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A B S T R A C T

Analytical tools that estimate the directed information flow between simultaneously recorded neural popula-
tions, such as directed information or Granger causality, typically focus on measuring how much information is
exchanged between such populations. However, understanding how sensory information is processed through
the brain and how it is used to generate behaviors requires estimating specifically the amount of stimulus
information that is transmitted. Here we use the concept of intersection information to make progress on how to
perform this measure. We develop the concept of transmitted intersection information, which measures how
much of the stimulus information present in one population at a certain time is transmitted to a second popu-
lation at a later time. We show that this measure of stimulus-specific information transfer has several appealing
properties, such as being non-negative, and being bounded by the amount of stimulus information present in
each of the two populations and by the total amount of information transmitted between the two populations.
Applying this measure to simulated neurons or pools of neurons connected by feed-forward synapses, we show
that it can discern cases when the information transmitted from one population to another is about specific
stimulus features encoded by the sending population from cases in which the information transmitted is not
about the stimuli. We also show that this measure has a good statistical sensitivity from trial numbers that can be
collected in real data. Our results highlight the promise of using the concept of intersection information to map
stimulus-specific information transfer across neural populations.

1. Introduction

The development of tools to monitor simultaneously the activity of
populations of neurons has opened up the possibility to understand how
information about important external events, such as sensory stimuli, is
transmitted across neural populations. Addressing this question is im-
portant for many reasons. It is crucial to understand more about the
biophysical mechanisms that regulate the transmission and dynamic
routing of information across the nervous system. Moreover, it is im-
portant to understand how information about the external world travels
through the nervous system and generates important behaviors such as
the conscious perception of these external stimuli (Van Vugt et al.,
2018) or appropriate decisions taken in response to the presence of
these external stimuli (Runyan et al., 2017).

Analytical tools derived from the Wiener-Granger principles of
causality (Wiener, 1956; Granger, 1969; Bressler and Seth, 2011) and
from Information Theory (Massey, 1990; Schreiber, 2000) have been

proposed to measure how much information a neural population
transmits to another one. These tools for the analysis of simultaneous
recordings from multiple neurons or from multiple neural circuits have
led to important insights on how information propagates through the
nervous system, for example along feed-forward, feedback and lateral
connections in cortex (Besserve et al., 2015; Bosman et al., 2012; Van
Kerkoerle et al., 2014). However, it is still not known, from the ana-
lytical point of view, how to measure not only if some information is
transmitted from a population to the next, but also whether the ex-
changed information is about specific sets or subsets of sensory stimuli,
or whether it is about other things, such as internal states. Although
some initial attempts have been proposed to address this issue (Ince
et al., 2015), much theoretical and conceptual work is still needed in
order to develop the tools to map, from neural recordings, stimulus-
specific information processing in the brain.

In recent work, we have introduced the new concept of intersection
information (Panzeri et al., 2017; Pica et al., 2017b), defined as the
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information about sensory stimuli in neural activity that is used to
generate a behavioral output. This tool is useful to investigate if sensory
information in a neural code travels through the readout mechanisms in
the brain and contributes to generate an output. In this article, we ex-
plore how to extend this recent analytical concept to potentially mea-
sure stimulus-specific transmission of information between two neural
populations, a sender and a receiver.

2. Material and methods

2.1. Definition and derivation of transmitted intersection information

To measure the information about the stimulus that is transmitted
between two neural populations, we generalize the definition of inter-
section information (III) that we introduced in Pica et al. (2017b) to
study perceptual discrimination. In this Subsection we describe the
rationale and the mathematics of the III measure, with specific appli-
cation to the problem of neural information transmission.

In a typical stimulus information transmission study, suppose the
subject was presented with a discrete stimulus S (for example, the
identity of a certain face presented as a visual stimulus). Suppose fur-
ther that during such presentations we recorded simultaneously activity
from two neural populations. Suppose that we quantify the activity of
the two populations with two (possibly multidimensional) variables R1
and R2, which for simplicity we assume to be discrete. For example, the
features describing the variables R1 and R2 could be the total number
of spikes of each population in a given trial, discretized in a given
number of bins R. We assume that the joint trivariate probability dis-
tribution p(S, R1, R2) has been empirically estimated by sampling these
variables simultaneously over repeated experimental trials. Shannon's
mutual information can be used to estimate the pairwise statistical as-
sociations within the set of variables {S, R1, R2}. I(S : R1) and I(S : R2)
measure the sensory information carried about the experimental stimuli
by the activity of the first and second neural population, respectively,
whereas I(R1 : R2) measures the relationship between the activity of the
two populations, and can be thus taken as a measure of the total in-
formation they exchange. To measure how much information about the
stimulus S is routed through the neural feature R1 and transmitted to
the neural feature R2, we propose a novel information-theoretic mea-
sure, III(S ; R1 ; R2). The quantification of this specific information flow
involving three stochastic variables requires the use of more sophisti-
cated information-theoretic tools than the pairwise Shannon mutual
information. To address this problem, we build on the Partial
Information Decomposition (PID) framework (Williams and Beer, 2010;
Bertschinger et al., 2014; Harder et al., 2013; Griffith and Koch, 2014),
which relies on the decomposition of the mutual information between
two source variables and one target variable into four non-negative
information components. These components quantify shared (re-
dundant), unique, and complementary (synergistic) modes of in-
formation sharing among the three variables, and correspond to finer
information quantities than mutual information. To study how stimulus
information flows across R1 and R2, it is convenient to consider the
following PID decomposition:

= +
+ +

I R S R R S R R S R
R S R R R S

( 2: ( , 1)) SI( 2: { ; 1}) CI( 2: { ; 1})
UI( 2: { \ 1}) UI( 2: { 1\ }), (1)

where

• the shared part SI(R2 : {S ; R1}) is the information about R2 that we
can extract from any of S and R1, that is the redundant information
about R2 shared between S and R1;
• the first unique component UI(R2 : {S \ R1}) is the unique informa-
tion about R2 that we can only extract from S but not from R1. It
thus includes stimulus information relevant to R2 that is not re-
presented in R1;

• the second unique UI(R2 : {R1 \ S}) is the unique information about
R2 that we can only extract from R1 but not from S;
• the complementary component CI(R2 : {S ; R1}) is the information
about R2 that can only be gathered if both S and R1 are simulta-
neously observed with R2, but that is not available when only one
between S and R1 is simultaneously observed with R2. More pre-
cisely, it is the part of I(R2 : (S, R1)) which does not overlap with I
(S ; R2) nor with I(R1 : R2).

The decomposition in Eq. (1) is unequivocally specified after we
define the shared information SI(R2 : {S ; R1}). Several ways have been
defined in the literature to define the shared information (see Pica et al.
(2017b)). Here we adopt the following definition (Bertschinger et al.,
2014):

R S R S R RSI( 2: { ; 1}) max CoI ( ; 1; 2),
q

q
p (2)

where Δp is the space of all probability distributions q(S, R1, R2) such
that q(S, R2)= p(S, R2) and q(R1, R2)= p(R1, R2), and
CoIq(S ; R1 ; R2)≡ Iq(S : R1)− Iq(S : R1|R2) is the co-information eval-
uated with the probability distribution q(S, R1, R2).

Starting from the above decomposition, we reason that a notion of
transmitted information about the stimulus could be the part of the
redundant information that S and R1 share about R2 that is also part of
the stimulus information in the first population, I(S ; R1). This kind of
information is even finer than the information PID components de-
scribed in the above equations. In previous works (Pica et al., 2017a,b)
we showed that comparing information components of different ways
to partition the trivariarte system S, R1, R2 leads to the separation into
finer information quantities. Reasoning along these lines, and with a
straightforward extensions of (Pica et al., 2017b), we can finally define
the transmitted intersection information III as:

=I S R R R S R S R R( ; 1; 2) min{SI( 2: { ; 1}), SI( : { 1; 2})}.II (3)

It is easy to show, with straightforward extension of Pica et al.
(2017b,a), that, with this definition, III(S ; R1 ; R2) quantifies the part of
the redundant information SI(R2 : {S ; R1}) that is also a part of I
(S : R1). Other desirable properties of III(S ; R1 ; R2) that follow directly
from the definition in Eq. (3) have been described in Pica et al. (2017b).
There are a few properties of this measure that are particularly im-
portant in what follows and that are summarized here. First,
III(S ; R1 ; R2)≤ I(S : R1), where I(S : R1) is the Shannon information
between stimuli and the first neural feature. This is because intersection
information is a part of the sensory information carried by the recorded
response R1, namely, the part which is transmitted to R2. Second,
III(S ; R1 ; R2)≤ I(R1 : R2), where I(R1 : R2) is the Shannon information
between the two neural features. This is intuitive because intersection
information is a part of such information – namely, the part which is
related to the stimulus. Third, III(S ; R1 ; R2)≤ I(S : R2), where I(S : R2)
is the Shannon information between stimuli and R2. This is because
intersection information is part of the total stimulus information carried
by the second neural feature – namely, the part which can be extracted
from R1.

The numerical computation of III(S ; R1 ; R2) relies on the numerical
solution, through the Franz-Wolfe procedure Frank and Wolfe (1956),
of the convex optimization defined in Eq. (2). The convergence of the
optimization is theoretically guaranteed because it is convex. However,
the numerical implementation of the algorithm converges to a final
value that falls close to the true optimal value within some finite (small)
tolerance. This tolerance derives from a combination of the tolerance of
the Frank-Wolfe optimization (Frank and Wolfe, 1956) and the toler-
ance of the approximate linear optimizations that are performed at each
iteration step. This finite numerical precision of our algorithm to
compute intersection information can give, in some cases when the
intersection information value is small, Some very small negative va-
lues of intersection information (see Fig. 6 for an example). This
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problem can in principle be solved by decreasing the tolerance para-
meters at the cost of a slower computation. Here we set the tolerance
parameter to have light computational times on a server, to mimic what
would be done in practical analyses of real data. We provided a Matlab
implementation of a solving algorithm that is available online https://
doi.org/10.5281/zenodo.850362.

2.2. Methods for neural network simulations

To test the new analytical approaches that we wish to develop here,
we simulated simple feed forward neural networks in two different
scenarios. In one scenario we know that there is stimulus-specific in-
formation transfer, and thus we expect to get positive intersection in-
formation in this case. In the second scenario there is transfer of in-
formation from the first network to the second, but this information is
not about the external stimulus and thus we expect to obtain zero sti-
mulus-specific information transfer in this second case.

Our network consists of two layers, and each layer includes 10 leaky
integrate and fire neurons. The firing of the input layer 1 is directly
modulated by the external stimulus (via the input term νext), and neu-
rons in layer 1 are connected to neurons in layer 2 via feed-forward
synapses. The neurons in each layer are described as leaky integrated
and fire neurons, the membrane potential v of which evolves according
to the following equation:

= + +vdv
dt

2 .ext

0 (4)

When the potential reaches the threshold (without loss of generality
the value of threshold is assumed to be one) an action potential occurs,
the value of the membrane potential will set to be the rest potential
(zero), and the postsynaptic neuron's potential is increased with con-
stant value of (set to 0.3 in unit of threshold). There is no refractory
period after each spike. In Eq. (4), τ is the intrinsic time decay constant
of the membrane potential, set to 20ms. ext

0
indicates the external input

which could be varied for different stimuli, and is only present for layer
1 neurons. The parameter τ0 is set to be 10ms.

The third term in Eq. (4) models the intrinsic noise of the membrane
potential with a Gaussian white noise with intensity equal to one, χ,
which is multiplied by a parameter σ that modulates the strength of the
noise. The value of the noise changes from simulation to simulation and
is always reported in unit of threshold in each figure. We note that, in
all simulations presented here the network was mean driven since, due
to the strong constant input to the layer one (the minimum input for
layer one is 2.5 in unit of threshold), absence of inhibitory neurons, and
the strong synaptic weight the membrane potential regularly reaches
the threshold even in the absence of noise.

We divided layer 1 into two pools of five neurons each (see Fig. 1).
Each neuron in layer 2 receives two random excitatory synapses from
layer 1, one from each pool. All synapses have the same fixed strength.

We operated the network in two different information coding sce-
narios (see Fig. 1). In both scenarios, the network can respond differ-
ently to two different external stimuli, s1 and s2.

2.2.1. Scenario 1: transmission of stimulus-related information between the
two areas

In the first scenario, all neurons in the first layer respond to the
external stimulus in the same way. All R1 neurons respond with a high
firing rate to stimulus s1: νext= μ+ΔS. All R1 neurons respond with a
low firing rate to stimulus s2: νext= μ−ΔS. In the above, μ is the mean
response across neurons and stimuli (kept to be 4 for all simulations in
unit of threshold), and ΔS is a parameter regulating the strength of the
stimulus signal (that is, the firing rate differences across stimuli). The
higher the ratio ΔS/σ, the more information about the stimuli is en-
coded in the neurons of the first layer.

2.2.2. Scenario 2: transmission between the two areas of information not
related to the stimulus

In the second scenario, neurons in the first layer respond to the
external stimulus in different ways. The first 5 R1 neurons respond with
a high firing rate to stimulus s1 (νext= μ+ΔS), whereas the second 5
R1 neurons respond with a low firing rate to stimulus s1
(νext= μ−ΔS). The neurons in R1 have the opposite response pattern
in response to stimulus s2: The first 5 R1 neurons respond with a low
firing rate to stimulus s2 (νext= μ−ΔS), whereas the second 5 R1
neurons respond with a high firing rate to stimulus s2 (νext= μ+ΔS).
Here it is still the case that the higher the ratio ΔS/σ, the more in-
formation about the stimuli is encoded in the neurons of the first layer.
However, this stimulus information is not transmitted to layer 2 be-
cause each neuron of R2 receives inputs from one neuron that responds
to the stimulus with high firing and another neuron that responds to the
stimulus with low firing.

3. Results

3.1. Definition of intersection information for measuring stimulus-specific
information transfer within networks

Although the intersection information approach was originally
conceived to study how much the sensory information in neural activity
r is read out to inform behavioral choice in a perceptual discrimination
task (Panzeri et al., 2017; Pica et al., 2017b), the intersection in-
formation framework could in principle be extended to study how sti-
mulus information flows across neural populations. In particular, we
consider the neural activity of a first brain region R1 (whose activity we
record) and a downstream area R2 (whose activity we assume we can
record at the same time when we record R1). In this case, we have
shown in Methods how to use the intersection information framework
to define and compute the quantification of the information about the
stimulus S carried by population R1 that is transmitted downstream to
area R2. We have defined in Methods the stimulus specific information
transmitted from a first (sender) population to a second (receiver) po-
pulation as the intersection information III(S ; R1 ; R2) between the sti-
mulus information in R1 and the activity in R2, or in other words the
amount of stimulus information in R1 that is read out by R2.

As described in Methods, III(S ; R1 ; R2) has properties that are
highly desirable for a measure of transmission of information about
stimuli between two different neural populations. First,
III(S ; R1 ; R2)≤ I(S : R1), where I(S : R1) is the Shannon information
about the stimuli carried by neural activity in the first population.
Second, III(S ; R1 ; R2)≤ I(R1 : R2), where I(R1 : R2) is the Shannon in-
formation between the activity in population 1 and the activity in po-
pulation 2. Third, III(S ; R1 ; R2)≤ I(S : R2), where I(S : R2) is the
Shannon information about the stimuli carried by neural activity in the
second population. These properties reflect the intuitive requirements
that a good measure of transmission of stimulus-related information
should be bounded both by the stimulus information present in each
population, and by the total information (about stimuli or other non-
stimulus related factors such as internal state variables) transmitted
between the two populations.

In the following, we use computer simulations of neural network
activity to investigate whether this measure can be used to dis-
ambiguate between stimulus-specific and stimulus-unspecific informa-
tion transmission. The purpose of these simulations was to provide a
primary validation of III(S ; R1 ; R2), and in particular to check the ex-
tent to which the proposed measure satisfies some of the basic re-
quirements that we expect of a stimulus-specific information transfer
measure. The first expected property is that it is zero in specific cases in
which there is no stimulus specific information transfer, even if these
cases are contrived. The second expected property is that this in-
formation quantity decreases when increasing the amplitude in the
noise and increasing when decreasing the amplitude in the stimulus
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signal. For this primary validation, we used a simple feed forward ar-
chitecture with homogeneous neural properties. The advantage of the
proposed architecture is that the effects of these factors are not con-
founded by other factors that may have a complex and unpredictable
effect, such as presence of recurrent loops, feedback loops, hetero-
geneity, and so on.

3.2. Testing whether intersection information can specifically capture
transmission of information about stimuli

Using simulations of a two-layered feed-forward neural network
(Fig. 1), we tested the ability of the intersection information
III(S ; R1 ; R2) to disambiguate between cases when there is and there is
not transfer of information about the stimuli from the first to the second
layer. In these simulations, we ran the network with many trials per
stimulus (500 simulated trials for each stimulus). The statistical power
of the method, and how this depends on the number of available trials,
will be investigated separately in the next Subsection.

We begun by examining the first scenario, in which layer 1 encoded
information about the stimuli, and the stimulus information encoded in
the activity of layer 1 was passed, though a set of feed-forward sy-
napses, to the neurons of layer 2 (see Methods for a full description).

To compute the information flow, we used the PID decomposition
described above. We considered the information I(S : R1) and I(S : R2)
about the stimuli carried by a single neuron in the first and second
layer, respectively. In other words, we took as R1 and R2 the firing rate
of one neuron in the first and second layer, respectively. We assumed
that the responses R1 and R2 in the two layers were simultaneously
recorded in the same trial. In what follows, we will report the average
of the information carried by each single neuron in each layer. We also
computed the total information I(R1 : R2) and the intersection in-
formation III(S ; R1 ; R2) transmitted from a single neuron in layer 1 to a
second neuron in layer 2 that was connected to the considered neuron
in the first layer. For the information transfer measure, we report the
average over all pairs of neurons connected by a synapse (as depicted in
Fig. 1). In order to compute numerically the PID quantities, which we
derived for a discrete variable case, we discretized the firing rate of

each neuron in three equispaced bins.
To compute the time course of the information quantities both in

layer 1 and in layer 2, we took a window of duration 10ms and we slid
it along the time course of the neural responses (we however checked
that using window durations as short as 4ms did not change qualita-
tively the results). To compute information transfer, we considered the
activity of one neuron in layer 1 at time t (plotted on the x axis of Fig. 2)
and the activity of one neuron in layer 2 with a 5ms delay, which
corresponds to the simulated conduction delay between layer 1 and
layer 2. (As a further validation of the soundness of methods, we ver-
ified that the information transmission quantities I(R1 : R2) and
III(S ; R1 ; R2) had the maximum value when using a 5ms delay, cor-
responding to the network conduction delay, to compute the responses
R1 and R2 in the two layers, as expected by simple intuition – data not
shown). We report in Fig. 2a,b the time course of the stimulus in-
formation of layer 1 and layer 2, respectively, for four representative
network parameter values. We found that both layer 1 and layer 2
carried positive stimulus information. Given that layer 2 does not re-
ceive a stimulus modulation directly (as shown by the network struc-
ture depicted in Fig. 1), the stimulus information in layer 2 must be
transmitted from layer 1. To probe the ability of our measure to reveal
and quantify directly this information transfer, we computed, for the
four representative parameter values chosen, the values of both the
total transmitted information I(R1 : R2) (Fig. 2c) between the activity of
layer 1 and layer 2, and of the stimulus-related intersection
III(S ; R1 ; R2) (Fig. 2d) transmitted between R1 and R2. We found
(Fig. 2d) that III(S ; R1 ; R2) was positive. Thus our measure correctly
identified that there was stimulus information transfer between layer 1
and layer 2, in all cases.

The mathematical properties of III(S ; R1 ; R2), namely that it is
bounded both by stimulus information in layer 1 and in layer 2 and by
the total transmitted information (see Methods), make it possible to
investigate what fraction of stimulus information in layer 1 is trans-
mitted to layer 2, and also what fraction of the information transmitted
between layer 1 and layer 2 is actually about the stimulus. From these
comparisons, we found that when noise was lower, the ratio between
the transmitted intersection information III(S ; R1 ; R2) and the stimulus

Fig. 1. Schematic of the structure of our simulated network and of the stimulus information flow corresponding to each scenario. Each network has two layers (layer
1, plotted with black and green dots as neurons in this figure; and layer 2, plotted with red dots as neurons in this figure), and each layer has ten neurons. Each neuron
in layer 2 receives input from two neurons in layer 1, one from the first pool and one from the second pool of 5 neurons in layer 1. Example inputs from layer 1 to
layer 2 are denoted as black lines. The size of the yellow stimulus arrows is proportional to the strength of the response of each pool of layer 1 to each stimulus. Left:
in scenario 1 all 10 neurons of R1 respond with a more elevated firing rate to stimulus s1 and a less elevated firing rate to stimulus s2. In this scenario, stimulus
information is transmitted from layer 1 to layer 2. Right: in scenario 2, 5 neurons of layer 1 respond with a more elevated firing rate to stimulus s1 than to stimulus s2,
while the other 5 neurons respond with a less elevated firing rate to stimulus s1 than to stimulus s2. In this scenario, information is transmitted from layer 1 to layer 2,
but it is information about the noise and not about the stimulus. Dots in the panel mean that, for simplicity, not all feed-forward connections are shown, but only the
ones to the first neuron of layer 2.
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information I(S : R1) in layer 1 was very high, close to 1. This means
that, under such conditions, all stimulus information in layer 1 was
transmitted. When noise was higher, the ratio III(S ; R1 ; R2)/I(S : R1)
was lower than 1, especially in the case of lower stimulus modulation
(orange line in Fig. 2), showing that less of the stimulus information
was transmitted, due to the higher noise in layer 1. These results sug-
gest that when noise is increased, higher proportion of the total in-
formation I(R1 : R2) transmitted from the first to the second layer is
about the noise. This is indeed what we found, as the ratio
III(S ; R1 ; R2)/I(R1 : R2) was close to 1 (meaning that all transmitted
information was about the stimulus) for lower noise and was con-
siderably less than 1 (meaning that a considerable part of the trans-
mitted information was about noise fluctuations and not about the
stimulus signal) for higher noise level.

To further appreciate how the values of intersection information, as
well as those of the other information quantities, depend upon the
parameters of the network, we ran systematic simulations by varying

parametrically the stimulus signal ΔS and noise (of the first layer) σ
parameters. Results of these simulations are reported in Fig. 3. In this
case, given that the results in Fig. 2 show that the information quan-
tities are relatively constant in time, we present the values of the in-
formation quantities averaged over the entire 0-50 ms post-stimulus
time. We found that the stimulus information in both layers (I(S ; R1) in
Fig. 3a and I(S ; R2) in Fig. 3b), as well as the intersection information
III(S ; R1 ; R2), increased when increasing ΔS and/or decreasing σ (see
Fig. 3d). This was expected since the increase of signal and the decrease
of noise should increase the available stimulus information and how it
is transmitted. The comparison between the intersection information
and the values of I(S ; R1) and of I(R1 ; R2) allowed us to explore the
fraction of the stimulus information in layer 1 and the fraction of the
total information transmitted across layers that are turned into trans-
mitted intersection information. We found the trend that we high-
lighted when considering Fig. 2 held also with the more systematic
exploration of the network's parameter space considered in Fig. 3.

Fig. 2. Information quantities computed for the first scenario using four different combinations of values of the input difference ΔS and noise strength σ parameters.
Parameters values are reported in the Legend. Results are plotted as a function of post-stimulus time and reported as mean pm sem over 10 simulations with 500 trials
per stimulus each. (A) I(S ; R1); (B) I(S ; R1); (C) I(R1 ; R2); (D) II(S ; R1 ; R2).
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It is interesting to note that in Figs. 2 and 3, for some network
parameter values, we occasionally found cases in which the value of I
(S : R2) was higher than that of I(S : R1). Given that layer 2 receives
stimulus information only through layer 1, this result seems at first to
contradict the data processing inequality. However, this inequality
would necessarily be true only if I(S : R1) included all neurons in Layer
1 (thus all sources of stimulus information to Layer 2). Given that in this
figure we consider as feature R1 the firing rate of a single neuron in
layer it does not need to be true in all cases that I(S : R2) is limited by I
(S : R1). In intuitive terms, this is because neural response feature R1
does not capture all sources of stimulus information to neural response
R2.

To mimic the case in which in which a mass signal that collects
activity from many neurons but that cannot resolve them individually,
such as the measure of a multi-unit activity in each area, we extended
the computations presented in the previous two figures to include the
analysis of the pooled firing rate response in each layer. (The responses
R1 and R2 were still one-dimensional arrays, but contained pooled
multi-unit activity rather than activity of just one neuron as in the
previous figures). We varied parametrically the number of neurons per
layer that were pooled together from one (as in the analyses presented
in the previous two figures) to five. Results are reported in Fig. 4. We
found that all quantities increased with the number of neurons, but that
the pattern of results across measures and simulation parameters was
very similar to the one observed in previous Figures, thereby con-
firming also in this case that the intersection measures meets the re-
quirements that we expected.

To further validate these measures, we performed a new set of si-
mulations for scenario 1 when we increased both the size of the net-
work and the number of connections per neuron. Results of information
values at the center of the plateau (25ms post-stimulus) are reported in
Fig. 5. We kept the number of pooled neurons per layer fixed to five.

We found that, in general, having more neurons and a higher per-
centage of connections increased all types of information, probably
because of a larger averaging of noise in the larger or more connected
network. Importantly, also in this case all the pattern of results across

measures and simulation parameters was very similar to the one ob-
served in previous figures, thereby further confirming that the inter-
section measure meets the expected requirements.

It is fundamental to check if the transmitted intersection informa-
tion measure is able to disambiguate cases in which transmitted in-
formation is about the stimulus from cases when transmitted is not
about the stimulus, we simulated a second scenario in which neurons in
layer 1 still encoded positive stimulus information as in the first sce-
nario, and still transmitted information to layer 2, but did not transmit
information about the stimuli (see Methods and Fig. 1 right panel). (We
note that we verified that in this case there was no transmission of
information about the stimuli neither by signal nor by noise, by
checking that both the mean and the standard deviation of firing rates
of neurons of Layer two were significantly modulated by the stimuli, t
test P > 0.3). This scenario is admittedly contrived, but it is important
to explore whether transmitted intersection information would be null
in this case. We found (see Fig. 6) that for all parameter values that we
investigated stimulus information in the first layer was still significant,
and transmitted information from layer 1 to layer 2 was still high, but
the transmitted intersection information and the information in layer 2
were zero. (Note that these results held for a much wider range of noise
values, including small noises, than those reported in Fig. 6). These
results are important because they suggest that the transmitted inter-
section information formalism is suitable to distinguish between cases
when information transmission is about the stimulus from other cases.
Or in other words, these results confirm that the transmitted intersec-
tion information really focuses on transmission of stimulus information,
thus corroborating our theoretical considerations.

3.3. Testing the statistical sensitivity of the transmitted intersection
information

In the previous section we tested the ability of transmitted inter-
section information to disambiguate between stimulus-specific and
stimulus-unspecific information transmission scenarios. We thus con-
centrated on simulations with relatively large trials numbers (500 trials

Fig. 3. Information quantities computed for the first scenario
using different four different combinations of values of the signal
strength ΔS and noise strength σ parameters. Parameters values
are reported in the Legend. Results are computed for neural re-
sponses averaged over 50ms post-stimulus time (considering 5ms
propagation delay for R2) and reported as mean pm sem over 10
simulations with 500 trials per stimulus each. (A) I(S ; R1); (B) I
(S ; R1); (C) I(R1 ; R2); (D) II(S ; R1 ; R2).
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per stimulus, which is in the upper limit of what may be available ex-
perimentally, which ranges from few tens to few hundreds trials per
stimulus). However, in some application to real data, the number of
available trials per stimulus may be scarce. An important practical
question is what is the statistical power of our measure III(S ; R1 ; R2),
and namely how the ability of the measure to detect even small values
of transmitted stimulus information scales with the number of available
trials. Here we focus only on the statistical power of intersection in-
formation, because the statistical power of mutual information was
already extensively studied in Ref. Ince et al. (2012). In this section we
focus on measures of transmitted intersection information based on one
neuron per layer, like those reported in Figs. 2–4.

We first constructed a non-parametric permutation test of the null
hypothesis that there is no intersection information. This null hypoth-
esis was constructed by randomly permuting (without replacement) the
values of R1 across trials while leaving untouched the values of S and
R2. This way, the information between S and R2 is left untouched, but it
cannot be mediated by R1 any more. Thus, intersection information
must be null in such permuted datasets. We then used the null

hypothesis distribution of transmitted intersection information values
to detect whether a value of intersection information computed from
the network with a fixed number of trials was significantly larger than
zero with a threshold p value p < 0.05. We ran several different si-
mulations with different noise strengths, in order to obtain a range of
different (albeit small) values of intersection information. We con-
centrated on small values because, for obvious reasons, we expected
that the sensitivity of the measure would be stronger when intersection
information is larger. The sensitivity (defined as the fraction of mea-
sures in which the presence of non-zero intersection information was
correctly detected in simulations with positive ground-truth intersec-
tion information, i.e. in scenario 1) is reported as function of the
number of trials per stimulus in Fig. 7. We found that the sensitivity was
very high (0.7 or more) even for very small values of intersection in-
formation (in the range 0.01 to 0.03 bit) for as little as 100 trials per
stimulus, which is well in the range of experimental values even in
awake animals (Runyan et al., 2017) when extensive data collection is
more challenging. These results suggest that the measure has a suffi-
cient sensitivity to be applied to real data.

Fig. 4. Information quantities as a function of the number of pooled neurons, computed at the post-stimulus time t=25ms. Results are reported as mean pm sem
over 10 simulations with 500 trials per stimulus each. (A) I(S ; R1); (B) I(S ; R1); (C) I(R1 ; R2); (D) II(S ; R1 ; R2).
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3.4. Investigating the limited sampling bias of the transmitted intersection
information

Previous work has shown that discretized estimators of Shannon
information quantities suffer from an upward limited sampling bias,
which can be corrected with simple methods such as quadratic or linear
extrapolations of their dependence on the sample size (Panzeri and
Treves, 1996; Steven et al., 1998; Panzeri et al., 2007). The results of
the studies of the properties of the discrete estimators of Shannon in-
formation is that (especially for larger numbers of bins, which is the
case where the bias is most concerning) the Shannon information
quantity (among the 3 Shannon information quantities that we com-
pute, I(S : R1), I(S : R2), I(R1 : R2)) is I(R1 : R2). For this latter quantity,
the analytical approximation to the bias in the large sample size regime
scales approximately as (R−1)2/2N(ln2), where N is the total number
of trials, and R is the number of bins for both R1 and R2 (Panzeri and
Treves, 1996). Thus, the bias grows quadratically with the number of
bins used to discretize the neural responses in each layer. (In case we
consider only one neuron or one pooled neural population per layer, as
we do here, R would be equal to the number of bins used to discretized
this single neural feature. In case we consider n simultaneously re-
corded neuron per layer, R would be equal to the power n of number of
bins used to discretized each neural feature). This previous work
showed that this bias can be corrected and subtracted out using linear
or quadratic extrapolations of the scaling of information with the
number of trials very effectively as long as N is at least 4–5 times larger
than R Panzeri and Treves (1996), Steven et al. (1998), Panzeri et al.
(2007). This means that, if we use a range of number of bins R per layer
from 2 to 10, we would expect that I(R1 : R2) is accurately computed if
20 to 400 trials are available in total across all stimuli.

However, the scaling properties with sample size of III(S ; R1 ; R2),
which being derived from an optimization procedure within the PID,
may be different from those a directly computed Shannon information,
and are not yet known. Here we investigated and reported (Fig. 8) the
scaling of transmitted intersection information III(S ; R1 ; R2) as

function of the number of trials per stimulus and the number of bins
used to compute R1 and R2, after applying a bias correction based on a
linear extrapolation of the value of the estimator with sample size
Steven et al. (1998). (We focused on transmitted intersection in-
formation computed from one neuron per layer, like those reported in
Figs. 2–4.) We used data generated from network simulations obtained
under scenario 1. As in the simulations performed in Panzeri et al.
(2007), the extent to which the information estimator is data robust can
be studied by considering the smallest number of trials by which the
information reaches its asymptotic value that is reached for larger trial
numbers. We found that the calculation of III(S ; R1 ; R2) reached stably
its asymptotic value, for all values of numbers of bins in each layer that
we varied from 2 to 10) when using approximately 20–50 trials per
stimulus. (This range is well within the range of total trials used in real
experiments, which goes from a hundred or so trials for experiments
with behaving subjects (Runyan et al., 2017) to several hundred trials
for experiments under anaesthesia Arabzadeh et al. (2004)). We con-
cluded that transmitted intersection information was well computed
when Shannon information between Layer 1 and Layer 2 was well
computed, and that transmitted intersection information III(S ; R1 ; R2)
is no more cursed by the dimensionality problem than the total
Shannon information exchanged between the two layers.

4. Discussion

Recent advances in neuroscience technology allow the simultaneous
recording from multiple neurons in multiple regions during behavioral
tasks. This allows an unprecedented opportunity to dissect and reverse
engineer the information transmission pathways that are required for
accurate performance of behavioral tasks (Guo et al., 2014; Peng et al.,
2015; Daniel et al., 2013).

In this paper we introduced and explored the properties of a new
analytical measure, that we termed transmitted intersection informa-
tion, that could be used as a mathematical tool to analyze simultaneous
recordings from multiple brain regions. The primary validation of this

Fig. 5. Information quantities as a function of number of neurons
per layer and percent of connection between layer one and layer
two for Scenario one. ΔS and σ are kept fixed with the values of
0.6 and 1.0 measures are calculated at the post-stimulus time
t=25ms. Results are reported as mean pm sem over 10 simula-
tions with 500 trials per stimulus each. (A) I(S ; R1); (B) I(S ; R1);
(C) I(R1 ; R2); (D) II(S ; R1 ; R2).
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method on neural network simulations was successful in indicating that
the method can pick genuine transfer of information about a set of
stimuli, and that it satisfies some basic characteristics expected of this
measure, including that it should increase with increasing stimulus
signal and it should decrease with increasing stimulus noise in the in-
formation transmission. This tool could be used to identify the neural
response features that transmit specific information to downstream
regions, leading to hypotheses about the mechanisms of information
flow in neural circuits. It could also be used to help identify the neural
pathways that carry specific information about external correlates and
dissect their function.

The method can be applied to situations in which neural activity is
recorded simultaneously from multiple brain regions. Here we vali-
dated the method in simulated cases in which only one neuron or one
mass population signals (multi-unit activity) was measured from each
brain regions considered. Although such simulations are important to
establish easily important primary validations of this method, future
simulations involving the analysis of many single neurons for each area

would be valuable to understand how these ideas can be extended to
explore the role of redundancies and synergies within areas due to in-
teractions between neurons. For practical reasons, performing this
analysis would require further work to understand how to couple most
effectively the formalism to data compression techniques, which we
leave to further studies.

When simultaneous recordings from multiple brain regions are
performed during perceptual discrimination tasks, this formalism could
be used to better understand the role in perceptual discrimination
performance of communication pathways among circuits. The ability of
the transmitted intersection information measure to discriminate be-
tween stimulus-specific and stimulus-unspecific transmission of in-
formation could be in principle used to determine whether a projection
pathway carries information that is instructive (Otchy et al., 2015) for
task performance (contributes essential information for the task per-
formance) or if the circuit is permissive for task performance (mod-
ulates the behavior but does not provide essential information). The
former case would require that the considered pathway carries

Fig. 6. Information quantities computed for the second scenario using six different combinations of values of the input difference ΔS and noise strength σ parameters
including the values used in Fig. 2. Parameter values are reported in the Legend. Results are plotted as a function of post-stimulus time and reported as mean pm sem
over 10 simulations with 500 trials per stimulus each. (A) I(S ; R1); (B) I(S ; R1); (C) I(R1 ; R2); (D) II(S ; R1 ; R2).
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information about the stimulus features that are needed for performing
the task. The latter case may show information transmitted between the
nodes of the pathway, but this information does not need to be about
the stimuli to be discriminated in the task.

Given that it is becoming possible to couple, during behavior, the
use of methods for the large scale recording of neural activity with
methods for precise perturbation of neural activity (for example com-
bining imaging with optogenetics (Packer et al., 2014; Emiliani et al.,
2015)), one feature of the intersection information approach that may
become of particular importance is the fact that it naturally lends itself
to being generalized for the use with perturbation experiments. The
transmitted intersection information formalism would allow to design
experiments in which patterns of neural activity that carry specific
stimulus signals could be imposed in one layer, and then a readout of
information about the stimulus features whose signature was imposed
with optogenetics could be extracted from another neural population,
and the causal information flow between the two could be quantified
using causal extensions of transmitted intersection information.

Another measure has been recently proposed, from one of us and
other colleagues, to identify stimulus specific information transfer from
neural recordings (Ince et al., 2015). In this previous work, the stimulus
specific information was defined as redundancy between stimulus re-
presentations in the two layers at different times. This measure was
shown to be statistically powerful and useful to determine patterns of
information flow in the human brain (Ince et al., 2015). However, in
that previous work redundancy was defined as the difference between
the sum of the information carried by two variables separately and the
information they carry jointly, and this definition actually conflates
redundant and synergistic effects. This problem implies that the earlier
measure can become negative, and thus more difficult to interpret,
when the relationship between the two layers is dominated by sy-
nergistic effects. The use of the PID, that we introduced in this work,
allows us to alleviate this problem, by isolating the redundant in-
formation and discarding the synergistic effects. As a result, our mea-
sure III(S, R1, R2) is always positive and thus can be easily interpreted,
and is measured in units of bits which have a in intuitive meaning.
Another advantage of using the PID is that, as discussed in Methods, the
transmitted intersection information is bounded by the stimulus in-
formation encoded in each layer and the total information transmitted

across layers. These bounds, as we discussed in Results, have the po-
tential to help the experimenter to determine how efficient is the
transmission of stimulus information across populations.

The Wiener – Granger principle that is used for the statistical ana-
lysis of causal information flow requires that we assess whether present
activity in the second node can be predicted from past activity at the
first node above and beyond how present activity in the second node
can be predicted from the past of the second node itself. With trans-
mitted intersection information, so far we have assessed whether sti-
mulus information in the second node at the present time is shared with
the stimulus information present in the first node at the earlier time.
However, to fully implement the spirit of the Wiener – Granger prin-
ciple, we would need to make sure that the stimulus information shared
between the present of the second node and the past of the first node is
novel, or unique, with respect to the information present in the past of
the second node. This problem is extremely difficult to deal with Partial
Information Decomposition approaches, as it requires considering an
additional stochastic variable (the past of the second node) in the in-
formation decompositions. Indeed, it would need identifying not only,
as we do now, information about the activity in the first layer that is
shared both by the stimulus and the second layer, but also information
about the stimulus in the second layer that is unique with respect to the
stimulus information that was present in the second layer at earlier
times. However, the number of partial information terms in a PID
diagram grows very rapidly with the number of stochastic variables that
we analyze (Williams and Beer, 2010), and the PID of a four-variable
system already consists of 18 partial information terms. It would be
extremely challenging to estimate reliably all such terms based on the
trial numbers that are commonly used in neuroscience experiments. We
thus believe that implementing in full these principles would require
coupling our theory with good and data-robust parametric (Sheikhattar
et al., 2018; Francis et al., 2018) or non parametric models (Safaai
et al., 2018) of the relationships between stimuli and neural activity.
We plan to pursue this avenue in future work.

However, for the time being we note that the present formalism can
be applied already in full satisfaction of the Wiener – Granger principle
if we apply it to ask the question of whether the first wave of stimulus
information present in the second node comes from the stimulus in-
formation present at an earlier time in the first node. This is because if

Fig. 7. Sensitivity of the Transmitted Intersection Information
III(S ; R1 ; R2) measure as a function of the number of simulated
trials per stimulus NS. For five different values of the noise
strength parameter and for each number of trials we ran 100 in-
dependent realizations of the simulation with scenario 1. For each
simulation, we built a bootstrap distribution of 40 IIsh(S ; R1 ; R2)
values by randomly shuffling across trials the instances of R1.
Sensitivity was computed as the fraction of simulated
III(S ; R1 ; R2) values that were larger than the 95th percentile of
the corresponding bootstrap distribution. Error bars were con-
structed on the assumption that the significance of III(S ; R1 ; R2) is
Bernoulli distributed.
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we concentrate on the first wave of information in the second layer, we
know that no other stimulus information was present in the second
layer at earlier times. Therefore the results presented here are useful
both to explore the power of the concept of intersection information
and of PIDs to reverse engineer information transmission in real neural
systems, and to already analyze, in its present form, specific parts of
datasets.
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Fig. 8. Values of the estimator of Transmitted Intersection Information
III(S ; R1 ; R2) as a function of number of trials per stimulus NS, calculated for
different values (from 2 to 10) of the number of bins R used to compute R1 and
R2. We used network simulations of scenario 1 with ΔS and noise strength
parameter equal to 1.2 and 0.25 respectively. For each value of number of trials
per stimulus preorted on the x axis, we ran 10 independent realizations of the
simulation. Results plot mean ± sem of III(S ; R1 ; R2) over these 10 realiza-
tions.
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