NEUTRINOS FROM ICARUS

C. Farnese For the ICARUS Collaboration

> Vulcano Workshop 2012 1 June 2012

The ICARUS Collaboration

M. Antonello^a, P. Aprili^a, B. Baibussinov^b, P. Benetti^c, E. Calligarich^c, N. Canci^a,
S. Centro^b, A. Cesana^f, K. Cieslik^g, D. B. Cline^h, A.G. Cocco^d, A. Dabrowska^g, D. Dequal^b,
A. Dermenevⁱ, R. Dolfini^c, C. Farnese^b, A. Fava^b, A. Ferrari^j, G. Fiorillo^d, D. Gibin^b,
S. Gninenkoⁱ, A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^l, A. Ivashkinⁱ, J. Kisiel^l,
I. Kochanek^l, J. Lagoda^m, S. Mania^l, G. Mannocchiⁿ, A. Menegolli^c, G. Meng^b,
C. Montanari^c, S. Otwinowski^h, L. Perialeⁿ, A. Piazzoli^c, P. Picchiⁿ, F. Pietropaolo^b,
P. Plonski^o, A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c, C. Rubbia^{a,j}, P. Sala^f,
E. Scantamburlo^e, A. Scaramelli^f, E. Segreto^a, F. Sergiampietri^p, D. Stefan^a,
J. Stepaniak^m, R. Sulej^{m,a}, M. Szarska^g, M. Terrani^f, F. Varanini^b, S. Ventura^b,
C. Vignoli^a, H. Wang^h, X. Yang^h, A. Zalewska^g, K. Zaremba^o.

a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy

- b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
- d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
- e Dipartimento di Fisica, Università di L'Aquila, via Vetoio Località Coppito, I-67100 L'Aquila, Italy
- f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Department of Physics and Astronomy, University of California, Los Angeles, USA
- i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- j CERN, CH-1211 Geneve 23, Switzerland
- k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
- I Institute of Physics, University of Silesia, 4 Universityecka st., 40-007 Katowice, Poland
- m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
- n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
- o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
- p INFN, Sezione di Pisa. Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

The ICARUS T600 detector

- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = 1.55 mm/µs

- 2 chambers per module
- 3 readout wire planes per chamber, wires at $0,\pm60^{\circ}$
- ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light detection:

VUV sensitive (128nm) with wave shifter (TPB)

Taking data in LNGS hall B

LAr purification

Trigger

CNGS trigger :

- CNGS "Early Warning" signal sent 80 ms before the SPS p extraction. It contains the predicted extraction time of the 2 spills \rightarrow opens a 60 µs wide gate.
- Photomultiplier sum signal for each chamber in coincidence with the beam gate

- 2.40 ms offset value in agreement with 2.44 ms v tof (40 µs fiber transit time from external lab to Hall B).
- Spill duration reproduced (10.5µs)

1 mHz event rate , ≈ 80 events/day

- Photomultiplier sum signal, requiring coincidence of two adjacent chambers (50% cathode transparency)
- Globally 36 mHz trigger rate achieved: ~130 cosmic events/h

SuperDedalus : New trigger system based on charge deposition on TPC wires: DRslw algorithm implemented in a new SuperDedalus chip (FPGA), installed and used to improve trigger efficiency for CNGS events at low energy (i.e. below 500 MeV) Slide: 5

ICARUS T600 physics potential

- T600 is a major milestone towards the realization of a much more massive multikton LAr detector, but it offers also some interesting physics in itself. The unique imaging capability of ICARUS, its spatial/calorimetric resolutions, and e/π^0 separation allow "to see" events in a new way
- The detector is collecting "bubble chamber like" CNGS events: for 10²⁰ pot
 - \blacktriangleright CC event expected \approx 2800 ev
 - NC event expected ≈ 900 ev
 - Muons from upstream GS rock ≈ 12000 ev (≈ 8200 on TPC front face)
 - > Intrinsic beam $v_e CC \approx 26 ev$
 - \succ $v_{\mu} \Rightarrow v_{\tau}$ detecting τ decay with kinematical criteria (~2 event τ ->e).
 - $\sim v_{\mu} => v_{e}(\theta_{13})$ from e-like CC events excess at E < 20GeV (~5 events CC)
 - Search for sterile neutrinos in LSND parameter space, with e-like CC events excess at E>10GeV.
- The T600 is also collecting simultaneously "self triggered" events:
 - \geq ≈ 100 ev/year of atmospheric v CC interactions.
 - \blacktriangleright Proton decay with 3x10³² nucleons , zero bckg. in some of the channels

CNGS neutrino runs

- ICARUS fully operational since Oct. 1st 2010: 5.8 10¹⁸ pot collected in 2010.
- 2011 CNGS run: Mar. 19th to Nov. 14th
 - 4.44(4.78) x 10¹⁹ pot collected (delivered):
 93% detector live-time
 - Expected ~1280 CC and ~395 NC events
- March 23rd 2012: new CNGS events, 7.7 x 10¹⁸ pot collected.

500

pot delivered 450 pot collected ----400 350 pot integral [10¹⁷] 300 250 2011 200 150 100 50 Sep-01 Mar-01 May-01 Jul-01 Nov-01 Jan-01

Date

Calibration with CNGS muons

dE/dx distribution for real and MC muon tracks from CNGS events

Tracks reconstructed in 3D. δ rays and showers rejected.

Same reconstruction on MC muons with CNGS spectrum.

Very nice agreement (~ 2-3%) - still possible small different conditions of data and MC (noise patterns and their effects on δ ray selection).

Study of stopping tracks

v_{μ} CC CNGS event: reconstruction of stopping tracks

6 protons, 1 pion decays at rest

π^0 reconstruction in CNGS event

Electron event candidate

A v_eCC candidate from 2010 run. This event has 45 GeV energy with a single powerful 37 GeV e.m. shower at vertex with a longitudinal profile peaking at the expected position (~88 cm).

Total energy deposition in CNGS v events

- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics.
- Used for the "superluminal" neutrino searches.

C-ray spectrum

Atmospheric v candidate

- Total visible energy:887 MeV
- Out-of-time wrt CNGS spill, 35° angle w.r.t. beam direction.

Track

flight)

2 (π)

2α (μ**)**

2b (e)

3 (µ)

4 (p)

5 (p)

6 (?) (merged

with vtx)

1 (π , decays in

	0° wire coordinate (2.0 m)		-60° wire coordinate (2.0 m)		+60° wire coordinate (2.0 m)	
V † m	Induction 1 view	CNGS v beam	Induction 2 view	CNGS v beam	CNGS v beam Collection view	
E _k [MeV] 136.1 26 79.1 24.1 231.6 168 152	Range [cm] 55.77 3.3 17.8 10.4 99.1 19.2 16.3 2.9	Very small	event 3		2b $2a$ 4 5	

de: 15

Search for superluminal v's radiative processes in ICARUS http://dx.doi.org/10.1016/j.physletb.2012.04.014 Phys.Lett.B711. (2012) 270-275

- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via ete bremsstrahlung, on average $0.78 \cdot E_{v}$ energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta = (v_v^2 - c^2)/c^2$

For $\delta = 5 \ 10^{-5}$ (OPERA first claim):

Full v event suppression for E > 30 GeV

> ~10⁷ e⁺e⁻ pairs /10¹⁹ pot/kt

300

Slide: 16

Search for superluminal v's radiative processes in ICARUS

Expected v event rate and $e^+e^$ pair production spectra for 10^{19} pot*kt of ICARUS exposure and different δ values

	CC	NC	CC>60 GeV	e^+e^-
δ	(all flavours)	(all flavours)	$(u_{\mu}+ar{ u}_{\mu})$	
0	644	203	57	0
$5 \cdot 10^{-8}$	644	203	57	27
$5 \cdot 10^{-7}$	643	203	56	$2.1 \cdot 10^4$
$5 \cdot 10^{-6}$	594	188	8.5	$7.2 \cdot 10^5$
$5 \cdot 10^{-5}$	203	85	$< 10^{-6}$	$1.1 \cdot 10^{7}$

- Effects searched in 6.7 10¹⁸ pot·kt ICARUS exposure (2010/11) toCNGS
 - No spectrum suppression found in both NC , CC data (~ 400 events)
 - No e⁺e⁻ pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

 $\delta = (v_v^2 - c^2)/c^2 < 2.5 \ 10^{-8} \ 90\% \ CL$

- comparable to the SuperK limit δ < 1.4 10^{-8} , somewhat larger than the lower energy velocity constraint δ < 4 10^{-9} from SN1987A.

Neutrino time of flight with 2011 bunched beam

- Bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation
- From October 31st to Nov. 5th ICARUS observed 7 bunched-beam events
- Timing from ICARUS PMT readout equipped with an independent DAQ
- Reference point : upstream wall of active volume -> corrections needed:
 - the position of interaction vertex along 18 m of detector length
 - the distance of event vertex from closest PMT
- Both corrections precisely (~1ns) deduced from event topology in LAr-TPC through visual scanning.
 Closest PMT's

Neutrino time of flight result

http://dx.doi.org/10.1016/j.physletb.2012.05.033(PhysLettB)

- All fixed delays/propagation times calibrated
- Baseline estimation relies on existing available geodesy data (OPERA/LNGS)
- Variable corrections to GPS from OPERA/CERN recipe
- The average $\delta t = tof_c tof_v$ for the 7 events is +0.3 ns \pm 4.9 ns (stat) \pm 9 ns (syst)
- v velocity compatible with speed of light

Presently analyzing data with the new bunched beam run, Common effort LNGS and CERN , involving Borexino, LVD, Opera, Icarus

ICARUS after CNGS2: a new approach to sterile v at CERN/SPS

The experimental "anomalies" found by LSND/Miniboone (observation of electron excess in a anti- v_{μ} beam from accelerators) and by the reactor neutrino experiments (apparent disappearance signal in the anti- v_{e} events) might be due to the presence of "sterile" neutrino

- The LAr-TPC is the viable device to solve these "anomalies" thanks to
 - \blacktriangleright detection capability of genuine v_e events
 - energy resolution/detector granularity largely adequate for E<3GeV</p>
 - > high level of rejection of associated background events (π^0).
- A novel experimental search based on two strictly identical LAr-TPC detector
 + 2 magnetic spectrometers at 330 m and 1600 m from the p target is
 proposed at CERN SPS
- Neutrino beam produced by a 100 GeV proton beam fast extracted from SPS will be centred at ~2 GeV
- Anti-neutrino beam by inverting the current of the horn

 <u>
 *Technical proposal: "Search for "anomalies" from neutrino and antineutrino oscillations at ∆m² ≈ 1eV² with muon spectrometers and large LAr-TPC imaging detectors" (SPSC-P-347) of March 15th, 2012.
 </u>*

New Neutrino Facility in the CERN North Area

Unique features of the CERN beam

- The present proposal is a search for spectral differences of electron like specific signatures in two identical detectors but at two different neutrino decay distances.
- In absence of oscillations, apart some beam related small spatial corrections, the two v_e intrinsic spectra are a precise copy of each other, independently of the specific experimental event signatures and without any Monte Carlo comparison.
- O Therefore an exact, observed proportionality between the two v_e spectra implies directly the absence of neutrino oscillations over the measured interval of L/E.

Physics program

10

Full exploration of LNSD $\nu_{\mu} \rightarrow \nu_{e}$ allowed region both with ν_{μ} and anti- ν_{μ} beam.

Expected sensitivity at neutrino beam (top left) for 4.5x10¹⁹ pot and twice as much for antineutrino (top right).

• Search for a possible oscillatory disappearance in the $_{0.1}$ v_{μ} (bottom left) and in the initial v_e signals (bottom right).

- ICARUS T600 LAr-TPC is taking data @LNGS with CNGS beam searching for $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{e}$ oscillations as well as for athmospheric vs and proton decay.
- Its unique imaging capability, spatial/calorimetric resolutions, and e/π⁰ separation allow to reconstruct/identify events in a new way, w.r.t. previous/current experiments:

a major milestone towards a much more massive LAr detector.

• A novel search using 2 LAr TPCs and 2 magnetic spectrometers @CERN-SPS is proposed after the ICARUS T600 exploitation at LNGS to solve LSND/MiniBooNe/reactor neutrino anomalies.

