
Simulation Modelling Practice and Theory 34 (2013) 48–63
Contents lists available at SciVer se ScienceD irect

Simulat ion Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
A novel black-box simulation model methodology for predicting
performance and energy consumption in commodity storage
devices
1569-190X/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2013.01.006

⇑ Corresponding author. Tel.: +34 918561316. Fax: +34 918561270.
E-mail address: josedaniel.garcia@uc3m.es (J.D. Garcia).
Laura Prada, Javier Garcia, Alejandro Calderon, J. Daniel Garcia ⇑, Jesus Carretero
Computer Architecture Group, University Carlos III of Madrid, Av. Universidad Carlos III, 22, 28270 Colmenarejo, Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 August 2012
Received in revised form 17 January 2013
Accepted 19 January 2013
Available online 28 February 2013

Keywords:
Storage devices simulation
Black-box probabilistic models
I/O systems performance
Scalable performance evaluation
I/O energy consumption
Scalable simulation
Traditional approache s for storage devices simulation have been based on detailed and
analytic models. However, analytic models are difficult to obtain and detailed models
require a high computational cost which may be not af fordable for large scale simulations
(e.g. detailed data center simulation s). In current systems like large clusters, grids, or
clouds, performance and energy studies are critical, and fast simulation s take an impo rtant
role on them.

A different approach is the black-box statistical modeling, where the storage device, its
interface, and the interconnection mechanisms are modeled as a single stochastic process,
defining the request response time as a random variable with an unknown distribution. A
random variate generator can be built and integrated into a bigger simulation model. This
approach allows to generate a simulation model for both real and synthetic complex work-
loads.

This article describes a novel methodology that aims to build fast simulation models for
storage devices. Our method uses as starting point a workload and produc es a random var-
iate generator which can be easily integrated into large scale simulation models. A compar-
ison between our variate generator and the widely known simulation tool DiskSim, shows
that our variate generator is faster, and can be as accurate as DiskSim for both performa nce
and energy consumption predictions.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

As demonstrat ed by the successful emergence of the Green500 [8] list, which provides a ranking of the most energy-e ffi-
cient supercomp uters in the world, energy has become as significant as performance. Consequently, the performance-per -
watt has been established as a new metric to evaluate systems. Many researchers have shown interest in identifying in
which cases there is room for improvement in the context of power efficiency. As a result, a lot of inefficiencies in relation
to energy have been identified. Research works show that a CPU resting in an idle state reaches about 50% of peak power
consumptio n [10]. Storage subsystems alone represent roughly 10–25% of the power consumed by the data center [14]. High
power consump tion in storage systems is expected, as an idle machine with one processor and two disks can easily spend as
much power on disks as on processors [22]. Storage consumption can become a greater problem in storage subsystem s
where the average number of disks per machine is in the dozens.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.simpat.2013.01.006&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2013.01.006
mailto:josedaniel.garcia@uc3m.es
http://dx.doi.org/10.1016/j.simpat.2013.01.006
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 49
In this way, simulation techniques are commonl y used for both performanc e and energy consumptio n evaluation of many
applications and systems. In order to obtain realistic results, data access to either a file system or database managemen t sys-
tem cannot be ignored. However, a key element in the data access studies is the storage device simulation model. A storage
device simulatio n model accepts as input the parameters of an applicati on workload (as a flow of device requests) and gen-
erates a performanc e metric prediction. The output performanc e measurement may be a general performanc e metric such as
average bandwid th, throughput, and latency. Such metrics give an idea of the global performance of the device. However, if
the device simulatio n model is integrated on top of a large system model, such as file systems or database managers, a de-
tailed metric as request’s response time is needed. Even more, disk’s manufac tures provide response time as an average va-
lue however, these metrics are not suitable for detailed simulations .

Scalability is one the most critical issues for current system’s wide simulators. This is the case of large clusters, peer to
peer or voluntee r computing models, grid storage infrastructu res [7], and content delivery networks . In all these cases,
expensive realistic simulatio ns spend a large amount of computational resources and computati on time.

Traditionall y, storage devices have been modeled by means of detailed or analytic models based on devices geometry
[26], zone splitting [35,5], or the use of read-ahead caches [9] and request reorderin g [30], reaching the emulatio n level
in many cases. An alternate approach is given by the black-bo x simulation models, where almost no knowled ge of the stor-
age device is required. The main advantage of the black-box simulation models is that access patterns of the storage devices
can be modeled using a sequence of random variables, which models the time required to service disk’s requests. This se-
quence of random variables is a stochastic process. The goal of these simulation models are the generation of values which
fits this stochastic process. Experime ntal data must be obtained and analyzed to fit the distribution behind.

In a previous work [11], we presented initial results using black-bo x simulation models. The model introduced in the pre-
vious work was not based on probabilistic distribut ions but on histogram representat ions. In this way, many experimental
data must be stored to get enough accuracy, requiring high memory costs. Additionally, other issues such as effects of queu-
ing, sequentiality, and inactivity periods were not considered.

We propose a novel black-box simulation model methodology, named Back-Box Model based on Probability distributions
(BBMP). Our solution is based on probability distributions, which are specially fast for generating values and providing re-
sponse times predictions from disk drives. Effects of queuing, sequentiality, caching, and inactivity periods are considered as
well.

The main contributions of this work are the following. First, we present BBMP that aims to predict disk response times in
a very fast way, saving time in large simulation process. This solution is also easily extensible to other storage devices such as
SSDs (Solid State Disks). Second, our method incorporate s the usage of a new response time measure ment tool, which can be
used in any kind of disk, with any kind of interface. Third, unlike other works [20], our evaluations use real workloads, or
synthetic with characteri stics typical of real workloads. Also, we compare our built models with the ones generate d for
the widely known simulation tool DiskSim [5]. Finally, as we will show in our evaluation section, the proposed method
can be used not only to predict performanc e, but also to obtain energy consumption estimations from disk drives.

The rest of this article is organized as follows. In Section 2, we briefly discuss about related work. Section 3 gives an over-
view of the method used to build the simulatio n model. Section 4 describes the procedure used to obtain disk response
times. Section 5 explains how to construct models and how to implement random variate generators. Next, Section 6 in-
cludes a description of an energy consumption model. The experimental results are presented in Section 7. Finally, Section
8 presents our conclusions.
2. Related work

Preliminary work has been performed by proposin g simulation models that fall into three main model categories : Ana-
lytic, Detailed, and Back-box. Table 1 shows an advantage/d rawback comparison of different simulation models for storage
devices.

Analytic models use mathemati cal equation s that summari ze disk behaviors. Thus, predictions are usually fast. However,
analytic models are difficult to obtain as it is required to know the hard disk drive internals, and for some of its parts it is not
easy to reach to an equation that describes them. Examples of such models include single disk models [30,35] or array disk
models [37,17,42]. Detailed models are usually very accurate, as they emulate the hard disk drive behavior. One widely
known detailed simulator is DiskSim [5]. The DiskSim simulation tool is able to model commod ity hard drives by using
parameters which are extracted from disks, using semi-automate d algorithms [40] or by means of the DIXtrac disk charac-
Table 1
Advantages and drawbacks of different disk model categories.

Advantage Drawback

Analytic Fast Difficult to obtain
Detailed Accurate High cost
Back-box Easy to obtain Accurate?

50 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
terization tool [28,29]. To give an idea of the complexity of the simulation model employed, DIXtract extracts almost 100
performanc e critical configuration parameters. However, this models is inappropriate when the number of disks are very
high due to the high computational cost as a counterpart.

Back-box simulation models are easier to obtain because the internal disk characteristics is not required (as in the pre-
vious models). Here, disks are considered as black-bo xes. However, for some of the existing approaches, it is not easy to ob-
tain accurate models which are cheap in resources as well.

There are black-bo x models based on tables [2] and on Classification And Regression Trees (CARTs) [39,21]. Back-box
simulation models based on tables store in memory, entries of input/output data from workloads and predictions. Miss-
ing data entries in the tables are interpolated from the most similar characterist ics on the tables. These models are the
most accurate of all. Accuracy can be even improved by adding new information to the tables. However, these models
are not scalable, because large tables involve in slower searches , and therefore, a higher prediction time. CART models
are an enhancement of black-box table-bas ed models. In CART models goal/output data entries are organized in binary
search trees whose leaves are accessed by using information from input. This generates faster predictions, but these
models suffer from the same lack, scalability. Unlike other black-box simulation models, our proposed methodology pre-
dicts service times by choosing, at most, among five different probability distribution s, which makes it faster when pre-
dicting. This approach reduces the simulation time significantly, allowing run more complex and exhaustive simulatio ns
(as we proof in Section 7).

Many researchers rely on traces that have been captured on production systems with real workloads. These traces
are replayed through simulators in order to estimate power consump tion and evaluate novel power-awar e storage
strategies. For example, a team of Microsof t researche rs gathers live traces that have been previously captured from
a production environments such as Hotmail and Messenger , and replays them in simulatio ns in order to predict energy
savings. Power consumptio n is simply estimated by the percentage of servers of the baseline systems that is powered
on [34].

Zhu and Zhou [44] gather their energy usage from DiskSim [3], which they have extended with a storage cache simulator
called CacheSim. Energy estimations are done by analyzing cache misses and the power managemen t scheme. Also, both idle
and active times are taken into account in order to estimate energy through simulations with traces as input data. Power
consumptio n deviations are reported to be under 2%.

In order to simulate energy consumption of GreenHDFS, the authors feed their trace-driven simulator with data extracted
from the data sheet of system components [16]. Similarly, the approach described by Narayanan et al. [22] is based on feed-
ing simulator s and testbeds with power data stemming from production manuals and traces gathered in production systems.
Disk-level power consump tion is measure d in this way as well.

Allalouf et al. [1] contribute a power modeling framework called STAMP. The practical use of this framework is threefold .
First, it offers a way to estimate online power consumption for storage systems. Second, the framework can be used as an
online power-aware capacity planning tool. Statistical performanc e informat ion represents the host storage workload which
is used as input for the storage models. Finally, the use of statistical information allows the framewor k to be used for power
and performanc e estimation on non-alive systems still in the design stage as well. Experimental results show how this mod-
eling method achieves a reasonable error deviation of 2–9%, depending on the workload transfer size.

Knobloch et al. [18] analyze power performanc e of MPI applicati ons. Their study is specially focused on energy saving
opportunities that originate from busy-wait states that are shown to be highly power-inefficient. They extend the Scalasca
[12] (scalable analysis of large-scale applications) tool-set, which is designed to detect wait states, focusing on energy
efficiency. It is examined which power-state s could be assigned to each wait-state in order to study potential power savings.
Although their work focuses on benchmarki ng CPU power performanc e, exploitation of idle states is something which every
system component can take advantage of, including and especiall y disks in storage systems.

In a previous work [11] we presente d initial results using black-bo x models based on histogram representat ions. Using
histogram representat ions, many experimental data must be stored to get enough accuracy, requiring a lot of computati onal
resources. In this paper, the proposed black-box model is based on probabili stic distribution s. Unlike the previous models,
information is gathered into one or several probabili stic distribut ions. Thus, the only informat ion to host are the parameters
that characterize them, avoiding the previousl y mentioned scalability problems .
3. BBMP overview

Our modeling methodology is composed of four main step or tasks as described in Fig. 1.
BBMP starts with a sequence of disk requests (from a synthetic workload or real traces repositories) and generates a var-

iate generator capable of producing several instances of simulated service time traces. The first task to accomplish consists
on obtain access patterns that include service time for each single disk operation. Those workloads come from two different
sources: real I/O traces from a specific system or synthetic workloads modeling a set of I/O traces. The selection of the source
for the I/O requests depends on the purpose of the simulator to be produced. Our method allows to work with real I/O traces
as well as with synthetic workloads, as soon as a common representation is used. It is important to remark that the simu-
lation module is depende nt on the I/O requests data sets. As an example, if we use I/O requests data sets coming from a Web

Fig. 1. Steps in black-box simulation modeling methodology.

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 51
server, the generated simulatio n module will be accurate to simulate disk service time under those load conditions and not
under the load given by a database server.

Next step (step 2) consists on obtaining samples of experimental traces with disk service time measurements . We per-
form different realizations of the measureme nt procedure. In each realization, requests are sent to the disk and the service
time for each individual request is measured, recording all the informat ion in an experimental traces repository. Section 4
describes in detail this procedure.

After experimental measureme nt, obtained data are analyzed in order to build a variate generator (step 3). Here, distri-
butions behind datasets are searched. Finally, the variate generator is included in a simulation module (step 4) to produce
simulation results. After several realizations of the simulation are run with the initial workload used in step 2, simulation
results are compared with experimental data to determine accuracy.
4. Service times measureme nt tool

It is noticeab le to remark that the goal here is not to get an overall metric, such as response time mean or throughput . In
contrast, our first objective focus on measure every request in order to build a simulation model. Once a workload is avail-
able, the next step consist of measuring the response time for every request. A workload dataset will be represented as a file
which has as many lines as I/O requests have the application or system. Each line contains details about a single request such
as the address of the disk at which is targeted, its size, the type of operation , and the timestamp when the request is per-
formed. A performanc e evaluator takes as input a previousl y obtained workload and generates response times for this char-
acterized workload.

To the best of our knowledge, dxreplay is the only tool that aims to achieve this goal. dxreplay is included in the package
DIXtrac [28,29]. Having a certain workload, dxreplay performs response time measureme nts on SCSI disks in order to com-
pare them with the measure ment results taken from the DiskSim simulator. This tool is used for validating the correct
extraction of the parameters that conform the detailed simulation model of a real disk in DiskSim. It is composed of a main
stream, which creates three threads: lbnreader, issuer, and collector. lbnreader reads requests from an workload input file; is-
suer launches the previousl y read requests to the disk at its specific timestamp; and collector waits for the launched requests
to be finished. The three threads are executed by turns using synchroniza tion primitives. However, the main lack of dxreplay
is that only works with SCSI disks in a non-gene ric way.

In order to deal with the previous lacks, we propose play, a performanc e evaluation tool that performs response time mea-
surements on any kind of disk or interface. Unlike dxreplay, play obtains measurements by using standard POSIX calls and not
specific SCSI command s. It is composed of a main stream (as shown in Algorithm 1). play reads every request from the work-
load (line 3) and executes at the specified timestamp (line 5). This timestamp is recorded for a later calculation of the re-
quest’s response time (line 4). It respects arrival request’s timestamps by waiting the required period until the next
request (line 6). play also contains a signal handler (as shown in Algorithm 2), which turns on when a specific request
has finished and its response time can be calculated (line 2), and reported directly to the output file (when making debugging
tasks), or recorded on an in-memory data structure (as shown in line 3).

52 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
Algorithm 1. play

1: activateðsignal handler;wake up when a request finishesÞ
2: loadRequests InMemoryFr omWorkloadFile ()
3: for i(1 to maxNumber OfRequests do
4: recordStartTim eOfRequest (i)
5: lauchRequestToD iskAtItsTime Stamp (i)
6: waitForNextReq uest (i)
7: end for
8: writeRespon seTimesToOutp utFile ()
Algorithm 2. signal_hand ler

1: recordEndTi meOfRequest ðfinished requestÞ
2: calculateRes ponseTime ðfinished requestÞ
3: reportRespon seTimeOnData Structure ðfinished requestÞ

To avoid any impact in the evaluation procedure from the file system layer, and to ensure that every I/O request in the
workload is physically sent to the evaluated disk, we define the disk as a raw character device and associate it to the disk that
is going to be evaluated. In that way, the device can be accessed directly by using generic POSIX calls. We also remove the
effect of the operating system I/O schedule r for it not to reschedule the requests and they can keep their arrival times. play
works similar to dxreplay (disk level) but using a higher lever interface which makes it more versatile. play also incorporates
a characteristic that allows the user to decide whether response times include disk queuing times effects. Thus, the maxi-
mum number of enqueued requests is restricted to be 1 when queuing times effects are required to be removed. When that
restriction is not applied, queuing times become a part of response times.
5. Variate generator module

In this section we describe the third step of our methodology . We show how to build a variate generator with the pre-
viously obtained in the previous step. We start with a sample of response times and we end up with a variate generator capa-
ble of producing simulated response times. Our method consists of obtaining response times, detecting statistic
distribution s, fitting to statistic distribution s, and finally constructing a simulation model.

Our first data set is a sample of response times obtained from replaying a trace on a real disk. This sample was obtained by
running play, our response time measure ment program presente d in Section 4. Next task performed consist of detecting sta-
tistic distributions from the previously obtained response times sample. Usually, samples present several different distribu-
tions that cover different ranges of the response time domains. Each distribution can be the result of different causes that
generate response times from one distribution. As causes, we initially identify that a specific request may be serviced from
the platters of the disk or from its buffers, may have to wait for the previous requests to be serviced (scheduling), etc. After
detecting possible distribution s, the identified distribution s must be fitted to some known distributions. BBMP takes advan-
tage of the R statistical analysis environment [41] in order to fit the samples to know theoretical distribution s. This method
has been described in a previous work [25]. Finally, the fitted distribution s are used to construct the model.

5.1. Constructing simulation models

The constructi on model step focus on deduce the causes and major parameters, for the previously detected, and fitted-to-
theoretical- distributions samples. For causes and parameters, we mean the workload characteristics that produce response
times from a certain distribution. Major parameters addresse d in this work are the following :

� Long inactivity periods. When the disk has been idle for a certain amount of time, the next request to be serviced may last
longer than as usual.
� Queuing times. When a request to be serviced arrives when one or several previous requests have not finished yet, it must

wait until the end of the previous ones, making its response time bigger.
� Sequentiality. When several requests are sequential, the difference in LBNs (logical block number) between them is small.

On the contrary, when the difference in LBNs is big enough, sequentiality may not be identified and response times are
bigger.
� Caching effects. Disk drives have internal buffers. When their usage is activated, servicing requests from the disk drive buf-

fers is faster than servicing requests directly from the platters.

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 53
Once we have identified the causes for generating response times from each specific fitted distribution , we construct a
model in which, depending on the input data, we choose theoretical distribution s in order to generate accurate response
times.

In an example of a Seagate Cheetah 10K.7 disk under a Financial trace [36], we identified two distribut ions and three
causes for them. Distribution 1 is a mixture of two Normal distributions (as shown in Table 2). Response times from part
1 of Distribution 1 are generate d when requests must be serviced from the platters. Response times from part 2 of Distribu-
tion 1 are generated when inactivity periods are longer than 1 s and when requests serviced from the platters, must wait
until the end of the previous ones. Finally, response times from Distribution 2 are generated when inactivity periods are
around half a second. For this specific model, we constructed the algorithm as shown in Algorithm 3.

Algorithm 3. Simulation model example for a Seagate Cheetah 10K.7 disk under the Financial trace
1: if ððsimTimeðÞ-ini disk½actReq� 1�Þ > 520ÞANDððsimTimeðÞ-ini disk½actReq� 1�Þ < 700Þ then
2: choose(bernoullið0:92208Þ
3: if choose = 1 then
4: response time(normalð47:04;6:385Þ
5: else
6: response time(normalð29:42;3:993Þ
7: end if
8: else
9: if ððsimTimeðÞ-ini disk½actReq� 1�Þ > 1000Þ OR ðsimTimeðÞ < end disk½actReq� 1�Þ then
10: response time(normalð10:819;5:706Þ
11: else
12: response time(normalð3:727;1:965Þ
13: end if
14: end if
5.2. Models based on real traces

For each real trace we distinguish among several reasons to generate response times from one fitted distribution , if there
exist more than one distribution. If there exist only one distribution , all response times are generated from it.

Finally, we count with a frequent simulation model repository from several real traces with different characterist ics. Pre-
dicting from this simulation model involves choosing one of several previously modeled traces. The criteria of selection is
based on the mean request size and the mean queuing time of the trace to model. Sequentiality is also taken into account.
On the basis of the mentioned criteria, a previousl y modeled trace is selected and used to predict response times from an
input workload. The criteria is checked again, and if a substanti al characterist ic has changed, another most similar previously
modeled trace is chosen. In order to guarante e the accurate ratio, we select at least one of the previously modeled traces with
similar characterist ics as the trace to be predicted. Algorithm 4 shows how the predictio n in this way works.

Before the first request arrives, contLastReqs is initialized. lastReqs is a constant which determines the maximum number
of arrived requests, before checking whether another distribution has to be selected. If that is the case, the method calculate-
Distr() is executed (line 22). This method determines, on the basis of the previously mentioned criteria, which distribution is
the most appropriate for the input trace to predict. According to the selected distribution , which value is in variable distr,
response times are generate d from it (lines 2–16). Every time a response time must be generated for a specific request,
the statistics for the input workload must be also updated. Those statistics include mean request size (addReqSizeToSta tis-
tics(), line 18), mean queuing time (line 19), and sequentiality (line 20).
Table 2
Parameters of the probabilistic distributions that mode l response times obtained from a Seagate Cheetah 10K.7 disk under a Financial trace.

Type p l r

Distribution 1 Normal 0.89 3.73 1.96
Normal 0.11 10.82 5.71

Distribution 2 Normal 0.92 47.04 6.38
Normal 0.08 29.42 3.99

54 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
Algorithm 4. Model based on several real traces for a Seagate Cheetah 10K.7 disk

1: if (contLastReqs < lastReqs) then
2: if (distr = 0) then
3: response time(generate S3DðÞ
4: end if
5: if (distr = 1) then
6: response time(generate BTIOðÞ
7: end if
8: if (distr = 2) then
9: response time(generate MadBenchðÞ
10: end if
11: if (distr = 3) then
12: response time(generate FinancialðÞ
13: end if
14: if (distr = 4) then
15: response time(generate Cello99ðÞ
16: end if
17: contLastReqs++
18: addReqSizeT oStatistics ()
19: addQueuingTi meToStatistics ()
20: addSequentialit yToStatistics ()
21: else
22: calculateDis tr ()
23: contLastReqs(0
24: end if
5.3. Models based on synthetic traces

The big difference with regard to build models based on real traces is that queuing times are not included in response
times samples. Besides, it uses only one trace. We remove queuing times from response time samples by using one of the
features of play. As previousl y discussed, it allows users extract response times by avoiding queuing times. It can be done
by restricting the maximum number of pending I/O requests that can be enqueued to the disk to one request. Thus, queuing
times are modeled on-line in the predictions. As queuing times are one of the most significant and distingui shing effects in
response times, if every input trace predicts them on its own, models can be more versatile and general. The purpose of this
is finally to have a more versatile model by simulating the queuing times on the fly. In Algorithm 5 we show, for the previ-
ously constructed model of the Seagate Cheetah 10K.7 disk, under the Financial trace [36], how to calculate queuing times
on-the-fly. Although the chosen trace is not synthetic, our goal here is to show the difference between generating queuing
times from a previously modeled distribution and when generating them on-the-fly.

Algorithm 5. Model for a Seagate Cheetah 10K.7 disk, under the Financial trace. Queuing times are calculated on the fly

1: if ððsimTimeðÞ-ini disk½actReq� 1�Þ > 520Þ&ððsimTimeðÞ-ini disk½actReq� 1�Þ < 700Þ then
2: choose(bernoullið0:92208Þ
3: if choose = 1 then
4: response time(normalð47:04;6:385Þ
5: else
6: response time(normalð29:42;3:993Þ
7: end if
8: else
9: if ððsimTimeðÞ-ini disk½actReq� 1�Þ > 1000Þ then
10: response time(normalð10:819;5:706Þ
11: else
12: response time(normalð3:727;1:965Þ
13: end if
14: end if
15: if ðsimTimeðÞ < end disk½actReq� 1�Þ then
16: response time(response timeþ ðend disk½actReq� 1� � simTimeðÞÞ
17: end if

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 55
As previously said, the generation of response times from Distribution 2 is described in lines 1–8. Every time the disk has
been idle for more than 520 ms and less than 700 ms, the actual request, actReq, generates its response time from one of the

parts of Distribution 2. We determine that idleness by doing a subtraction between the timestamp, when actReq arrives (sim-
Time()), and the time stamp when the previous request arrives (ini disk½actReq� 1�). Probability of choosing part 1 of Distri-
bution 2 is higher (0.92208) than choosing part 2. We determine which part to use by using a Bernoulli distribution (line 2).

The generation of response times from Distribution 1 is described in lines 9–14. Every time the disk has been idle for more
than 1000 ms, the actual request, actReq, generate s its response time from part 2 of Distribution 1 (line 10). In any other case,
response times are generated from part 1 of Distribution 1 (line 12). If actReq arrives (simTime()), and the previous request
actReq–1 has not been serviced yet, actReq is enqueued . To simulate that it has been enqueued, we calculate its response
time, by adding the time that it stays in the queue (end disk½actReq� 1� � simTimeðÞ, line 16) up to its previously calculated
service time (response time).
6. Energy consumption model

In a computer system, disk drives are one of the most power consuming elements. This is mainly due to their mechanical
nature. Disk drives usually have several platters in which data are stored. To access those data, several heads, moved by an
arm, are used. Energy consumed by disk drives affects both laptop/desk top and data centers. In the case of laptop/desktop
environments , energy consumed by disk drives reduces the amount of power available in batteries and power supplies. In
the case of large data centers, energy consumptio n of disk drives increases, mostly, expenses in electricity bills, and also CO 2
dissipation. That is mainly because in data centers many disk drives are used in order to improve performance, by servicing I/
O requests in a parallel fashion [24].

With an aim toward saving power, current disk drives have several states of energy: active, idle, and standby. A disk is in
active state when it is reading or writing data. When a disk is not doing anything, but is still spinning, its state is idle. When a
disk is not doing anything and its platters do not spin either, its state is standby. The highest power consumption occurs at
the active state. Idle state consumes less power than active, and standby state consumes much less power than the previous
two states. The disk spins down to the standby state when it has been idle for a certain period and it is predicted that a state
change is worth it. When an I/O request needs to be serviced by a disk that is in the standby state, it has to spin up before
anything, and then service the I/O request.

As commented before, the main goal of the BBMP methodology is to simulate disk response times in a fast way. In order to
calculate a disk energy estimation it is required to know its response times. Thus, BBMP can also be used to obtain energy
consumptio n estimations. We propose a power consumption simulation model which works with BBMP. The power con-
sumption simulation model employs an extension of the 2-Parame ter Model described in [43]. This model applies the fol-
lowing formula to calculate disk energy consump tion estimations:
Edisk ¼ EactiveDisk þ EidleDisk þ EstandbyDisk ð1Þ
EidleDisk ¼ PidleDiskxTidleDisk ð2Þ
where EactiveDisk is calculated as PactiveDiskxTactiveDisk; PactiveDisk is the power consump tion when the disk is active, and TactiveDisk is
the time spent by the disk while satisfying disk requests. EidleDisk is calculated in Eq. (2) where PidleDisk is the power consump-
tion in the idle mode and TidleDisk is the length of the idle period. EstandbyDisk is calculated as PstandbyDiskxTstandbyDisk; PstandbyDisk is the
power consumptio n in the standby mode and TstandbyDisk is the length of the standby period. Eq. (1) is applied to the execution
time line, in which response times from the disk model are included, and energy is obtained in terms of Joules.

Integrating the energy consumption model in BBMP, we are able to predict the energy consumptio n of I/O intensive work-
loads commonl y used in computers and data centers as we show in Section 7.
7. Evaluation

We have evaluated our solution on a SCSI disk. The chosen disk is a Seagate Cheetah 10K.7 and its main features are sum-
marized in Table 3. We constructed our models on top of the OMNeT+ + discrete event simulation environm ent [38].

We use several different block-level traces, common in data-intens ive I/O systems. Financial [36] is the I/O core of an
OLTP applicati on gathered at a huge Financial organization. It performs about 5 million requests over 24 disks. Cello99
[15] belongs to a shared compute/mail server from HP Labs. It performs about 6 million requests over 25 disks.

Other research works have investigated several I/O intensive parallel scientific applicati ons, such as MadBench2 [19], S3D,
and BTIO [23], to mention a few. We have evaluated our methodology , using real traces of the previous cited high perfor-
mance applications . BTIO and Madbenc h traces were obtained from a beowulf cluster with 4 I/O nodes, which uses PVFS2
[6] as a high performance parallel file system. The storage system consist of four magnetic disks and file blocks (64 KBytes)
are mapped round-robin over all disks. S3D traces were obtained from Red Storm [27] trace repositor y. They were extracted
from a Cray XT3+ class machine, which uses Lustre as file system. The block size used was 1 MB and the storage system
counted with 320 magnetic disks, in which file blocks were mapped round-robi n over all disks.

Table 3
Manufacturer specifications for a Seagate Cheetah 10K.7 model ST373207LC.

Specification Metric

Heads 2
Discs 1
Bytes per sector 512
Bytes per track 556 KBytes
Default read/write heads 2
Spindle speed 10,000 rpm
I/O data transfer rate 320 MBytes/s
Formatted capacity 73.4 GBytes
Guaranteed sectors 143,374,744
Cache buffer 8 MBytes
Average latency 3 ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

C
D

F

response time (ms)

Random Trace

dxreplay
play

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

C
D

F

response time (ms)

Mixed Trace

dxreplay
play

Fig. 2. Response times CDFs superimposition from a Seagate Cheetah 10K.7 disk and two synthetic traces.

56 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
Finally, we present results for two synthetic traces, Random and Mixed. Random has 10,000 requests, of which 66.6% are
reads and 33.3% are writes. The LBNs are random and are distributed across the entire disk. Request sizes range from 1 KB to
8 KB. Mixed has 5000 requests, in which 66.6% are reads and the rest are writes. 20% of the requests are sequential and 30%
are local. The remaining 50% have random LBNs. Request sizes also range between 1 KBytes and 8 KBytes. Random was eval-
uated by disabling the disk cache. Mixed was executed after enabling again the cache, and hence, the read-ahead and imme-
diate write reporting.

7.1. Service time measurement

Fig. 2 shows CDFs (Cumulative Distribut ion Functions) superimpos ition results of running two synthetic traces on the
Seagate Cheetah 10K.7 disk by using dxreplay (included int the DIXtrac tool), compared to executions by using play, our ser-
vice time measurement tool.

We have used the demerit error metric [26] in order to validate our service time measure ment tool. Demerit is defined as
the root mean square of the horizontal distances between dxreplay and play. We presented the demerit results in absolute
terms (as a differenc e in milliseconds), for comparison with other DIXtrac predictio n models [4].

Demerits obtained for Random and Mixed are 0.59 ms and 0.47 ms respectively . This is a quite good match, so consider
play as validated and we use it in the rest of the evaluations of ths work.

7.2. Disk drive modeling comparison

Fig. 3 plots CDFs superimposi tion results of modeling and executing the five previousl y mentioned traces on BBMP, Disk-
Sim, and a real Seagate Cheetah 10K.7 disk, with no cache and cache effects. In order to clarify the results, we summarize
total demerits of the previous mentioned traces in Table 4. The DiskSim simulation model parameters were obtained by run-
ning DIXtrac on the Seagate Cheetah 10K.7 disk. Fig. 3 plots the CDF curves for both real disk and models outputs and used
the demerit error as metric to validate the models against the real disk. Demerit figures are presented in relative terms as a
percentage of the mean response time. We have shown results for both enabling and disabling disk caches (left and right
column respectively) in order to show the disk cache effects over the curves, and also because it is a common practice used
to disable disk caches on individual disks used for databases or similar environments due to possible data integrity problems.

On the left column of Fig. 3, we plot demerits for the previousl y mentioned traces when the disk cache is disabled. For
some traces, demerits are better in our approach than in DiskSim, and vice versa. In any case, most of them, keep roughly

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

C
D

F

response time (ms)

S3D - no cache

real
BBMP

DiskSim
0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
response time (ms)

S3D - cache

real
BBMP

DiskSim

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

BTIO - no cache

real
BBMP

DiskSim
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

BTIO - cache

real
BBMP

DiskSim

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
response time (ms)

MadBench - no cache

real
BBMP

DiskSim
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
response time (ms)

MadBench - cache

real
BBMP

DiskSim

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

Financial - no cache

real
BBMP

DiskSim
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

Financial - cache

real
BBMP

DiskSim

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

cello99 - no cache

real
BBMP

DiskSim 0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
response time (ms)

cello99 - cache

real
BBMP

DiskSim

C
D

F
C

D
F

C
D

F
C

D
F

C
D

F
C

D
F

C
D

F
C

D
F

C
D

F

Fig. 3. Response times CDFs superimposition from a Seagate Cheetah 10K.7 disk and several block traces. The left column shows result when cache effects
are removed from the device. In the right, cache effects are presented.

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 57

Table 4
Comparison of demerits in relative terms for BBMP and DiskSim.

Cache No cache

DiskSim (%) BBMP (%) DiskSim (%) BBMP (%)

S3D 4.7 20.0 5.6 8.0
BTIO 94.0 4.9 13.0 8.3
MadBench 8.7 14.3 6.7 8.4
Financial 286.0 10.2 54.0 7.4
Cello99 51.0 12.0 45.0 9.0

58 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
in the same range. The highest demerits turn out to be in the DiskSim case, for Financial (54%) and Cello99 (45%) traces. In
both cases, DiskSim did not take into account idle time effects on response times. Other traces, like S3D and MadBench pro-
duced higher demerits in BBMP (8% and 8.40%, respectively) than in DiskSim (5.6% and 6.70%, respectively) due to errors in
prediction.

As we show in the right column of Fig. 3, demerits are slightly better for some traces in the BBMP approach than in Disk-
Sim when the cache is activated. However, in the DiskSim approach demerits are out of range for some traces (BTIO, Finan-
cial, and Cello99). This is because DIXtrac did not perfectly identify caching parameters or policies for the evaluated disk.
However, other traces, like S3D and MadBench, produced higher demerits in the BBMP trace (20% and 14.30%, respectively)
than in DiskSim (4.70% and 8.70%, respectivel y). That is because of errors produced when predicting. In the DiskSim cases,
caching did not affect response times for S3D and MadBench because both traces are very bursty and also their requests sizes
are big. This makes queuing times to outshine possible hits on disk cache, and also demerits to be lower.

Finally, Fig. 4 shows how much BBMP is faster in comparison with DiskSim in terms of speedup. Speedup s are compared
when the disk buffer cache is activated and it is not. Execution times for S3D are almost 600 times faster than for DiskSim.
This is primarily due to the number of blocks that are demanded in the same request, which are higher than in other traces.
The other traces are still faster in the BBMP executions (two orders of magnitude), which translate s into the fact that our
model is highly efficient.
7.3. Modeling non-trained traces

In this subsection we present the evaluation of two non-train ed traces by using one of the previous constructed black-bo x
simulation models. A non-train ed trace is a trace that has not been previously used in the simulation model construction. We
have chosen WebUsers and Webmail from the SNIA IOTTA repository [31]. WebUsers represents a web server hosting faculty,
which includes both staff and graduate students web sites. In turn, WebMail represents the web interface to the department
web server.

Fig. 5 shows the CDF results of executing both traces on our variate generator (simulated) and the Seagate Cheetah 10K.7
disk (real). For both of them, predictions are made from the model constructed for the Financial trace, which is similar in
characterist ics of size, queuing times, and sequentialit y. Demerits of those distribution s for cache and non-cache approach es
are shown in Table 5.

For both traces, queuing times are more common than in Financial, and real response times turn out to be longer than the
ones generated from the based-on-Financi al-model. That happens because in the model, if a current request has been long,
its length does not affect subsequent requests’ response times. This is so because generation of response times are indepen-
 0

 100

 200

 300

 400

 500

 600

S3
D

BT
IO

M
ad

Be
nc

h

Fi
na

nc
ia

l

C
el

lo
99

Sp
ee

du
p

Cache
No Cache

Fig. 4. Speed-up comparative of S3D trace. We plot how much BBMP is faster than DiskSim in terms of simulation time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

C
D

F

response time (ms)

WebUsers - Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

C
D

F

response time (ms)

WebUsers - No Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

C
D

F

response time (ms)

WebMail - Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

C
D

F

response time (ms)

WebMail - No Cache - CDF

real
simulated

Fig. 5. Response times CDFs superimposition for non-trained traces.

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 59
dent, and if a current response time was long, the subsequent request does not have to be so. This makes certain response
times may be shorter than real queuing times, as it happens. The use of caching reduces queuing effects, and as it is shown in
the figures, real and simulated results present better similarities.
7.4. Simulation models based on synthetic traces

In this subsection, we present and evaluate a model based on a synthetic trace. Among different available options, we
chose the SPC Benchma rk v1.10.1 [32] defined by the Storage Performance Council [33]. As discussed in [13], traces gener-
ated by the benchma rk simulate a real environm ent, commonly used in business applications such as OLTP, database, and
mail server systems.

In order to evaluate the model, we replay several real traces on it and plot their response times CDFs superimposi tion. We
chose two of the bunch of the previously described traces. We selected the ones that were more similar in the range of re-
quest sizes to SPC-1 workloads . Those were Financial [36] and Cello99 [15]. We also used another trace, namely WebSearch
[36], which belongs to a famous search engine server, which executes about 4 million read requests over six disks during 4 h.
For simplicity, we did not deactivated disk buffers. We constructed the model and predicted from it, by using read-ahead and
immediate reporting by default.

Fig. 6 depicts CDFs comparisons of four workloads by using the simulation model constructed for a synthetic trace.
Demerits of those distributions are shown in Table 6. For the four workloads , predictions are made from a model based
on a SPC1 trace. When predicting, queuing times are calculated on the fly, by checking if the previous requests have finished.

SPC1 is the same trace as the one used to build the simulation model. However, when constructing the model, queuing
times were removed from the response time samples. For all traces, both the modeled and real distribution s follow the same
trend. However , prediction errors may lead to shorter queuing times, as in SPC1 trace, or larger queuing times, as in Web-
Search, Finnancia l, and Cello99.
Table 5
Demerits in relative terms for non-trained traces.

Trace Cache (%) No cache (%)

WebUsers 39 21
Webmail 25 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

C
D

F

response time (ms)

SPC1 - Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

C
D

F

response time (ms)

WebSearch - Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

C
D

F

response time (ms)

Financial - Cache - CDF

real
simulated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

C
D

F

response time (ms)

Cello99 - Cache - CDF

real
simulated

Fig. 6. Response times CDFs superimposition from a Seagate Cheetah 10K.7 disk and a BBMP based on a synthetic trace. Non-trained real traces are
executed. Caching is active.

Table 6
Demerits in relative terms for our black-box mode l approach (BBMP). Non-trained traces are executed.

Workload Demerit (%)

SPC1 59.6
WebSearch 28.9
Financial 48.3
Cello99 87.0

Table 7
Demerits, values of energy, and energy errors, in relative terms, for our black-box model approach (BBMP) and DiskSim.

Trace Demerit (%) Energy DiskSim (J) Energy BBMP (J) Prediction error (%)

BTIO 7.25 33290.29 33306.20 0.04
MadBench 11.63 68933.28 68958.55 0.04
S3D 7.36 10629.27 10680.77 0.48
Financial 15.58 522704.00 524189.60 0.28

60 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
In the specific case of Financial, although queuing times are not very common, response times from the model keep being
bigger than from the real trace. This is because in Financial mean request sizes are smaller than in SPC1, which covers a wide
range of sizes, generally bigger than Financial.
7.5. Modeling storage energy consumption

In this subsection, we show how BBMP can be used to measure energy consumptio n in hard disk drives. We present re-
sults of models constructed for the previous traces. The different energy-aware states of the simulated disk are summari zed
in Table 8.

Table 8
Seagate Cheetah 15K.5 power specifications.

State Consumption (W)

Idle 12
Active 17
Standby 2.6

Fig. 7. Q–Q plots for simulated response times of a Seagate Cheetah 15 K.5 disk and four different workloads.

Table 9
Breakdown of black-box model generation time.

Trace Recording, tr (min) Detection, td (s) Identification, ti (s)

S3D 15.0 0.79 –
BTIO 45.0 6.40 22.40
MadBench 95.4 0.34 –
Financial 720.0 13.44 113.92
Cello99 1440.0 40.00 240.00

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 61
Fig. 7 shows Q–Q plots for BTIO, MadBench, S3D, and Financial. The four ones allow to judge the goodness -of-fit of each
particular model to response times obtained by using DiskSim. The energy consumptio n model described in Section 6 was
applied to both model categories. As we show in Table 7, demerits are not very high due to values of energy are very similar,
both in DiskSim and in BBMP. This lead us to conclude that BBMP can also be used for predicting energy consump tion of I/O
intensive applicati ons.

62 L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63
7.6. Generation time of black-box model

In this subsection we analyze the time needed to generate a black-box statistical model. That time consists of three terms
(see Fig. 1):

� tr: Time required to record requests response times from the trace (step 2).
� td: Time required to detect possible distribution s from the response times sample (step 3).
� ti: Time required to identify possible causes for the detected distributions (step 3).

Table 9 shows times tr ; td, and ti for each trace used in this study.
Used traces are long enough to ensure that the process is in a steady state, so that using longer traces would not add any

additional value. Distribution detection time (td) takes in our traces, at the worst case, 1 min. Actual time depends on the
response times sample shape and trace duration.

Identification time (ti) may be longer, although it is under acceptable limits. This time is highly dependent on the number
of detected distributions, and also on the trace length. The parameters used to generate response times from a certain dis-
tribution are cache size, sequentiality, queueing effects, and idle times. A genetic algorithm identifies those parameters by
using the sample, and previously detected distribut ions.

For S3D and MadBench traces we do not provide identification time as there is no need to perform any identification. The
reason behind that, is that for those traces, a single distribution can be used, and thus all response times can be generated
from that distribution .
8. Conclusion

Providing efficient and power-aw are storage solutions is currently an active research field. There is a growing number of
optimizations and solutions which deal with the problem of achieving energy efficiency and performance, however there is a
lack of tools which allow evaluate then. In this paper we have described a methodology used to build fast and accurate black-
box simulation models for hard disk drives. The presented solution is based on probability distribution s and can be used for
both synthetic and real traces. The methodology includes a generic measuring service time tool.

Our approach is based on a multiple real trace repository and may be accurate when the traces to predict have similar
characterist ics as one of the traces, for which the model has been constructed. The model can also be based on a single syn-
thetic trace. This trace is supposed to cover a wide range of characterist ics from other traces, including several access pat-
terns, common in real disks. Additionally, this approach allows to calculate queuing times on the fly on predictio n stage,
making it more versatile.

Our solution has been compare d with DiskSim in terms of accuracy and speed-up, showing that BBMP is two orders of
magnitude faster than DiskSim for most of the experiments. It has also been compared with DiskSim in terms of energy con-
sumption estimations, and we concluded that it keeps being accurate in that respect.

Acknowled gements

This work has been partially funded by the Spanish Ministry of Science and Technology under the Grant TIN2010-16 497
Técnicas Escalables de Entrada/Salid a en Entornos Distribuidos y de Computación de Altas Prestacio nes (Input/Output Scalable
Techniques in Distributed and High Performa nce Computing Environments).

References

[1] M. Allalouf, Y. Arbitman, M. Factor, R. Kat, K. Meth, D. Naor, Storage modeling for power estimation, in: Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, 2009.

[2] E. Anderson, Simple Table-based Modeling of Storage Devices, Technical Report HPL-SSP-2001-4, HP Laboratories, 2001.
[3] J.S. Bucy, J. Schindler, G.R. Schlosser, Steven W. Ganger, Contributors, The DiskSim Simulation Environment Version 4. 0 Reference Manual, Technical

Report CMU-PDL-08-101, Carnegie Mellon University Parallel Data Lab, 2008.
[4] Carnegie Mellon University Parallel Data Lab, DIXtrac: Automated Disk Drive Characterization, 2008. <http://www.pdl.cmu.edu/Dixtrac/index.shtml>

(last visited January 2012).
[5] Carnegie Mellon University Parallel Data Lab, The DiskSim Simulation Environment (V4.0), 2008. <http://www.pdl.cmu.edu/DiskSim> (last visited on

January 2012).
[6] A. Ching, A. Choudhary, W.K. Liao, R. Ross, W. Gropp, Noncontiguous I/O through PVFS, in: Proceedings of the IEEE International Conference on Cluster

Computing, CLUSTER’02, IEEE Computer Society, Washington, DC, USA, 2002, p. 405.
[7] A. Chouder, S. Silvestre, N. Sadaoui, L. Rahmani, Modeling and simulation of a grid connected PV system based on the evaluation of main PV module

parameters, Simulation Modelling Practice and Theory 20 (2012) 46–58.
[8] CompuGreen LLC. The Green 500 List, 2007. <http://www.green500.org> (last visited June 2012).
[9] Y. Deng, J. Zhou, X. Meng, Deconstructing on-board disk cache by using block-level real traces, Simulation Modelling Practice and Theory 20 (2012) 33–

45.
[10] X. Fan, W.D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized computer, in: Proceedings of the 34th Annual International Symposium on

Computer Architecture, ISCA’07, ACM, New York, NY, USA, 2007, pp. 13–23.
[11] J.D. Garcia, L. Prada, J. Fernandez, A. Nunez, J. Carretero, Using black-box modeling techniques for modern disk drives service time simulation, in:

Proceedings of the 41st Annual Simulation Symposium, ANSS’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 139–145.

http://www.pdl.cmu.edu/Dixtrac/index.shtml
http://www.pdl.cmu.edu/DiskSim
http://www.green500.org

L. Prada et al. / Simulation Modelling Practice and Theory 34 (2013) 48–63 63
[12] M. Geimer, F. Wolf, B. Wylie, E. Ábrahám, D. Becker, B. Mohr, The Scalasca performance toolset architecture, Concurrency and Computation: Practice
and Experience – Scalable Tools for High-End Computing 22 (2010) 702–719.

[13] B.S. Gill, D.S. Modha, SARC: sequential prefetching in adaptive replacement cache, in: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, USENIX Association, Berkeley, CA, USA, 2005, p. 33.

[14] U. Hoelzle, L.A. Barroso, The datacenter as a computer: an introduction to the design of warehouse-scale machines, Synthesis Lectures on Computer
Architecture, Morgan and Claypool Publishers, 2009.

[15] HP Labs, The Cello99 Trace, 1999. <http://tesla.hpl.hp.com/opensource/cello99> (last visited June 2012).
[16] R.T. Kaushik, M. Bhandarkar, GreenHDFS: towards an energy-conserving, storage-efficient, hybrid Hadoop compute cluster, in: Proceedings of the 2010

International Conference on Power Aware Computing and Systems, HotPower’10, USENIX Association, Berkeley, CA, USA, 2010, pp. 1–9.
[17] M.Y. Kim, A.N. Tantawi, Asynchronous disk interleaving: approximating access delays, IEEE Transactions on Computers 40 (1991) 801–810.
[18] M. Knobloch, B. Mohr, T. Minartz, Determine energy-saving potential in wait-states of large-scale parallel programs, Computer Science – Research and

Development 27 (2012) 255–263.
[19] Lawrence Berkeley National Laboratory, MADbench2 Benchmark, 2008. <http://crd.lbl.gov/borrill/MADbench2> (last visited 2011).
[20] S. Li, H.H. Huang, Black-box performance modeling for solid-state drives, in: Proceedings of the 2010 IEEE International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 391–
393.

[21] M.P. Mesnier, M. Wachs, R.R. Sambasivan, A.X. Zheng, G.R. Ganger, Modeling the relative fitness of storage, SIGMETRICS Performance Evaluation
Review 35 (2007) 37–48.

[22] D. Narayanan, A. Donnelly, A. Rowstron, Write off-loading: practical power management for enterprise storage, ACM Transactions on Storage 4 (2008)
10:1–10:23.

[23] NASA Advanced Supercomputing Division, NAS BTIO Benchmark, 2011. <http://www.nas.nasa.gov/Resources/Software/npb.html> (last visited 2011).
[24] M. Poess, R.O. Nambiar, Energy cost, the key challenge of today’s data centers: a power consumption analysis of TPC-C results, Proceedings of the VLDB

Endowment 1 (2008) 1229–1240.
[25] L. Prada, A. Calderon, J. Garcia, J.D. Garcia, J. Carretero, A black box model for storage devices based on probability distributions, in: Proceedings of the

10th IEEE International Symposium on Parallel and Distributed Processing with Applications, ISPA, IEEE Computer Society, Los Alamitos, CA, USA, 2012,
pp. 355–362.

[26] C. Ruemmler, J. Wilkes, An introduction to disk drive modeling, IEEE Computer 27 (1994) 17–28.
[27] Sandia National Laboratories, S3d I/O Traces, 2009. <http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data> (last visited June 2012).
[28] J. Schindler, G.R. Ganger, Automated disk drive characterization, in: Proceedings of the 2000 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS’00, ACM, New York, NY, USA, 2000, pp. 112–113.
[29] J. Schindler, J.L. Griffin, C.R. Lumb, G.R. Ganger, Track-aligned extents: matching access patterns to disk drive characteristics, in: Proceedings of the 1st

USENIX Conference on File and Storage Technologies, FAST’02, USENIX Association, Berkeley, CA, USA, 2002, pp. 259–274.
[30] E. Shriver, A. Merchant, J. Wilkes, An analytic behavior model for disk drives with readahead caches and request reordering, ACM SIGMETRICS

Performance Evaluation Review 26 (1998) 182–191.
[31] SNIA, Snia IOTTA Trace Repository, 2011. <http://iotta.snia.org/traces> (last visited June 2012).
[32] Storage Performance Council, SPC Benchmark-1 (SPC-1). Official Specification, 2006. V1.10.1.
[33] Storage Performance Council, SPC Benchmarks, 2006. <http://www.storageperformance.org> (last visited June 2012).
[34] E. Thereska, A. Donnelly, D. Narayanan, Sierra: practical power-proportionality for data center storage, in: Proceedings of the Sixth Conference on

Computer systems, EuroSys’11, ACM, New York, NY, USA, 2011, pp. 169–182.
[35] P. Triantafillou, S. Christodoulakis, C.A. Georgiadis, A comprehensive analytical performance model for disk devices under random workloads, IEEE

Transactions on Knowledge and Data Engineering 14 (2002) 140–155.
[36] University of Massachusetts Amherst Laboratory for Advanced System Software, UMass Trace Repository, 2007. <http://traces.cs.umass.edu> (last

visited June 2012).
[37] M. Uysal, G.A. Alvarez, A. Merchant, A. modular, analytical throughput model for modern disk arrays, in: Proceedings of the 9th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS’01, IEEE Computer Society, Washington,
DC, USA, 2001, pp. 183–192.

[38] A. Varga, OMNeT++ Community Site, 2012. <http://www.omnetpp.org> (last visited January 2012).
[39] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, G.R. Ganger, Storage device performance prediction with CART models, in: Proceedings of the

IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems,
MASCOTS’04, IEEE Computer Society, Washington, DC, USA, 2004, pp. 588–595.

[40] B.L. Worthington, G.R. Ganger, Y.N. Patt, J. Wilkes, On-line extraction of SCSI disk drive parameters, ACM SIGMETRICS Performance Evaluation Review
23 (1995) 146–156.

[41] WU Wien Institute for Statistics and Mathematics, The R Project for Statistical Computing, 2012. <http://www.r-project.org/> (last visited January
2012).

[42] P.S. Yu, A. Merchant, Analytic modeling and comparisons of striping strategies for replicated disk arrays, IEEE Transactions on Computers 44 (1995)
419–433.

[43] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, R. Wang, Modeling hard-disk power consumption, in: Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, FAST’03, USENIX Association, Berkeley, CA, USA, 2003, pp. 217–230.

[44] Q. Zhu, Y. Zhou, Power-aware storage cache management, IEEE Transactions on Computers 54 (2005) 587–602.

http://tesla.hpl.hp.com/opensource/cello99
http://crd.lbl.gov/borrill/MADbench2
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data
http://iotta.snia.org/traces
http://www.storageperformance.org
http://traces.cs.umass.edu
http://www.omnetpp.org
http://www.r-project.org/

	A novel black-box simulation model methodology for predicting performance and energy consumption in commodity storage devices
	1 Introduction
	2 Related work
	3 BBMP overview
	4 Service times measurement tool
	5 Variate generator module
	5.1 Constructing simulation models
	5.2 Models based on real traces
	5.3 Models based on synthetic traces

	6 Energy consumption model
	7 Evaluation
	7.1 Service time measurement
	7.2 Disk drive modeling comparison
	7.3 Modeling non-trained traces
	7.4 Simulation models based on synthetic traces
	7.5 Modeling storage energy consumption
	7.6 Generation time of black-box model

	8 Conclusion
	Acknowledgements
	References

