
Electronic Notes in Theoretical Computer Science 54(2001)
URL: http://www.elsevier.nl/locate/entcs/volume54.html 11 pages

Zero-safe net models for transactions in Linda 1

Roberto Bruni and Ugo Montanari 2

Computer Science Department, University of Pisa, 56125 Pisa, Italy

Abstract

Zero-safe nets are a variation of Petri nets, where transactions can be suitably modeled. The
idea is to distinguish between stable places (whose markings define observable states) and
zero-safe places (where tokens can only be temporarily allocated, defining hidden states):
Transactions must start and end in observable states. We propose an extension of the co-
ordination language Linda, called TraLinda, where a few basic primitives for expressing
transactions are introduced by means of different typing of tuples. By exploiting previous
results of Busi, Gorrieri and Zavattaro on the net modeling of Linda-like languages, we
define a concurrent operational semantics based on zero-safe nets for TraLinda, where the
typing of tuples reflects evidently on the distinction between stable and zero-safe places.

Key words: transactions, Petri nets, zero-safe nets, coordination, Linda

Introduction

Place/transition Petri nets (PT nets) are a basic model for concurrent and distributed
systems where two fundamental design postulates are exploited:

(i) states are multisets (of typed resources, i.e. tokens); and

(ii) elementary actions (transition firings) can atomically fetch (and release) sev-
eral state components, thus synchronizing tokens at the event level.

A main advantage of these assumptions is that the notion of concurrent firing
(step) comes as a consequence of the multiset structure of states, i.e., computations
can be straightforwardly equipped with a truly concurrent semantics (as opposed to
interleaving semantics). Moreover, building on (i) and (ii), it is possible to define a
taxonomy of models that encompasses some limitations of the basic paradigm:

� nets with read arcs (r-nets) allow for modeling “read without consume,” where
many readers can access concurrently the same resource (whereas in ordinary PT

nets these operations are usually rendered via sequentializing self-loops);

1 Research supported by the TMR Network getgrats and by the MURST Project tosca.
2 Email: fbruni,ugog@di.unipi.it

c2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Bruni and Montanari

� zero-safe nets (ZS nets) introduces “transition synchronization” (as opposed to
token synchronization discussed in point (ii) above), hence regarding suitable
finite, but possibly complex and concurrent, computations as atomic events;

� nets with inhibitor arcs (i-nets) allow for testing the “absence of tokens,” an
operation that makes the framework Turing complete (as opposed to the models
discussed so above, where reachability and deadlock are decidable).

Moreover: colored or high-level nets allows for using “structured data” as to-
kens; in reconfigurable nets, transition postsets may depend on the values got from
the presets (whereas in all the above models connections are static), addressing
network reconfigurability; in dynamic nets, not only a firing can modify the current
marking, but can also increase the set of transitions (i.e., the control). The differ-
ent flavors of nets are too many to be mentioned here (e.g., with time, probability,
priorities). An interesting correspondence between some of the above models and
typed subclasses of Join agents [15] has been hinted at in [1] and formally drawn
in [8]. Note that certain features are to some extent orthogonal and can be mixed
together with a minimum effort. For example, read and inhibitor arcs can be eas-
ily combined together to model a general concept of positive/negative context in
ri-nets, 3 while in [6] we introduced read arcs inside the zero-safe framework.

Points (i–ii) are also at the basis of the coordination language Linda [16], which
represents the distributed environment as a tuple space (a multiset-based store
where structured data are allowed), with agents built on primitives for adding tuples
to and retrieving tuples from the store, reading without consuming, and testing for
presence of a particular tuple. These operations make Linda suitable for expressing
non-atomic process coordination in a concurrent setting. When tuples are seen as
non-structured data, the concurrent semantics of Linda can be suitably modeled via
ri-nets [10,9]. In particular, it is interesting the distinction between the ordered and
unordered semantics of Linda-like process algebras drawn in [12,11,9]: in the for-
mer semantics, the output of a tuple is seen as the atomic execution of the emission
of the message followed by its rendering in the tuple space (making it available
to other agents), whereas in the latter view these two phases are made autonomous
(emitted messages can be rendered asynchronously). This distinction reflects on the
expressivity of the language: the ordered semantics originates a Turing complete
language, whilst, in the unordered case, deadlock is decidable [12].

Building on these representation results, our aim is twofold: on the one hand
we want to extend the zero-safe approach to handle inhibitor arcs, and on the other
hand, the nets obtained in this way can find straightforward application to the con-
current modeling of Linda-like languages equipped with a primitive mechanism
for transactions (along either the ordered or unordered semantics). In fact, though
ad-hoc transaction mechanisms are integrated in languages such as BizTalk Orches-
tration and JavaSpaces, we look for a uniform treatment of transactions for the
many calculi proposed in the literature.

3 In the literature, the terms contextual nets and c-net are abused in denoting either just positive
contexts or both kinds of contexts; to avoid confusion, we stick to the unambiguous notation ri-net.

2

Bruni and Montanari

Transaction as transition synchronization. While PT nets rely on place syn-
chronization, they lack synchronization of transitions, which would allow to regard
some (finite, but possibly complex and concurrent) computations as atomic events.
Transition synchronization is e.g. essential in modeling distributed decision algo-
rithms, where no particular location can implement a choice point. Our observation
is probably not surprising, since the necessity of defining entities in isolation that
can cooperate by sending and receiving information, but are otherwise seen like
black boxes from the environment, was already evident in Dijkstra communicating
processes and in process algebras. Transition synchronization is also a key aspect
of open ended systems: When designing the processes in isolation, the programmer
must consider all the interactions that can take place, but these may well depend on
the received data and may require some atomicity assumptions on their execution
(think e.g., of communication protocols, with transmission requests and acks, or of
e-commerce applications, where customer’s payment and goods/service delivery
must be either both guaranteed or both canceled when the transaction ends).

We denote atomic computations in a concurrent scenario by the term transac-
tions (abusing databases terminology). When adding transactions, two main issues
must be handled: semantics, i.e. a theoretical characterization of transactions, mak-
ing it possible to study their properties and the way in which they can be combined
together (e.g., in parallel, sequentially); and algorithms, i.e. the development of dis-
tributed interpreters able to implement transactions, consistently with the semantic
level (e.g., using backtrack). Hence, it is convenient to select a formal language
where these issues can be easily dealt with also at the syntax level. The solution
proposed in [5] tries to make these intuitions concrete. In fact, the simplest way to
synchronize the execution of transitions in PT nets is via token exchanging over (a
subset of) places. ZS nets exploit this idea by distinguishing between stable places
(the ordinary repositories for resources, defining observable states) and zero safe
places that cannot contain tokens in any observable state. The firing of a transition
will possibly put tokens in zero-safe places, beginning a transaction; these tokens
(called zero tokens) are used to coordinate the transaction. All zero tokens must be
removed to commit the transaction. Moreover, all the stable tokens produced dur-
ing the transaction are effectively released only when the transaction ends. Thus,
all the stable resources fetched during the transaction must be present in the initial
stable marking. This describes, to some extent, the low-level model.

At the abstract level, transactions must be seen as ordinary transitions. This
viewpoint yields a PT net AB, which is the abstract counterpart of the ZS net B:
the places of N are the stable places of B, and each transition of AB corresponds
to an elementary transaction of B (i.e., a transaction that cannot be decomposed in
two smaller disjoint transactions). Note that AB can become infinite also when B is
finite, and that transactions retain all the causal and concurrent information about
the synchronized evolution of B. Moreover, a distributed interpreter for ZS nets has
been proposed in [4], which is based on the ordinary net unfolding. Hence, ZS nets
can be used, e.g. to give a modular presentation of distributed decision making, as
any net can be modeled as the abstract counterpart of a free choice ZS net [4].

3

Bruni and Montanari

Transactions in Linda. Linda is the most representative language for coordi-
nation, where asynchronous communication is obtained by inserting, reading and
withdrawing elements to and from a shared multiset of tuples. In a way which is
analogous to the use of positive/negative contexts in nets, Linda also allows for test-
ing the presence/absence of messages in the tuple space. Its communication mecha-
nism is called generative because, once generated and until removed, each message
become equally accessible to all processes without being bound to a particular one.
However, no primitive for expressing transactions is in the core language (but see
e.g., the extension proposed in [13] for studying serializability in JavaSpaces).

Thanks to the analogy with Petri nets (tuples as tokens), the idea is to provide a
way for programming transactions by distinguishing a class of low-level messages
whose only role is to coordinate the exchange of services or information between
agents. We call zero-safe these messages, because it only makes sense for them
to exist inside a transaction, i.e., their lifetime lasts as long as necessary for their
producers and consumers to agreeing on some decision. The remaining messages
are called stable to make clear that the information they contain contributes sub-
stantially to the actual configuration of the system.

As a simple example, let us consider the modeling of multiset rewriting: An
agent P needs all the messages a1; :::;an, regardless of the order in which they are
consumed, to start a task Q. Of course, we look for a simple way of specifying that
no process P0 can in the meantime fetch the resources a1; :::;an, deadlocking P. The
idea is to write P as the parallel composition of in(a1) out(pZ); :::; in(an) out(pZ)
and in(pZ) ::: in(pZ) Q, where: all ai are stable, pZ is zero-safe, in is the input op-
eration, out is the output operation and denotes the atomic prefixing, with Q pre-
fixed n times by in(pZ). Then, the transaction starts as soon as any ai is consumed
and the atomic prefixing force the output of a zero-safe message pZ; moreover, the
transaction can only commit when n messages pZ have been produced, which the
atomic prefix of Q can consume. Note that Q cannot be activated unless all ai have
been retrieved. We call TraLinda the language obtained by extending the kernel of
Linda with the primitives for transactions, which are partially described above.

Structure of the paper.
In Section 1, we recall the basics of Petri nets with read arcs, inhibitor arcs and
zero-safe places, together with the syntax and the concurrent semantics of Linda.
Section 2 introduces inhibitor arcs in the zero-safe approach, while Section 3 de-
fines TraLinda and its concurrent semantics based on the nets discussed in Section 2.

1 Background

1.1 Petri nets

A net is a triple N = (SN;TN;FN), where SN is the set of places a;a0; : : :, TN is the
set of transitions t; t 0; : : : (with SN \TN = ?), and FN � (SN �TN)[(TN � SN) is
called the flow relation.

4

Bruni and Montanari

u 2 S�

u
buc
=)R u

t:u
w
�! v 2 T

u�w
w

=)R v�w

u1�w1
w1

=)R v1�w1; u2�w2
w2

=)R v2�w2

u1�u2�bw1�w2c
bw1�w2c
=)R v1� v2�bw1�w2c

Figure 1. The inference rules for =)R .

The elements of FN are called arcs, and we write x FN y for (x;y)2 FN . We shall
denote SN [TN by N and omit subscripts when no confusion can arise. As usual,
the pre- and postset of x 2 N, are �x = fy 2 N j y F xg and x� = fy 2 N j x F yg. We
assume �t 6=? for all t 2 T .

A marking u:S ! N is a finite multiset of places. It can be written either as
u = fn1a1; :::;nkakg where each ni dictates the number of tokens in ai (if ni = 0
then niai is omitted), or as the formal sum u =

L
ai2S niai denoting an element

of the free commutative monoid S� on S (the monoidal operation is defined by
(
L

i niai)� (
L

i miai) = (
L

i(ni +mi)ai) with 0 as the unit). We shall overload the
symbol � to denote multiset inclusion.

A marked place/transition Petri net (PT net) is a tuple N = (S;T;F;W;uin) such
that (S;T;F) is a net, the function W:F! N assigns a positive weight to each arc
in F, and the finite multiset uin:S ! N is the initial marking of N.

We find convenient to view F as a function F:(S�T)[(T �S)! f0;1g, with
x F y () F(x;y) 6= 0. Then, for PT nets we can represent both F and W as the
multiset relation F:(S�T)[(T �S)! N . For any transition t 2 T , let pre(t) and
post(t) be the multisets over S such that pre(t)(a)= F(a; t) and post(t)(a)= F(t;a),
for all a 2 S. We write t:u! v for a transition t with pre(t) = u and post(t) = v.

A marked net with read arcs (r-net) is a tuple R = (S;T;F;R;uin), where NR =
(S;T;F;uin) is the underlying PT net and R:S�T ! f0;1g is the context relation.
Though there are no technical difficulties in dealing with context multirelations (see
e.g. [6]), for the current presentation is simpler to consider just context relations,
having in mind the maximum sharing hypothesis of [7]. We denote by ctx(t) the
(multi)set of places defined by ctx(t)(a) = R(a; t) for all a 2 S and by buc the set
fa j u(a)> 0g of non-empty places of u. The minimum amount of resources that
t requires to be enabled is pre(t)� ctx(t): The tokens in pre(t) are fetched, while
those in ctx(t) are just read, and other transitions can access them, concurrently
with t. For t 2 T with pre(t) = u, post(t) = v and ctx(t) = w, we write t:u

w
�! v.

For X a multiset of transitions, and u a marking, we say that X is enabled at
u if b

L
t2X ctx(t)c�

L
t2T X(t) � pre(t)� u. We say that u evolves to the marking

v via X , written u [Xi v, if X is enabled at u and v = u�
L

t2T X(t) � post(t)	
L

t2T X(t) � pre(t), with 	 denoting multiset difference. Note that if u has enough
tokens to satisfy also the ‘context’ of X , then v is obtained from u just by removing
L

t2T X(t) �pre(t) and then adding
L

t2T X(t) �post(t).
The step relation can be equivalently defined by the inference rules in Figure 1,

that carry also information about the context used in the step. The meaning of
u

w
=)R v is that a step can lead from u to v reading w (note that buc � w � bvc).

Idle tokens contribute to contexts. Transitions yield basic steps. When building
larger steps, the maximum common context of the substeps is shared.

5

Bruni and Montanari

u� x
w

=)RD v� y;

(u;x)
w
�D (v;y)

(u1�w;x)
w
�D (v1�w;y); (u2�w;y)

w
�D (v2�w;y0)

(u1�u2�w;x)
w
�D (v1� v2�w;y0)

(u;0)
w
�D (v;0)

u
w
VD v

Figure 2. The inference rules for VD .

1.2 Zero-safe nets

According to the ordinary terminology, in a ‘0-safe’ net all places cannot contain
any token in all reachable markings. We use the terminology zero-safe net —note
the word ‘zero’ instead of the digit ‘0’— to mean that the net contains special
places, called zero places, whose role is that of coordinating the atomic execution
of transitions. However, no new interaction mechanism is needed, and the coordi-
nation of the transitions participating in a step is handled by the usual token-pushing
rules of nets, assuming late delivery of stable tokens (postponed to the end of the
transaction). Zero-safe places cannot contain any token in any observable state.

A zero-safe net (ZS net) is a tuple B = (S;T;F;uin;Z) where NB = (S;T;F;uin)
is the underlying PT net of B and Z � S is the set of zero places. The places in
LB = SrZ are called stable places. A stable marking is a multiset of stable places,
and the initial marking uin must be stable. Stable markings describe observable
states, whereas the presence of one or more zero tokens in a given marking makes it
be unobservable. We call stable tokens and zero tokens the tokens that respectively
belong to stable places and to zero places. Since S� is a free commutative monoid,
S�' L��Z� and we can write t:(u;x)! (v;y) for a transition t with pre(t)= u�x
and post(t) = v� y, where u and v are stable multisets and x;y 2 Z�.

Zero-safe nets have been introduced in [2,3] and then extended in [6], by al-
lowing the combined use of zero places and read arcs. A ZS r-net is a tuple
D = (S;T;F;R;Z;uin) such that RD = (S;T;F;R;uin) is a r-net and (S;T;F;Z;uin) is
a ZS net. Though zero places can be used as context in [6], for simplicity we shall
assume that ctx(t)� SrZ for all t 2 T . In defining the dynamics of ZS r-nets, we
can follow two main alternatives. The crucial point is whether to forbid or not that
a stable token is read (possibly many times) and then also fetched during the same
transaction. In the following we consider the semantics that forbids these kinds of
consumptions, which is illustrated in Figure 2 (where u;v;w2 L� and x;y;y0 2 Z�).
The second rule is crucial: it sequentializes on zero tokens, while composing in
parallel on stable tokens (sharing the whole stable context w of the two substeps).

At the abstract level, the system modeled by D can be equivalently described via
an r-net AD such that SAD = SDrZD and ()AD) = (VD). Among the several
r-nets that satisfy these conditions we can choose the optimal one, whose transitions

represent the proofs of transaction steps u
w
VD v taken up to equivalence (permu-

tation of concurrent events) and that cannot be decomposed into shorter proofs.
When these two conditions are verified, the concurrent kernel of the behavior has
been identified, and all the steps can be generated by it. (The abstract net can be
defined according to either the collective or the individual token philosophy noticed
in [17]: the two approaches yield the same step relation but different abstract nets.)

6

Bruni and Montanari

P ::= 0 j M j η:P j µ?P : P j P+P j PjP M ::= hai

η ::= out(a) j rd(a) j in(a) j !in(a) µ ::= rdp(a) j inp(a)

Figure 3. Linda-like process calculus.

1.3 Concurrent semantics for Linda

Thanks to their visual representation and their straightforward encoding of con-
currency, nets have often been used as a computational model for concurrent and
distributed languages such as Linda. The communication primitives of Linda are:
(1) the output of a message out(a); (2) the reading of a message (without consum-
ing it) rd(a); and (3) the fetching of a message in(a), after which the message is
no longer available in the tuple space. Two additional predicates rdp(a) and inp(a)
allow, respectively, for (4) checking for the presence of a message without con-
suming it; and (5) atomically testing and consume the message if present. The two
predicates can be used as the boolean component of conditional constructs.

In [10,9], first a process calculus is introduced, which embeds all the above
primitives and then ri-nets are used to give a truly concurrent semantics to the
calculus. In particular, the rd(a) operation is modeled via read arcs (allowing for
multiple concurrent readings of a), while predicates also require inhibitor arcs (to
acknowledge the absence of messages, acting consequently). We recall that an ri-
net is an r-net (S;T;F;R;uin) together with a relation I � T � S, which expresses
negative enabling conditions: if I(t;a), then t is never enabled at u with u(a)> 0.

It is worth noticing that the semantics of the out(a) operation can give rise
to two different interpretations: ordered, where the emission and the rendering
of a message form a single and atomic action; or unordered, where emission and
rendering are two autonomous actions. The difference is crucial, because in the
second case, deadlock is decidable (it is possible to find an ordinary PT nets which
is deadlock equivalent to the ri-net of the original encoding [10]). The syntax of the
language is recalled in Figure 3, where the prefix !in(a) means guarded replication
and hai represents a message in the tuple space. Due to space limitation we refer to
[10] for the net encoding. Roughly speaking, the net modeling of Linda is defined
by associating distinct places with messages hai and sequential processes P, and
suitable transitions with computational moves of sequential processes. A marking
of the resulting net is a multiset of active processes and messages in the tuple space.

For example, for any process of the form P = rdp(a)?P1 : P2, the modeling net
involves two transitions having the place P as preset, a read (resp. inhibitor) arc
to hai, and dec(P1) (resp. dec(P2)) as postset, with dec() the obvious decomposi-
tion function of processes into the multiset of their sequential components. Then,
according to the ordered semantics, outputs are modeled via transitions with preset
out(a):P and postset hai� dec(P), whereas according to the unordered semantics,
for each message a an additional place hhaii is considered that models emitted
messages not yet available to other processes, and consequently, two transitions are
considered: one from out(a):P to hhaii�dec(P) and the other from hhaii to hai.

7

Bruni and Montanari

��������� ��a1 t1 �� Æ ��

Æ

z1
t2 ���������� a2

��������� ��a3 t3 ���������� a4

Figure 4. Is the abstract behavior of this net correct?

u 2 S�

? 	
������ u
buc
=)C u

t:u
w
�! v 2 T;

t I 	
������ u�w
w

=)C v�w

X1 	
�����
� u1�w1

w1=)C v1�w1; X2 	
�����
� u2�w2

w2=)C v2�w1

bX1�X2c 	
�����
� u1�u2�bw1�w2c

bw1�w2c
=)C v1� v2�bw1�w2c

Figure 5. The inference rules for 	
������
=)C .

2 Zero-safe nets with inhibitor arcs

Our first goal is to extend the zero-safe approach to nets with inhibitor arcs. This
is not completely straightforward, as the following example demonstrates. Let us
consider the net in Figure 4. At the abstract level, there are two apparently inde-
pendent transactions: one from a1 to a2 (atomic execution of t1 followed by t2) and
one from a3 to a4, but of course at the low level this activities can hardly be seen as
independent because of the token flow in z1, which disappears at the abstract level.
To solve this ambiguity, we restrict the usage of inhibitor arcs to stable places only.

Definition 2.1 A zero-safe ri-net (ZS ri-net) is a tuple E = (S;T;F;R; I;uin;Z),
where DE = (S;T;F;R;uin;Z) is a ZS r-net, and I � T � (Sr Z) is the inhibitor
relation. The underlying ri-net of E is CE(S;T;F;R; I;uin)

We let t I = fa j I(t;a)g, and assume that relations F, R, I are pairwise disjoint.
The operational semantics of ordinary ri-nets C is recalled in Figure 5, where in the
third rule we assume (X1�X2)\ (u1�u2�w1�w2� v1� v2) =?. In fact, when
composing two steps in parallel, we must check that each step does not involve to-
kens that inhibit the execution of the other step. A generic step X 	
������ u

w
=)C v means

that v can be reached from u reading w, and also that this step can be applied inside
any other marking u0 � u provided that u0(a) = 0 for all a 2 X . The operational
semantics of ZS ri-nets is then the obvious extension illustrated in Figure 6 (where
in the third rule we assume again (X1�X2)\ (u1�u2�w�v1�v2) =?), because
we never concatenate on inhibitor places (they must be stable, and therefore the
third rule just behaves like the parallel composition for them).

Analogously to [5], we can define the abstract ri-net AE of E according to the
two main philosophies of concurrency (collective or individual token), by char-

acterizing the minimal concurrent steps X 	
������ u
v
VE v and viewing them as atomic

activities with preset u, postset v, reading w and inhibited by X .

8

Bruni and Montanari

X 	
������ u� x
w

=)CE v� y;

X 	
������ (u;x)
w
�E (v;y)

X 	
������ (u;0)
w
�E (v;0)

X 	
������ u
w
VE v

X1 	
�����
� (u1�w;x)

w
�E (v1�w;y); X2 	
�����

� (u2�w;y)
w
�E (v2�w;y0)

bX1�X2c 	
�����
� (u1�u2�w;x)

w
�E (v1� v2�w;y0)

Figure 6. The inference rules for 	
������
VE .

��������� ��Q t1 �� Æ �� t2 �� Æ �� t3

��
��

��
��

�

��

���������

���������������hai ���������

�������������

��

hbi ��������hci �������� 0

��������� ��R t4 �� Æ �� t5 �� Æ �� t6

���������

��

Figure 7. The ZS ri-net for P = rd(a) in(b) out(c):0jrd(b) in(a) out(c):0jhaijhbi.

3 Transactions in Linda

Our second goal is to define a satisfactory treatment of transactions in Linda. The
idea is to distinguishing between low-level (i.e., zero-safe) and high-level (i.e., sta-
ble) messages. Hence we assume two disjoint types, H and L, and a typing relation
a : τ are given, such that the predicates µ of conditional expressions can only test
for presence of observable messages a : H. Moreover, we introduce the atomic pre-
fixing η P, where η can only be executed if P can commit.

The suitable semantic framework where to interpret the resulting language, that
we call TraLinda, is then provided by ZS ri-nets. In fact we can straightforwardly
adopt the translation in [10] to get a finite ri-net C(P) for each agent P, and then take
the subset of places associated to temporary messages as the set of zero-safe places.
To handle atomic prefixing, we must also introduce a zero-safe place PZ for each
sequential agent P, which replaces P in the postsets of transitions associated with
(atomic) prefixing. Since inhibitor arcs are only inserted because of conditional
statements and the boolean predicates can only involve observable messages, we
have that the resulting net E(P) is a ZS ri-net, and as such it comes equipped with
an abstract view of the system, which is the ri-net AE(P).

For example, in P = out(a):0jin(a):0, the two sequential subprocesses Q =
out(a):0 and R = in(a):0 can communicate asynchronously if a : H, but must com-
municate synchronously if a : L. In fact, in E(P) we have the initial marking Q�R,
with a transition t1:Q!hai�0 for the first process, and a transition t2:R�hai! 0
for the second process, where hai is zero-safe iff a : L. Thus, if a : L, a firing of t1

opens a transaction that only the firing of t2 can commit, resulting in the abstract
transition from Q�R to 2 �0 (two inactive processes/tokens), where the two opera-
tions are executed atomically (i.e., they are synchronized at the abstract level).

9

Bruni and Montanari

As another example, let a;b;c : H and take the process

P = rd(a) in(b) out(c):0jrd(b) in(a) out(c):0jhaijhbi:

Then, only one of the two atomic threads can be executed, because the same sta-
ble token (e.g., hai or hbi) cannot be first read and then consumed during the same
transaction. Thus, if Q = rd(a) in(b) out(c):0 is executed first, then the message
hbi is fetched and cannot be read by R = rd(b) in(a) out(c):0, while if R executes,
then hai is consumed (see Figure 7). In fact, at the abstract level we have a tran-
sition from Q�hbi to hci� 0 and context hai associated with the Q thread, and a
transition from R�hai to hci�0 and context hbi corresponding to the R thread. The
situation is very different if P0 = rd(a):in(b):out(c):0jrd(b):in(a):out(c):0jhaijhbi
is considered, where first the two read operations can be executed concurrently,
then the two messages hai and hbi can be retrieved, and finally two copies of the
message out(c) can be emitted.

Conclusion

We have shown how to handle inhibitor arcs inside the zero-safe approach, with
application to the modeling of transactions in the original extension TraLinda of the
language Linda. The results presented here are part of a broader research, which
aims at integrating the zero-safe approach with distributed languages such as the
Join calculus or the JavaSpaces middleware [18], to obtain a general purpose en-
vironment where distributed transactions can be faithfully designed, programmed
and executed. In particular, though recent results suggest that several techniques
inspired by Linda-like coordination languages are also adequate to deal with JavaS-
paces, due to space limitation, we leave to the full version of this paper the com-
parison with the coordination primitives considered e.g. in [14,13], together with
a precise relationship between the zero-safe approach and the ordered/unordered
semantics of Linda.

Acknowledgement
We thank the anonymous referees for their kind comments and suggestions.

References

[1] A. Asperti and N. Busi. Mobile Petri nets. Tech. Rep. UBLCS 96-10,
Computer Science Dept, Univ. of Bologna, 1996. ftp://ftp.cs.unibo.it/pub/
techreports/96-10.ps.gz

[2] R. Bruni and U. Montanari. Zero-safe nets, or transition synchronization made simple.
Proc. EXPRESS’97, Elect. Notes in Th. Comput. Sci. 7. Elsevier, 1997. http://www.
elsevier.nl/locate/entcs/volume7.html

[3] R. Bruni and U. Montanari. Zero-safe nets: The individual token approach. Proc.
WADT’97, Lect. Notes in Comput. Sci. 1376, pp. 122–140. Springer, 1998. http:
//www.di.unipi.it/˜bruni/publications/wadt97.ps.gz

10

Bruni and Montanari

[4] R. Bruni and U. Montanari. Executing transactions in zero-safe nets. Proc.
ICATPN 2000, Lect. Notes in Comput. Sci. 1825, pp. 83–102. Springer, 2000. http:
//link.springer.de/link/service/series/0558/tocs/t1825.htm

[5] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and
individual token approaches. Inform. and Comput., 156:46–89, 2000. http://www.
idealibrary.com/links/toc/inco/156/1/0

[6] R. Bruni and U. Montanari. Transactions and zero-safe nets. To appear in Advances in
Petri Nets: Unifying Petri Nets. Springer, 2001. http://www.di.unipi.it/˜bruni/
publications/uapnzs.ps.gz

[7] R. Bruni and V. Sassone. Algebraic models for contextual nets. Proc. ICALP 2000,
Lect. Notes in Comput. Sci. 1853, pp. 175–186. Springer, 2000. http://www.di.
unipi.it/˜bruni/publications/icalp2000.ps.gz

[8] M. Buscemi and V. Sassone. High-level Petri nets as type theories in the Join calculus.
Proc. FoSSaCS’01, Lect. Notes in Comput. Sci. 2030, pp. 104–120. Springer, 2001.
http://link.springer.de/link/service/series/0558/tocs/t2030.htm

[9] N. Busi. Petri Nets with Inhibitor and Read Arcs: Semantics, Analysis and Application
to Process Calculi. PhD thesis, Mathematics Department, University of Siena, 1998.
http://www.cs.unibo.it/˜busi/www/thesis.ps.gz

[10] N. Busi, R. Gorrieri, and G. Zavattaro. A truly concurrent view of Linda interprocess
communication. Tech. Rep. UBLCS 97-02, Computer Science Dept., Univ. of
Bologna, 1996. ftp://ftp.cs.unibo.it/pub/techreports/97-02.ps.gz

[11] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for Linda-like
languages. Theoret. Comput. Sci., 240(1):49–90, 2000.

[12] N. Busi, R. Gorrieri, and G. Zavattaro. On the expressiveness of Linda
coordination primitives. Inform. and Comput., 156(1–2):90–121, 2000. http:
//www.idealibrary.com/links/toc/inco/156/1/0

[13] N. Busi and G. Zavattaro. Process calculi for coordination: from Linda to JavaSpaces.
Proc. AMAST’00, Lect. Notes in Comput. Sci. 1816, pp. 198–212. Springer, 2000.
http://link.springer.de/link/service/series/0558/tocs/t1816.htm

[14] N. Busi, R. Gorrieri, and G. Zavattaro. On the serializability of transactions in
JavaSpaces. Proc. ConCoord, Elect. Notes in Th. Comput. Sci. 54. Elsevier, 2001.

[15] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. Proc. CONCUR’96, Lect. Notes in Comput. Sci. 1119, pp. 406–421. Springer,
1996.

[16] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[17] R.J. van Glabbeek and G.D. Plotkin. Configuration structures. Proc. LICS’95, pp.
199–209. IEEE Computer Society Press, 1995.

[18] Sun Microsystem, Inc. JavaSpacesTM specifications, v.1.1, 2000. http://www.sun.
com/jini/specs/js1_1.pdf

11

