
Mitochondrial creatine (MtCK) kinase is responsible for the transfer of high-energy phosphate from mitochondria to the
cytosolic carrier, creatine. Many malignant cancers with poor prognosis have shown overexpression of ubiquitous
mitochondrial creatine kinase.

L09159 It regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin
stress fibers.

U31216
L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and
metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function
and can be perturbed in many neuropathologic conditions.
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Table 9: Continued.

GENE ID Gene description

H20709
Myosin is a hexameric ATPase cellular motor protein. This gene encodes a myosin alkali light chain, that is, expressed in
smooth muscle and nonmuscle tissues.

R15876 This gene encodes subunit 3 of the splicing factor 3a protein complex.

R43914

DNA- and RNA-binding protein is involved in several nuclear processes such as pre-mRNA splicing, apoptosis, and
transcription regulation. In association with FUBP1 it regulates MYC transcription at the P2 promoter through the
core-TFIIH basal transcription factor, involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to
repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor
progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells.

H79575
This gene encodes fibronectin, a glycoprotein present in a soluble dimeric form in plasma, and in a dimeric or multimeric
form at the cell surface and in extracellular matrix. Fibronectin is involved in cell adhesion and migration processes
including blood coagulation, host defense, and metastasis.

Table 10: Definition of the most recurrent genes contained in the best solutions found by GP on the Leukemia Dataset.

GENE ID Gene description

M20203

Elastases form a subfamily of serine proteases that hydrolyze many proteins in addition to elastin. Humans have six elastase
genes which encode the structurally similar proteins elastase 1, 2, 2A, 2B, 3A, and 3B. Elastase 2 hydrolyzes proteins within
specialized neutrophil lysosomes, called azurophil granules, as well as proteins of the extracellular matrix following the protein’s
release from activated neutrophils.

M28130

The protein encoded by this gene is a member of the CXC chemokine family. This chemokine is one of the major mediators of
the inflammatory response. This chemokine is secreted by several cell types. It functions as a chemoattractant and is also a
potent angiogenic factor. This gene is believed to play a role in the pathogenesis of bronchiolitis, a common respiratory tract
disease caused by viral infection.

M84526

The protein encoded by this gene is a member of the trypsin family of peptidases. The encoded protein is a component of the
alternative complement pathway best known for its role in humoral suppression of infectious agents. This protein is also a
serine protease, that is, secreted by adipocytes into the bloodstream. Finally, the encoded protein has a high level of expression
in fat, suggesting a role for adipose tissue in immune system biology.

M96326
Azurophil granules, specialized lysosomes of the neutrophil, contain at least 10 proteins implicated in the killing of
microorganisms. The protein encoded by this gene is an azurophil granule antibiotic protein, with monocyte chemotactic and
antibacterial activity. It is also an important multifunctional inflammatory mediator.

Z69881

This gene encodes one of the SERCA Ca(2+)-ATPases, which are intracellular pumps located in the sarcoplasmic or
endoplasmic reticula of muscle cells. This enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium
from the cytosol to the sarcoplasmic reticulum lumen and is involved in calcium sequestration associated with muscular
excitation and contraction. Alternative splicing results in multiple transcript variants encoding different isoforms.

D80006 It may provide positional cues for axon pathfinding and patterning in the central nervous system.

J04990

The protein encoded by this gene, a member of the peptidase S1 protein family, is found in azurophil granules of neutrophilic
polymorphonuclear leukocytes. The encoded protease has a specificity similar to that of chymotrypsin C, and may participate
in the killing and digestion of engulfed pathogens and in connective tissue remodeling at sites of inflammation. Transcript
variants utilizing alternative polyadenylation signals exist for this gene.

U32944

Cytoplasmic dyneins are large enzyme complexes with a molecular mass of about 1200 kD. They contain two force-producing
heads formed primarily from dynein heavy chains and stalks linking the heads to a basal domain, which contains a varying
number of accessory intermediate chains. The complex is involved in intracellular transport and motility. The protein described
in this record is a light chain and exists as part of this complex but also physically interacts with and inhibits the activity of
neuronal nitric oxide synthase. Binding of this protein destabilizes the neuronal nitric oxide synthase dimer, a conformation
necessary for activity, and it may regulate numerous biologic processes through its effects on nitric oxide synthase activity.

X55668
Polymorphonuclear leukocyte serine protease degrades elastin, fibronectin, laminin, vitronectin, and collagen types I, III, and
IV (in vitro) and causes enphysema when administered by tracheal insufflation to hamster.

X74262

This gene encodes a ubiquitously expressed nuclear protein which belongs to a highly conserved subfamily of WD-repeat
proteins. It is present in protein complexes involved in histone acetylation and chromatin assembly. It is part of the Mi-2
complex which has been implicated in chromatin remodeling and transcriptional repression associated with histone
deacetylation. This encoded protein is also part of corepressor complexes, which is an integral component of transcriptional
silencing. It is found among several cellular proteins that bind directly to retinoblastoma protein to regulate cell proliferation.
This protein also seems to be involved in transcriptional repression of E2F-responsive genes.
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Table 10: Continued.

GENE ID Gene description

M26602
Defensins are a family of microbicidal and cytotoxic peptides thought to be involved in host defense. The protein encoded by
this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated
host defense.

M57731
It is produced by activated monocytes and neutrophils and expressed at sites of inflammation. Hematoregulatory chemokine,
which, in vitro, suppresses hematopoietic progenitor cell proliferation. GRO-beta(5-73) shows a highly enhanced
hematopoietic activity.

M27891
This gene is located in the cystatin locus and encodes the most abundant extracellular inhibitor of cysteine proteases, which is
found in high concentrations in biological fluids and is expressed in virtually all organs of the body. A mutation in this gene has
been associated with amyloid angiopathy.

U05259
The B lymphocyte antigen receptor is a multimeric complex that includes the antigen-specific component, surface
immunoglobulin (Ig). Surface Ig noncovalently associates with two other proteins, Ig-alpha and Ig-beta, which are necessary for
expression and function of the B-cell antigen receptor. This gene encodes the Ig-alpha protein of the B-cell antigen component.

U85767

This gene is one of several cytokine genes clustered on the q-arm of chromosome 17. Cytokines are a family of secreted proteins
involved in immunoregulatory and inflammatory processes. The CC cytokines are proteins characterized by two adjacent
cysteines. The cytokine encoded by this gene displays chemotactic activity on resting T lymphocytes and monocytes, lower
activity on neutrophils and no activity on activated T lymphocytes. The protein is also a strong suppressor of colony formation
by a multipotential hematopoietic progenitor cell line.

J04615

The protein encoded by this gene is one polypeptide of a small nuclear ribonucleoprotein complex and belongs to the snRNP
SMB/SMN family. The protein plays a role in pre-mRNA processing, possibly tissue-specific alternative splicing events.
Although individual snRNPs are believed to recognize specific nucleic acid sequences through RNA-RNA base pairing, the
specific role of this family member is unknown.

X17042

This gene encodes a protein best known as a hematopoietic cell granule proteoglycan. Proteoglycans stored in the secretory
granules of many hematopoietic cells also contain a protease-resistant peptide core, which may be important for neutralizing
hydrolytic enzymes. This encoded protein was found to be associated with the macromolecular complex of granzymes and
perforin, which may serve as a mediator of granule-mediated apoptosis.

M63438
HLA-C belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain
and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in
the immune system by presenting peptides derived from endoplasmic reticulum lumen.

X95735

Focal adhesions are actin-rich structures that enable cells to adhere to the extracellular matrix and at which protein complexes
involved in signal transduction assemble. Zyxin is a zinc-binding phosphoprotein that concentrates at focal adhesions and
along the actin cytoskeleton. Zyxin has an N-terminal proline-rich domain and three LIM domains in its C-terminal half. The
proline-rich domain may interact with SH3 domains of proteins involved in signal transduction pathways while the LIM
domains are likely involved in protein-protein binding. Zyxin may function as a messenger in the signal transduction pathway
that mediates adhesion-stimulated changes in gene expression and may modulate the cytoskeletal organization of actin bundles.

M69043

It inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL dimers in the cytoplasm through masking of
their nuclear localization signals. On cellular stimulation by immune and proinflammatory responses, it becomes
phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to tranlocate to the nucleus and
activate transcription.

U49869

This gene encodes ubiquitin, one of the most conserved proteins known. Ubiquitin is required for ATP-dependent,
nonlysosomal intracellular protein degradation of abnormal proteins and normal proteins with a rapid turnover. Ubiquitin is
covalently bound to proteins to be degraded and presumably labels these proteins for degradation. Ubiquitin also binds to
histone H2A in actively transcribed regions but does not cause histone H2A degradation, suggesting that ubiquitin is also
involved in regulation of gene expression. This gene consists of three direct repeats of the ubiquitin coding sequence with no
spacer sequence. Consequently, the protein is expressed as a polyubiquitin precursor with a final amino acid after the last repeat.

M17733
This gene encodes an actin sequestering protein which plays a role in regulation of actin polymerization. The protein is also
involved in cell proliferation, migration, and differentiation. This gene escapes X inactivation and has a homolog on
chromosome Y.

M19507
Myeloperoxidase (MPO) is a heme protein synthesized during myeloid differentiation that constitutes the major component of
neutrophil azurophilic granules.

U46751
It is an adapter protein which binds ubiquitin and may regulate the activation of NFKB1 by TNF-alpha, nerve growth factor
(NGF), and interleukin-1. It may play a role in titin/TTN downstream signaling in muscle cells, may regulate signaling cascades
through ubiquitination, may be involved in cell differentiation, apoptosis, immune response, and regulation of K(+) channels.

X52056
This gene encodes an ETS-domain transcription factor that activates gene expression during myeloid and B-lymphoid cell
development.
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They are entries of the GenBank database (see e.g., http://
www.ncbi.nlm.nih.gov/Genbank/ for a description of this
database of known genes). Other informations about these
genes can be obtained by using these IDs as entries at the page
http://smd.stanford.edu/cgi-bin/source/sourceBatchSearch.
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