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a b s t r a c t

Inherently complex problems from many scientific disciplines require a multiscale modeling approach.
Yet its practical contents remain unclear and inconsistent. Moreover, multiscale models can be very
computationally expensive, and may have potential to be executed on distributed infrastructure. In
this paper we propose firm foundations for multiscale modeling and distributed multiscale computing.
Useful interaction patterns of multiscale models are made predictable with a submodel execution
loop (SEL), four coupling templates, and coupling topology properties. We enhance a high-level and
well-defined Multiscale Modeling Language (MML) that describes and specifies multiscale models
and their computational architecture in a modular way. The architecture is analyzed using directed
acyclic task graphs, facilitating validity checking, scheduling distributed computing resources, estimating
computational costs, and predicting deadlocks. Distributed execution using the multiscale coupling
library and environment (MUSCLE) is outlined. The methodology is applied to two selected applications
in nanotechnology and biophysics, showing its capabilities.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Nature is a complex system thatwewish to unravel, understand
and sometimes control. Traditionally, science followed the highly
successful approach of studying nature as detailed as possible,
one part of the puzzle at a time. Extensive data and knowledge
have been accordingly accumulated on all spatio-temporal scales,
separately. Now we have started to put the pieces back together
by studying natural processes holistically as complex multiscale
systems. Driven by the availability of abundant amounts of data
on all scales, multiscale modeling and simulation of physical,
chemical, biomedical, biological and ecological phenomena has
become a major activity in science and engineering.

Despite the evident success and relevance of multiscale model-
ing inmany areas of science such as biology and physiology [48,49,
45,50,24,17], material science [25,10], chemistry [46,58,42], and
appliedmathematics [27], there is little attention to generic multi-
scale modeling paradigms [34], and related methods of multiscale
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computing [20,17].Moreover,manymultiscalemodels are so com-
putationally expensive that advanced computing capabilities are
required, but few initiatives take advantage of themultiscale char-
acter of the models to help in this matter [17]. In part, this is be-
cause there is no single formal background formultiscalemodeling
that might help with this [59]. The need for advanced multiscale
computing capabilities is expressed by the MAPPER project, rep-
resenting five different scientific communities facing the need for
distributed computing for multiscale models [55]. The main argu-
ment for using distributed architecture is that the computational
requirements of the single scale models that make up the multi-
scale model are very heterogeneous, calling for distinct comput-
ing resources. As we will argue, our multiscale modeling paradigm
naturally maps to a distributed computing ecosystem, resulting in
what we call Distributed Multiscale Computing (DMC).

This idea builds upon the earlier COAST project [54]. That
project resulted in a theory of Complex Automata (CxA) [32,33,
35,34,15], where several single scale cellular automata that are
coupled form a multiscale model. The exact computational
architecture of the CxA model can be specified using a Multiscale
Modeling Language (MML) [23]. The CxA theory was accompanied
by a practical counterpart, a computing environment, first called
the Distributed Space Time Coupling Library (DSCL) but later
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renamed to the MUltiScale Coupling Library and Environment
(MUSCLE) [29,30].

Although CxA and MML only cover coupled single scale cellular
automata, here we propose that both concepts can be generalized
to cover coupled single scale models. Similarly, MUSCLE is capable
of coupling any type of single scale model in a multitude of
programming languages, rather than only cellular automata.

Furthermore, for doing distributed multiscale computing MUS-
CLE already works on self-maintained clusters [30] and it is our
goal to extend it for computing on heterogeneous grid environ-
ments. In order to achieve this, the computational and com-
municational requirements of given multiscale models must be
adequately predicted and scheduled. If the computation of a mul-
tiscale model can be represented by a task graph, by partitioning it
into indivisible tasks, quite some research has shown how it can
be scheduled on a given set of distributed computing resources
[21,6,40,14].

In Section 2 we will lay the foundations for distributed multi-
scale computing by generalizing from CxA theory to a formal and
comprehensive multiscale modeling theory. The aim of this the-
ory is to be able to define what scales are and how they can be
used in multiscale modeling, as well as indicate which interaction
patterns are possible in multiscale models. Given these firm mod-
eling foundations, a multiscale model and its computational archi-
tecture can be exactly specified with MML, as shown in Section 3.
This specification can be used for analysis of runtime properties of
a multiscale model implementation, and as a guideline for actually
executing the model. In Section 4 we propose a method to auto-
matically convert an MML specification to a task graph. This task
graph serves as an analytical tool to facilitate scheduling decisions
on distributed computing resources or as an input to workflow
systems. With these tools it is feasible to set up a distributed ex-
ecution system, using MUSCLE as a coupling library and low-level
runtime environment. This approach is sketched in Section 5; how-
ever, we will not deeply discuss the practicalities or difficulties of
distributed execution of multiscale models.

In Section 6 the concepts in this paper will be illustrated by
two selected scientific applications: a three-dimensional model of
in-stent restenosis (ISR3D) [12], and a model of the formation of
clay–polymer nanocomposite materials [52].

1.1. Related work

A number of methodological papers on multiscale modeling
exist, each generalizingmultiscalemodeling concepts known so far
from the perspective of their respective disciplines, physics [19,20]
and chemical process engineering [46,37]. They draw from
multiscale methods applied to applications so far but do not
rigorously define the concepts they use or combine the modeling
methodology with concepts useful for implementation. Likewise,
Dada and Mendes [17] evaluate the current state of multiscale
methodologies and software solutions for multiscale modeling in
systems biology and conclude that an all-encompassing solution
does not yet exist.

On the other hand, a great number of multiscale concepts,
so far loosely described, have been formalized by Yang and
Marquardt [59], who define multiscale terms on a conceptual
basis rather than an application-driven one. Unfortunately, a
fundamental part of their theory considers only spatial scales,
which is reflected in their way of representing a hierarchy of
submodels based on scale. The formalization in Section 2 offers an
alternative to definingmultiscalemodels that considers spatial and
temporal scales. One of the achievements of their specification is
that they associate it with a machine-readable format in the form
of an ontology.
The frameworks classification by Ingram et al. [37] distin-
guishes different types of couplings between pairs of single scale
models. Although this classification shows properties of different
frameworks, it does not show why these properties are present.
However, by formalizing what single scale models are and how
they are coupled in Section 2, the classification follows from the
multiscale properties of a model.

A notable multiscale method, the Hierarchical Multiscale
Method (HMM) [18] consists for a large part of strategies to
decompose a phenomenon to a multiscale phenomenon. It gives
guidelines for when to split certain scales, what methods may
be appropriate to certain types of decomposition. Indeed, these
strategies are complementary to the methodology proposed in
this paper, and mostly adds to Section 2.3. Rather, this paper
adds to HMM in terms of theoretical scale, and explicit high-
level submodel coupling, specification, analysis and distributed
computing.

Although MML is a description language of the multiscale do-
main of discourse, it is not formalized as an ontology to avoid intro-
ducing additional terminology. Other languages that describe how
components of a program are coupled exist, such as several Ar-
chitecture Description Languages (ADL’s) [1,26,4], or the Common
Component Architecture (CCA) [3,2]. Even though both of these
architecture descriptions form a respectable basis that influences
MML, unfortunately neither describe multiscale properties, which
do offer additional insight in multiscale model coupling. Given the
additional detail in formalization since previous work on MML by
Falcone et al. [23], we see opportunity to more precisely define
MML elements, making them suitable for analysis.

As a general coupling library MUSCLE has alternatives, but
as a general multiscale coupling library it does not have an
equivalent. Coupling libraries include the open source problem
solving environment Cactus [28] CCA-based Ccaffeine [2], the
mesh-based MpCCI [38], and earth system modeling frameworks
Prism [56] or BFG2 [5], none of which support multiscale models
explicitly or directly.

To analyze a distributed execution multiple tools exist be-
sides the task graph, including Petri nets [47,57] and process cal-
culi [44,31]. Depending on future needs, the task graph could also
be converted to a Petri net, although it is more verbose and tedious
in use. The same limitation holds for process calculi, where the lat-
ter is also less flexible. Scientificworkflows could also be generated
from a task graph, to make use of the multitude of workflow soft-
ware that already exists [7].

2. Multiscale modeling formalization

Tomake sense of nature’s complexity and to do so in a uniform,
rigorous, and general way is a difficult task. Multiscale modelers
may approach this complexity by functionally decomposing a
problem into a set of single scalemodels that exchange information
across the scales, at the same time taking advantage of data
available for those scales. Especially when single scale models
represent sufficiently different scales, this approach can simplify
a problem and strongly reduce the computational cost of a
multiscale model. This approach would benefit greatly from firm
foundations that make full use of the multiscale character of
the system under study. By determining the multiscale character
of a model these foundations may offer directions for specific
multiscale methods and establish the runtime behavior of the
model (see Fig. 1).

‘A multiscale model is,’ to quote Ingram et al. [37], ‘a composite
mathematical model formed from two or more submodels that
describe phenomena at different scales. In this context, we define a
submodel [. . . ] as a component model that describes only one scale
of the system.’ According to this definition, a multiscale model is
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Table 1
Symbols used in this paper with their type and meaning. Regular and point scale formation have a shorthand notation but represent a special case of a scale specification.
The type E is an abstract type for events and type F is an abstract type for submodel states. The last three lines are not mathematical functions but rather procedures that
may have side-effects outside their scope.

Symbol Type Meaning

τ , ξ R+ Characteristic temporal and spatial scale
δ, ∆ R+ Minimum and maximum scale granularity
ω, Ω R+ Minimum and maximum scale total size
S(δ, ∆, ω, Ω) R4

→ Bool Scale specification (Definition 4)
S(∆, Ω) Shorthand for R4

→ Bool regular scale specification (Definition 4)
S(Ω) Shorthand for R4

→ Bool Point scale specification (Definition 4)
e, t(e) E, E → R Event and time of that event
ϑ, ϑi P (E) Time series and future time series
finit Procedure R→ F × P (E) State initialization SEL operator (Algorithm 1)
S, B Procedure F × E × P (E)→ F × P (E) Solving step and boundary conditions SEL operators (Algorithm 1)
Oi,Of Procedure F × R× R→ ∅ Intermediate and final observation SEL operators (Algorithm 1)
Fig. 1. An overviewwhat our aimwith DistributedMultiscale Computing is: taking
multiscalemodels, defining a formal background to specify them, and running them
on heterogeneous infrastructure assisted by their specifications.

functionally decomposed into submodels describing phenomena
at different scales. How to decompose a model into a multiscale
model is not specified and as the underlying terms are not well-
defined this remains vague. Thus, to adequately work with the
terms used in the definition, each of those terms will have to
be clearly defined. This includes the terms scale, phenomenon,
domain, scale specification and separation (‘different scales’),
single scale model, multiscale model, submodel and finally the
‘composite mathematical model’. The symbols that are introduced
in these definitions and in the text are listed in Table 1.

2.1. Process

In this contribution we restrict our attention to models of
physical processes that are bounded in time and space; in short,
natural processes. Studying a natural process means that temporal
and spatial coordinates can be assigned to it relative to the natural
world. Note that this does not include man-made processes. Also
note that by taking a more abstract notion of coordinates, other
types of processes could also fit into the methodology, but such
issues are not explored in this paper.

In the following definitions, we will take the terms natural,
process, and observation as primitive terms, and they will not be
further defined. Furthermore, we assume that one process can be a
part of another. The next term, scale, is defined here on an abstract
level and not yet quantified.

Definition 1. A scale is an order of magnitude along a coordinate.
Temporal and spatial scales are commonly used, but a scale
could also be assigned along an abstract dimension, such as
a fractal dimension or the number of elements in a set. For
natural processes, however, at least temporal and spatial scales are
considered.

To quantify the intuition of a scale, the notion of a characteristic
scale was conceived [37,35]. A characteristic scale refers to a pro-
cess assigns a single number to a scale that can be used as a variable
in some models. For instance in reaction–diffusion equations this
would be a characteristic temporal scale for diffusion, determined
by the diffusion coefficient, and a characteristic temporal scale for
reactions determined by the reaction coefficient [13]. Although in
this example the characteristic scale has a well-defined meaning
as a model parameter, it will not be defined further here.

The characteristic scale is not set in the process, rather, it is a
modeling choice. Even though the characteristic scale may serve
intuition, it is difficult to determine how to relate several charac-
teristic scales, or, how far a single scale reaches. Is the characteristic
spatial scale of a walking human of 2 m fundamentally larger than
the characteristic spatial scale of the moving legs, of for instance
1 m? And muscles in the foot, of 2 decimeter? On the other hand,
the same human body can be viewed as a single object with some
properties or as a collection of cells. In both views the total size
is the same, but the scale is intuitively different, even though the
body itself does not change during this observation. The issue here
is that it is hard to justify that a natural process itself acts only on
a certain scale, as opposed to our observation of that process. This
is precisely where the term phenomenon is useful: it describes dy-
namics over an object in the samemanner as the term process, but
it includes the notion of observation. It is then our assumption that
most observations can in someway be discretized, thereby limited
to a certain granularity, determining how far a scale reaches.

Definition 2. A phenomenon is a finite amount of data describing
a natural process on a given set of scales.

So a phenomenon is a discretization of a process, since it is
finite. Likewise, a domain is the discretization of the object of the
phenomenon at a certain time. As such, it encompasses all but the
temporal dimension of the phenomenon.

Definition 3. Data of a phenomenon that describes a process at a
given time point is a domain.

A domain D′ is a subdomain of domain D iff they have the same
time point and the process that D′ describes is part of the process
that D describes.

In contrast to a process, phenomena or domains can be specified
by a modeler based on factors such as available data, numerical
error, or computational complexity. Concretely, the discretization
may for example depend on microscope resolution, measurement
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Fig. 2. A scale map with a spatial and temporal axis indicating the scale
specifications and characteristic scales of the phenomenon. The area within the
scales of the phenomenon is colored; the area between minimum and maximum
granularity and total size is a lighter color. The characteristic spatial scale is denoted
by ξ and the characteristic temporal scale by τ .

precision or sizes of objectswithin the phenomenon. The collection
of scale specifications is thereby a modeling choice that will be
useful for analytic study of the multiscale model, as they are more
precise than the characteristic scale. The following paragraphs will
be devoted to clarifying what the collection of scale specifications
involves.

We assume that the observed phenomenon has a certain size
and a discrete granularity, given the data known about it. Thus, a
scale specification should include at least a granularity and a total
size, forming the minimum and maximum of that scale. Because
the granularity may fluctuate within a single phenomenon, a
minimum andmaximummay be given to the granularity of a scale
specification as well, and likewise for the total size. By providing
this range of granularity and total size, the bounds of single scale
models become specified. This specification will form the basis for
interaction patterns between single scale models in Section 2.6.

For example, on a sample of artery tissue of 1.5×1.5×1.5mm
data was gathered on the lumen size, cell type distribution, and
cell sizes. Specifications of the spatial scale of this tissue would
have a total size as size of the sample and a variable granularity
based on the diversity of cell sizes. If measurements taken are
fundamentally more precise than the size of the smallest cell, this
can be reflected by taking a very fine granularity. A temporal scale
cannot be determined in this example, since data only exists of
one time point and most importantly only an object of study was
identified, not a process. On the other hand, the spatial scales can
be fully specified based on the data available.

For some domains, for instance a regular Cartesian grid, it is
not necessary to consider a minimum and maximum granularity;
rather, such a grid has a regular scale, with the same step size for
each grid point. More extreme, a single value could be seen as a
grid with a total size equal to its step size, giving a point scale.

Definition 4. (δ, ∆, ω, Ω) ∈ R4 is a scale specification, denoted
by S(δ, ∆, ω, Ω) = True or by S(δ, ∆, ω, Ω), iff

0 < δ ≤ ∆ ≤ Ω and δ ≤ ω ≤ Ω.

A scale specification S(δ, ∆, ω, Ω) is regular iff δ = ∆ andω = Ω;
its shorthand notation is S(∆, Ω). A regular scale specification
S(∆, Ω) is point iff ∆ = Ω; its shorthand notation is S(Ω).

A scale specification S(δ, ∆, ω, Ω) quantifies a scale of a
phenomenon by giving it specific bounds along a coordinate. Here
δ and ∆ are the minimum and maximum observed granularity,
respectively, and ω and Ω the minimum and maximum total
observed size, respectively.

Notably, a temporal scale specification is denoted as S(δt , ∆t ,
ωt , Ωt) and a spatial scale specification as S(δx, ∆x, ωx, Ωx) as is
shown in Fig. 2. In the rest of the paper, when a scale is mentioned
a scale specification is meant unless stated otherwise.
Fig. 3. Contiguous scales, scale separation, and scale overlap according to the
scale specifications of given submodels µ, µ′,M , and M ′ , plotted on an arbitrary
logarithmic SI scale.

2.2. Scale separation

An important part of multiscale modeling is how the scales of
different phenomena relate to each other. As will become clear
later this relative scale also affects the structure of the multiscale
model and its computation.

Three types of relations will be defined: scale overlap, contigu-
ous scales, or scale separation, each illustrated in Fig. 3. With these
three types of scale relations, it is possible to do meaningful multi-
scale modeling. Scale separation, for instance, is actively exploited
with methods such as scale-splitting [13] or the heterogeneous
multiscale methods (HMM) [20].

Definition 5. Given scale specifications s = (δ, ∆, ω, Ω), s′ =
(δ′, ∆′, ω′, Ω ′), for convenience with Ω > Ω ′ or if Ω = Ω ′ then
∆ ≥ ∆′:

• s and s′ are overlapping iff ∆ < ω′ and ∆′ < ω;
• s and s′ are separated iff Ω ′ < δ; and
• s and s′ are contiguous iff ∆′ ≤ δ ≤ Ω ′ ≤ ∆.

The above definition of scale separation is more strict than the
word different, which means non-equal.

Theorem 1. Two regular scales are either overlapping, separated, or
contiguous.

Proof. Take two regular scales S(∆, Ω), S ′(∆′, Ω ′), for conve-
nience with Ω > Ω ′ or if Ω = Ω ′ then ∆ ≥ ∆′. Because the
scales are regular, the condition for being overlapping simplifies to
∆ < Ω ′ and ∆′ < Ω , for being separated to ∆ > Ω ′, and be-
ing contiguous to ∆ = Ω ′. These conditions are clearly mutually
exclusive.

To show that they are all inclusive,∆ < Ω ′must imply∆′ < Ω .
When Ω > Ω ′, combining it with the scale specifications condi-
tion that Ω ′ ≥ ∆′, it follows that Ω > ∆′. When Ω = Ω ′, using
the assumption ∆ ≥ ∆′ and the premise Ω ′ > ∆, this implies
Ω > ∆′. Thus, the three conditions are mutually exclusive and all
inclusive for regular scales. �

A motivation for defining scale separation as above can be
found by taking two interacting phenomena A and B of a certain
granularity and total size, depicted in Fig. 4. For example, let
them be phenomena acting on living tissue, both represented by a
rectangular grid. If the grid cells of A are smaller than the total size
of B and the other way around, then for them to interact correctly
they will need to exchange information about multiple grid cells.
In doing so, they resolve at least part of each others domain. In
this case, A and B have spatial scale overlap. When submodels of A
and B are treated as black boxes, unaware of each others structure,
theywill need to exchange information about the entire part of the
domain where they overlap at once.

On the other hand, if one grid cell of A is exactly the total size of
B, and B represents exactly one grid cell of A, they have contiguous
scales and B will only need information from the one cell in A it
represents, and possibly its neighbors. This behavior is more local,
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(a) Scale overlap. (b) Scale contiguity. (c) Scale separation.

Fig. 4. Two phenomena A and B, both having a rectangular grid as a domain, with different scale relations. Phenomenon B′ is of the same type as B, and in Fig. 4(b) it might
interact with B, while in Fig. 4(c) it would not. The granularity ∆ and total size Ω of B are indicated in Fig. 4(a).
but a submodel of B might need to interact with submodels in
neighboring cells.

When the total size of B is strictly smaller than a grid cell of A,
scale separation occurs. Itmeans that B interactswith few grid cells
of A, but also that to fully resolve one cell of A, multiple instances
of B might be necessary. Since the scale of A is not fine enough
to fully resolve B, B might be treated as a canonical example for
a single grid cell of A, using its results throughout the cell and not
onlywhere B itself is located. This final scenario is used to calculate
multiscale speedup [33].

2.3. Multiscale model and single scale models

Multiscale modeling takes advantage of data available at dis-
tinct scales by modeling interaction between those scales, accord-
inglymanaging the complexity of phenomena involved. Practically
this can in certain cases be achieved by first functionally decom-
posing a multiscale phenomenon into single scale phenomena,
which will then form the basis for several coupled submodels.
Having coupled submodels instead of a monolithic multiscale
model has the additional advantage of aiding modular develop-
ment, which in turn benefits implementation [51]. At this stage,
however, submodel implementation is not considered, only the
model formulation. Given Definition 2, three types of functional
decomposition are relevant: decomposition by process, finite ob-
servation (or discretization), and scale.

First, a process consists of dynamics over an objectwithin a time
interval. If any of these terms differ, a different submodel could be
used. In practice, the same submodel can be used if the dynamics
are sufficiently similar. For example, in two human cells similar
processesmight occur and thosemight be represented by the same
type of submodel. If the cells have differentiating properties such as
cell type or contents, however, a different submodel could be used.
Also, if the dynamics of an object change over time, such as when
the division of one cell starts, then a different submodel might be
used for that.

Second, the discretization of the phenomenon may be a reason
for functionally decomposing a phenomenon. For instance a grid-
based model and a agent-based model might both represent the
same process, but they allow different aspects of a process to be
modeled.

Third, decomposing by scale, also called scale splitting, is possi-
ble if several phenomena are taking place on different scales, espe-
cially if they have scale separation. For instance, one phenomenon
might be changing intrinsically faster than another. A spatial ex-
ample is suspension flow, which behaves like a fluid on a coarse
scale but where the viscosity is determined on a fine scale.

Except scale splitting, none of these functional decomposition
methods has a particular dependency on multiscale modeling and
arguments for it can be found in a lot of components-oriented
literature [3,4,28]. Nevertheless, we consider it good practice to do
functional decomposition and it will help while doing distributed
multiscale computing.
Once a multiscale model is decomposed into submodels, each
of those submodels should be single scale models. The term single
scale model has the intuitive notion of a scale that spans only few
orders ofmagnitude and onwhich scale splitting is no longer useful
to apply. An alternative sense of the term single scale submodel
is that the multiscale model also contains other submodels with
different scales.

Apart from single scalemodels, amultiscalemodel also consists
of the interactions between its submodels, indeed, without them
a multiscale model would not add anything beyond being a
collection. Generally, the single scale models that are formed by
once applying functional decomposition should interact.

Finally, when considering model implementation, practical
issues may make decomposing a submodel implementation
necessary. For instance, take a submodel implementation with
computational requirements that scale with the size of its domain,
and suppose the submodel turns out to be computationally too
expensive to run on a single machine. In order to reduce the
computational time, domain decomposition may be performed
to split the submodel into multiple instances, each computing
only part of the total domain. Although domain decomposition
in this case is inspired by practical considerations, generally the
submodel on which domain decomposition is performed also
needs to change. This allows it to correctly and efficiently interact
between different parts of the domain.

2.4. Scale separation map

A way to assess the scales of the phenomena involved in a
multiscale phenomenon is to draw its scale separation map (SSM).
It is actively used in Complex Automata theory [33] but it can be
extended tomultiscalemodeling in general, as amore basic version
of the scale map by Ingram and Cameron [36] shows. Besides
helping to gain intuition about the phenomena and their scales,
the SSM also communicates the structure of the multiscale model
to others.

Practically, the SSM is a log–log plot of the scales of involved
phenomena with on the horizontal axis the temporal scale and
on the vertical axis the spatial scale; a simple example with one
phenomenon is shown in Fig. 2. Once the scales of the phenomena
are visualized with an SSM, interactions between phenomena can
be indicated by drawing directed edges between their scales. Edges
may be labeled with the type of interaction that is involved. For
the sake of clarity phenomena may be removed from the map or
merged if they cause confusion or cluttering. During later phases
of modeling it may become apparent that the SSM is over- or
underspecified and it may be redrawn.

An example of an SSM of a nano materials model [52] is
shown in Fig. 5, with a macro phenomenon of the materials
processes on a tangible macro scale and a micro phenomenon
of molecular dynamics of the material. These two phenomena
have scale separation in both their temporal scale (fast quantum
mechanics dynamics versus slower molecular dynamics) and their
spatial scale (molecules versus fibers).
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(a) Multiscale phenomenon. (b) Single scale phenomena.

Fig. 5. An example SSM of a classical macro–micro model, showing on the axes
spatial and temporal scale, with granularity ∆x, ∆t ; and total size Ωx, Ωt respec-
tively. In 5(a) the multiscale model without separating the scales; in 5(b) macro
single scale model A and micro single scale model B..

Fig. 6. The SSM of the ISR model, containing four submodels: blood flow, drug
diffusion, thrombus formation and smooth muscle cell proliferation. All submodels
act at the same spatial scale S(1 µm, 1.5 mm) and at a different temporal scale,
from S(100 µs, 2 s) (blood flow) to S(1.5 h, 30 days) (smooth muscle cells).

Another example, amodel of In-stent Restenosis (ISR) as seen in
Fig. 6, does not exhibit spatial scale separation: the smoothmuscle
cell proliferation and blood flow are observed at the same spatial
scale. There is temporal scale separation, as blood flow spans a
second of a heart beat and a cell cycle lasts a day. The phenomena
leading up to ISR, notably the stent placement, are omitted from
the map to prevent cluttering.

2.5. Submodel execution loop

In the SSM, edges are drawn to indicate an interaction between
phenomena, without stating when information between submod-
els should be exchanged. To evaluate when information should be
exchanged, we will define a few interaction patterns that may be
used; and to define these, we will first need to formalize execution
patterns of individual submodels. Both submodels and later their
implementation should follow these execution patterns.

Of course, a submodel A should only exchange information to
submodel B if a state change in A occurs or B triggers a state
change in A. The state change itself can be modeled by an event
e ∈ E, with a model time t(e) ∈ R associated to it. In contrast
with the definition by Lamport [41] these events are associated
with a model time and not with an execution time. The events
are then aggregated into a time series that captures all dynamics
of a submodel. By relating the time series to the temporal scale
specification S(δt , ∆t , ωt , Ωt) of the underlying phenomenon, δt
prescribes the minimum time step for events to occur.

Definition 6. A time seriesϑ = {e0, . . . , en} is a finitewell-ordered
set of events with t(ei) < t(ei+1) for all 0 ≤ i < n. A future time
series ϑi contains events occurring after event ei, so ϑi = {e ∈ ϑ |
t(ei) < t(e)}. Modifications to ϑi affect ϑ and vice versa.

Time series ϑ adheres to temporal scale specification S(δt , ∆t ,
ωt , Ωt) iff δt ≤ t(ei+1) − t(ei) ≤ ∆t for all 0 ≤ i < n and
ωt ≤ t(en)− t(e0) ≤ Ωt . A time series adhering to a regular scale
specification is regular; one adhering to a point scale specification
is a point time series.
Event e0 and en in the definition above are used to determine
what the initial and final state of the submodel is, respectively.

Corollary 1. If a time series ϑ adheres to a scale specification, then
|ϑ | ≥ 2. A point time series has |ϑ | = 2.

Because a time series indicates exactly when a state change
is observed, it forms a natural guide for executing a submodel.
A submodel initializes its state, including boundary conditions,
at model time t0, after which it observes its own initial state.
For each subsequent event, the submodel is solved up to that
event and the boundary conditions are updated, after which, again,
the intermediate state is observed. During updating the state an
event might cause changes in future events, hence the future time
series are also updated. The time series should then still adhere
to the temporal scale of the submodel. When the last event has
been processed a final observation of the state is made, thereby
concluding the time series and ending the submodel.

The above description of submodel flow can be formalized in
terms of a Submodel Execution Loop (SEL).

Algorithm 1: General submodel execution loop
Input: Starting time t0
i← 0
f , ϑ ← finit(t0)
while |ϑi| > 0 do

Oi(f , t(ei), t(ei+1))
i← i+ 1
f , ϑi ← S(f , ei, ϑi)
f , ϑi ← B(f , ei, ϑi)

end
Of(f , t(ei))

Here f is the current state of the model, ϑ the time series,
i the current iteration, ei the current event, and t0 the starting
time of the submodel. Five operators are used in the SEL: finit
for initialization of the state and the boundary; S for solving one
modeled step or processing up to the time point of the current
event;B for re-establishing the boundary conditions; andOi andOf
for an observation of the intermediate and final state, respectively.
Each of the operators may contain part of a model or procedures.
They are not necessarily mathematical functions, rather they may
have side-effects such as reading parameters or writing output. Of
these operators, finit, S, and B modify the state f and future events
ϑi. Each observation is accompanied by the time point of the last
event, and intermediate observations can also take into account the
time point of the next event.

Within the SEL, the behavior of a model is determined by how
a modeler specifies the operators, i.e. which actions an operator
should perform to reflect the specifics of the phenomenon. Also
the way the state or the future events are modified is a modeling
choice; the only requirement is that the time series still adheres
to the temporal scale specification. However, the execution order
of the operators is fixed. This should be reflected both in the
submodel itself and in its implementation.

The SEL listed in Algorithm 1 can accommodate different types
of models. Event-driven modeling is quite obviously possible, by
using the time series as an event queue. Time-driven modeling
is also possible, by using a regular time series. Implicit functions,
without a time step, can bemodeled in several ways, depending on
the underlying phenomenon and the flexibility and realism of the
function. If the phenomenon has a point time series then there is
only one event after e0 that needs to be solved, so the S operator can
just contain that function. More specific types of models also may
fit, for example agent based modeling or cellular automata [32].
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This wide range of possiblemodel types will allowmostmultiscale
modelers to make use of the SEL formalism.

Each of thesemodeling typesmay use an adapted SEL, as long as
the order of the operators remains the same as in Algorithm1. For a
time-driven submodel that does not explicitly consider events and
that has a regular temporal scale, Algorithm 2 can be used. Since it
has a regular time scale and does not need events, the time series
will not be changed during the run and can be abstracted away.
The SEL operators S and B could then be specialized to disregard
the time series; in the algorithm these versions are denoted S′ and
B′. For example, a submodel computing a new state each discrete
time step, based only on its previous state, could use this SEL.

Algorithm 2: SEL of a time-driven submodel
Input: Starting time t0 and temporal scale S(∆t , Ωt)

t ← t0
f ← finit(t)
while t − t0 < Ωt do

Oi(f , t, t +∆t)
t ← t +∆t
f ← S′(f , t)
f ← B′(f , t)

end
Of(f , t)

A submodel that consists of single function with point scale
S(Ωt) can for largely be computed in S; other operators can then
be left almost empty. As shown in Algorithm 3, the time series
can again be abstracted away, and having only two events, even
the loop can be removed. This SEL could be used by a submodel
that computes a state only once or does not generate meaningful
intermediate results.

Algorithm 3: SEL of a single function
Input: Starting time t0 and point temporal scale S(Ωt)

f ← finit(t0)
Oi(f , t0, t0 +Ωt)
t ← t0 +Ωt
f ← S′(f , t)
f ← B′(f , t)
Of(f , t)

The SEL can also be rewritten to that of a cellular automaton,
as used in CxA theory [34]. Generally, as long as the execution
order of the operators stays the same it can be rewritten to
a range of different forms if that facilitates comprehension or
implementation.

2.6. Coupling templates

As mentioned, the interaction between submodels is essen-
tial to create a multiscale model from a collection of single scale
models. Indeed, this coupling of submodels may be the primary
object of interest in the model and may be as computationally
expensive as the submodels themselves. In contrast to scale bridg-
ing techniques used in a coupling, which may differ from one
model to the next, we argue that the frequency of interaction
between single scale models exhibits regularity. Analyzing pat-
terns in the frequency of interaction gives insights into the dynam-
ics of the multiscale model itself as well as its runtime behavior.

Coupling templates, defined as a data transfer between the
SEL operators of two submodel instances, are a means to specify
these patterns. To limit the number of possible data flow patterns,
and thus coupling templates, the operators Oi and Of are only
allowed to send data while the operators finit, B and S may only
receive data. This restriction makes coupling templates inherently
unidirectional, as they are defined only between apair of operators,
transferring data from one to the other. There are six possible
combinations of operators, each with its own interpretation, four
of which are listed in Table 2.

The B operator is not listed separately among the coupling
templates in Table 2, having a similar role as S concerning the
frequency of interaction. Instead, their role is distinguished by the
concepts of multidomain and single domain coupling.

Definition 7. A coupling between two submodels A and B with
domains D and D′, respectively, is single domain (sD) iff D is a
subdomain of D′ or D′ is a subdomain of D. Otherwise, the coupling
is multidomain (mD).

The general distinction between boundary operator B and
solving operator S in coupling templates is that B is used to
receive messages in mD couplings while S is used in sD couplings.
The motivation for this distinction is that boundary conditions
generally should not deal with what happens within their own
domain, but rather what happens when interacting with another
domain.

For example in the ISR model, the blood flow in the lumen
has two type of boundaries: the first is the blood vessel wall,
which is defined by the smooth muscle cell proliferation; the
second is the artificial boundary of the vessel, with a certain
amount of blood flowing in and out of the domain. In this case,
the artificial boundary is resolved within the blood flow model,
whereas the blood vesselwall is resolved as amDcouplingwith the
smooth muscle cell domain. On the other hand, the drug diffusion
submodel in the uses the same domain as the smooth muscle cell
proliferation submodel, making it an sD coupling.

The use of coupling templates can be interpreted to a certain
extent. First, if two single scalemodels A and B have temporal scale
overlap then they will need to resolve multiple time steps of each
other. Within the SEL this is possible by using the Oi and S (or B)
operators, so they will interact for each event in both submodels.
This interaction will only occur after the event has happened, so
callingOi will happen at an earlier time than that it is processed by
S. Conversely, if the single scale models are scale separated and A
has a larger temporal scale than B, then there is the possibility that
B needs to be resolved completely once per time step of A. Hence,
A may call B during each time step and when B is finished it may
release its observations and send them to A. When calling B, A gets
the time of Oi as starting time, and it must release, according to
their contiguous or separated scales, before the next solving step
of A. If A is an initialization or ab-initio single scale model and
it is finished, it may dispatch its state to B, which will continue
computation at the time that A left off. Alternatively, A may just
dispatch part of its state to a next instance of itself, making A
stateful.

These interpretations of the coupling templates are not all-
encompassing but do in our view provide the main reasons for
using them.

In the example of the ISR model, none of the submodels has
temporal scale overlap with another, so the interact template
is not used. The dispatch template is used when a submodel
calculates the initial conditions for the model and sends them
to the smooth muscle cell proliferation submodel. This submodel
then calls thrombus formation, which in turn dispatches to blood
flow and drug diffusion. These submodels then release to smooth
muscle cell proliferation, after which the loop continues.
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Table 2
Coupling templates between submodels A and B, listing: its name and operator; what the temporal relation between the operators in A and B is; what the temporal scale
relation between A and B is; and a common scenario in which the template is used.

Coupling template Time Temporal scale Scenario

1 Interact OA
i → SB tA < tB Overlap Reciprocated by the same template

2 Call OA
i → fBinit tA ≤ tB Contiguous or separation Reciprocated by template 3

3 Release OB
f → SA tB ≤ tA Contiguous or separation B was started by template 2

4 Dispatch OA
f → fBinit tA ≤ tB Any Loosely coupled or stateful.
Fig. 7. Graphical overview of different coupling topology properties, like being
cyclic or acyclic, having a fixed or dynamic number of submodel instances, and
having a fixed or dynamic number of synchronization points. Shown here are
only examples with two submodels, but this can be generalized to any number of
submodels.

2.7. Coupling topology

Coupling templates indicatewhat data flowmay occur between
a pair of submodels, but for interpreting a multiscale model its full
topology has to be considered. A coupling topology can be defined
as a graph representation of a multiscale model, with coupling
templates as its edges, weighted by the number of times data is
sent over them, and instances of submodels as its nodes. This is
similar to a scale separationmap, although the latter does not have
submodels instances but only submodels, and does not know how
often couplings are used. This edgeweight, combinedwith the SEL,
will help understand how often a particular part of a model will be
run.

A few properties of coupling topologies are of interest when
computing or distributing amultiscalemodel. Three properties are
listed here and visualized in Fig. 7.

1. Is the coupling topology cyclic or acyclic, or does only parts
contain cycles?

2. Are theremultiple instances of certain submodels, and if so, can
the number of instances be statically determined?

3. Can the number of synchronization points be statically deter-
mined?

If a multiscale model has an acyclic coupling topology, compu-
tation becomes quite straightforward: the submodels can then be
ordered and executed consecutively. Otherwise, a more compli-
cated execution model has to be used, like dynamic execution or
one that predicts which parts of submodels are scheduled when.
When the interact coupling template is used and reciprocated, a
coupling topology is cyclic, but a cycle can also be formedwith any
of the other coupling templates. A cycle can include any number of
submodels.
The second property, multiplicity, gives an indication for the
number of submodel instances that are needed. If there is more
than one instance per submodel, these instances need to be
addressed separately and a means for forking and joining data
might be necessary. If the multiplicity is determined during the
runtime of themodel, there needs to be amechanism for themodel
to spawn new instances of submodels, increasing the complexity
of the model and the framework that would run the model.

Having spatial scale separation can be a reason for needing
multiple instances of a submodel. Take two submodels A and B
with spatial scale separation and A being the larger of the two.
The domain of A can then contain a multitude of subdomains
modeled by B, needing many instances of B to model them all. If
the phenomenon modeled by A is not regular in time or space it
might not be predictable how many instances of B are needed and
the number of instances needed could even change over time.

Finally, the third property indicates the number of times each
submodel will transfer data and do computation. If static, such
as when the temporal scales of all submodels are regular, data
transfers and submodel execution times can be predicted and
thus scheduled. Otherwise, if the model communication is self-
organized within the model then the amount of running time is
harder to estimate, or if communication is scheduled then the
schedulermust be informed of the number of communications and
calculations that will take place.

The three properties defined here have a large impact on the
complexity of software to compute the multiscale model, where a
more dynamic property means more complex software.

3. Specifying a multiscale model

The previous section introduced scales, submodels and cou-
pling templates and topologies. TheMultiscaleModeling Language
(MML) is a high-level way to describe and specify these con-
cepts, along with the computational architecture of a multiscale
model [23]. First of all, MML describes the code implementation
of submodels and coupling templates as computational elements.
At this stage MML only needs an overview of the implementation,
like inputs and outputs and the scale that is used. Second, it in-
troduces computational elements to specify howmessages will be
distributed between submodels and how theywill be affected dur-
ing transit. Finally, code characteristics of computational elements
may be specified to guide a runtime environment in how to exe-
cute those elements.

MML has multiple forms:

• a graphical format, hereafter denoted gMML and
• a human-writable, machine-readable XML-based format, de-

noted xMML.

Between them, xMML is more complete and precise while
gMML is more human-friendly. First gMML can be created in
a graphical editor and form part of the documentation of a
multiscale model or serve as input for creating an xMML file. Then
xMML serves as input for generating a scientific workflow or a
rudimentary code implementation. Most concepts sketched here
were already available in the original presentation of MML, but
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below they are refined and adapted to the terminology of the
previous section. Moreover, the concepts here do not depend on
Complex Automata, but rather they are extended to the multiscale
modeling formalism sketched in the previous section.

3.1. Computational elements in MML

The primary computational element in MML is a submodel
implementation. Both the submodel and its implementation can
be described in MML. A computational element has input ports,
on which it receives messages, and output ports, on which it sends
messages. Connections between computational elements aremade
with conduits. A conduit is a unidirectional connection between an
output port and an input port and it transfers data in the form of
messages. A message contains data, for instance an observation of
a submodel state, the time point of the event it is associated with,
and the time point of the next message that will be sent over the
conduit, if any.

Submodels may define ports based on their SEL operator. This
means, that output ports may be defined for operators Oi and Of
and input ports for finit, S and B. A coupling template between the
operators of two submodels can then be translated as a conduit
between an in- and output port defined for those operators. For
predictability and to prevent deadlocks, submodels should send a
message each time the operator that a port is defined for is reached.

The multiscale modeling framework used for MML could be
data-driven, allowing each submodel to execute independently
until a message from another submodel is needed, which the
submodel will await. A multiscale model can then be initialized by
starting a subset of submodel instances, and ended by consequence
of the final operator of the SEL of a subset of submodel instances.

Submodels so far defined do not have a state once their SEL is
finished. Away to explicitly save a state outside the SEL is to have a
coupling from the final observation of the submodel instance to the
initialization of the next time that it is called. Since this iteration
will only be instantiated if another submodel needs it, it does need
separate semantics.

To increase the independence of different submodels, one
submodel should not concern itself with sending a data format
that is acceptable for the other, nor should the other submodel
concern itself with what submodel it is getting data from. Instead,
MML has a conduit filter or just filter that can be applied to a
conduit. The filter is then applied tomessages transferred over that
conduit to ensure that both submodels handle the data in a way
most convenient to themselves and still communicate correctly.
Conduit filters should not model phenomena, but rather do a
physically correct data transformation that enables each submodel
to reason about its own data. The modeling of these filters alone
can be a challenging part of multiscale modeling, for instance
whenmapping grid-based data to particle based data or doing fine-
graining or coarse-graining. Filters are allowed to have a state, so
they can do time averaging by aggregating data coming in, possibly
altering the associated time point in the process. They are reactive
as they may not produce data if no data is sent over the conduit,
but not inherently predictable, as they may send multiple or
zero messages when receiving a single message. Instead, they are
predictable by specification, the ratio of the number of messages
sent versus the number of messages received has to be specified in
advance. In contrast to submodels, filters may know exactly what
kind of data the sending submodel will generate and what kind of
data the receiving submodel expects. This allows submodels to stay
modular.

Consider for instance two submodels A and B with temporal
regular scales SA(2 s, 1 h) and SB(1 s, 1 h) that are coupled on a
single domain. They have temporal scale overlap and should use
the interact coupling templates OA

i → SB and OB
i → SA. However,
to allow each submodel to have their own time step and to let the
coupling stay correct, a temporal conduit filter should be used on
conduits between A and B. Events should be interpolated in the
direction from A to B to ensure there are enough messages for
B to process; in the other direction, events should be aggregated
to ensure that A does not receive too many. Appendix shows
an algorithm for a temporal scale conduit filter that does this,
accompanied by a proof of being deadlock-free.

Since the filter applies to only one conduit, it cannot do a data
transformation for which multiple sources are necessary, nor can
it distribute the transformed data tomultiple submodels, For these
situations a fan-in or fan-out mapper should be used. A fan-in
mapper has one output port and n input ports, which may accept
different types of data. Formally, a fan-in mapper is a procedure
m : In → O, where I is an abstract data type of the input ports
that may be further specified per port, and O is the output data
type. A mapper is procedure rather than a function, since it may
interact with the world. A fan-out mapper has one input port and
a n output ports, whichmay produce different types of data. Again,
formally, a fan-in mapper is a procedure m : I → On, where
I is the input data type, and O is an abstract data type of the
output ports that may be further specified per port. Mappers can
also have conduits to other mappers, and those conduits may also
have conduit filters. For convenience, mappers may perform non-
trivial data transformations, reducing the need for filters and thus
simplifying the computational architecture. However, combining
trivial join and split operations in mappers with filters can in
principle yield any data transformation.

When doing domain decomposition or when the number of
submodel instances is dynamic it can be useful to instantiate a
number of submodel instances at the same time. However, to
maintain their modularity, a submodel should not know how
many submodel instances it should communicatewith. Otherwise,
the submodel implementation would have to change each time
the domain is decomposed over a different number of submodel
instances. By having an intermediate fan-out mapper between the
submodels, submodels only need to know what data to send and
not how to divide it among submodel instances. Conversely, those
submodel instances should not have to know how the workload or
domain is divided among themselves, and just send any data to a
fan-in mapper that will take care of that. For the disassembly and
assembly to happen correctly, the fan-out mapper could also send
amessage to the fan-inmapper on how it distributed theworkload
so that the fan-in mapper can correctly reconstruct the data again.
With a fan-out and fan-in mapper it is thus easy to create multiple
submodel instances simultaneously and address them throughout
the multiscale model.

3.2. Graphical MML

Being inspired by UML, gMML is a graphical representation of
MML with some UML icons. An example of the gMML of the in-
stent restenosis model is shown in Fig. 8. A submodel instance is
shown as a rectangle with a name label inside. Mappers are drawn
as a hexagons, with their name labels inside, and a conduit filter
as a rounded square, with a name label inside or close to it. If a
number of submodels have a single domain coupling, this may be
emphasized by drawing a dotted rectangle around the involved
submodels, optionally with the name of the domain involved.

Conduits are represented as edges between elements, which
may be labeled with the type of data that is sent over it. Based on
coupling templates, edge head and tail decoration depends on the
SEL operator that a conduit is sending to and from, respectively,
as shown in Fig. 9. Operators finit and Of are shown as a diamond;
operators Oi and S as a circle, being called within the loop; and
operator B is shown as an empty arrowhead. Edge tails are filled
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Fig. 8. The gMML of the ISR3D model, which is described in Section 6.1. Labels in
italics indicate the different types of computational elements. The different edge
heads and tails show the operators that are used, depicted in Fig. 9.

Fig. 9. The different edge heads and tails corresponding to the SEL operators.
Undefined means no SEL operator is associated with the coupling.

black, edge heads are empty. Since a mapper does not have an SEL,
edges fromor to it have no tail or a simple arrowhead, respectively.

The submodel instances that are initially instantiated have an
edge from a filled black circle; submodel instances that determine
when themodel will finish have an edge to a filled black circlewith
a black round border. These circle icons correspond to the start and
end state of a UML state diagram.

Limitations of gMML include having no way to see the scales
involved, and not being very detailed. Its advantage is that it is a
visual way of thinking about the computational architecture of a
multiscale model.

3.3. XML format of MML

To automatically process the specification of amultiscalemodel
a machine-readable format is needed, which is preferably also
human-writeable. The XML specification has the advantage that it
is well-known and that there are many software tools available to
edit or parse it. The xMML format is specifiedwith an XML Schema,
with which a minimal specification can be enforced and xMML
elements may be validated. By using namespaces, the format can
be extended with XML extensions such as XInclude, XPointer or
RDF, adding some flexibility to the language. These specifications
combined form the basis for xMML.

The content of xMML is aimed to be both descriptive and
prescriptive. It is descriptive in the sense that it describes in
detail the submodels, their computational requirements, and the
couplings that they have. It is prescriptive in the sense that: during
execution submodels should conform to the scales specified; and
a port of a submodel should only be used at the SEL operator it is
defined for. The descriptive part enables an execution framework
to run and schedule a multiscale model by reading its xMML
specification. The prescriptive part allows predicting and possibly
enforcing when messages will be sent to which computational
element. Together, the descriptive and prescriptive sides of xMML
allow a correct execution of a multiscale model.

In Listing 1 an example of the xMML of a macro–micro model
is given, with a two-dimensional macro submodel A and a set B of
ten one-dimensional micro submodels. The corresponding gMML
is depicted in Fig. 10. The macro submodel starts executing, then
Fig. 10. The gMML of a simple macro–micro coupling, corresponding to Listing 1.

transfers an observation in the form of a grid to a fan-out mapper,
which distributes different values to the micro submodels. After-
wards, the reverse direction is executed using a fan-in mapper, af-
ter a filter has been applied to reduce the resulting 1D array to a
single value. All this is specified within the <topology> tag. The
combination is a classical case ofmacro–micro scale separation, us-
ing the coupling templates call (OA

i → fBinit) and release (OB
f → SA)

with a single domain coupling, since the micro submodels use a
subdomain of the macro submodel. In general, to make the do-
main used explicit, an <instance> tag may contain a domain
attribute.

More detailed specifications are available within the
<definitions> tag. Here, the scales of the submodels are spec-
ified using SI notation or with time notation in terms of minutes,
hours, etc. If no SI unit is given, the default SI unit is presumed,
seconds for time and meters for space. In the example, all scales
are regular, except that of the second spatial dimension of the
macro submodel, which uses the complete scale specification. In
the <ports> tag, inputs and outputs of the submodel to which
conduits may attach are defined. An SEL operator is assigned to
them to associate conduits with a coupling template, and to pre-
dict, together with the temporal scale, how often the port will
be used. A data type is also assigned to the ports, to later en-
sure that both the sender and receiver use the same type of data.
With <mapper> tags the ports and function of fan-in and fan-out
mappers can be specified;with the<filter> tag a datatype con-
verter or scale reduction or interpolation may be specified. More-
over, a model and submodels may be versioned, described and
named, and all implementable computational elements may be
given an executable class name. With these elements, xMML cov-
ers the subjects defined for MML in Section 3.1.

The root element <model> lists the name of the multiscale
model, the version of the current document and the version of
xMML that is used.

In addition to the modeling aspects, the implementation and
computational aspects of amultiscalemodel can be specified using
xMML. Above, the size estimate included in the data type, based on
the scales of the involved submodels, is used to estimate the size
of messages with that data type. Instead of relying on this implied
message size, the expected size may also be explicitly listed for
each coupling.With this size estimate, submodels instancesmaybe
placed closer together in a distributed environment based on the
amount of data transferred between them. In submodels, mappers,
and filters an <implementation> tag may be added to specify
the estimated memory and CPU requirements, as well as stating
library or platform dependencies. Combined, the implementation
descriptions allow scheduling software to make more informed
decisions on distributing submodels, mappers, and conduits.

4. Multiscale model analysis

Being able to predict the runtime behavior of a modular pro-
gram has benefits for scheduling, estimating computational costs,
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Listing 1: The xMML specification of a macro-micro model
<?xml version ="1.0"?>
<model id="MacroMicro" xmlns="http://www.mapper -project.eu/xmml" name="Macro -micro model" version ="1.0"

xmml_version ="0.3.3">
<description >A macro -micro model , having a macro grid representation and a micro cell

representation.</description >

<definitions >
<datatype id="lattice2DDouble" size_estimate="x*y*sizeof(double)"/>
<datatype id="latticeMapping" size_estimate="x*sizeof(int)"/>

<datatype id="valueDouble" size_estimate="sizeof(double)"/>
<datatype id="arrayDouble" size_estimate="x*sizeof(double)"/>
<filter id="microArray" type="converter"

datatype_from="arrayDouble" datatype_to="valueDouble"/>

<submodel id="Macro" name="2D Macro model" init="yes">
<timescale delta="1 s" total="1 min"/>
<spacescale delta="1 mm" total="1 dm"/>
<spacescale >

<delta min="0.7 mm" max="1.3 mm"/>
<total min="0.7 dm" max="1.3 dm"/>

</spacescale >

<ports >
<out id="grid" operator="Oi" datatype="lattice2DDouble"/>
<in id="gridDiff" operator="S" datatype="lattice2DDouble"/>

</ports >
</submodel >

<submodel id="micro" name="1D Micro model">
<timescale delta="1E-7" total="1E-5"/>
<spacescale delta="1E-5" total="1E-3"/>

<ports >
<in id="start" operator="finit" datatype="valueDouble"/>
<out id="diff" operator="Of" datatype="arrayDouble"/>

</ports >
</submodel >

<mapper id="gridDivide" type="fan -out">
<ports >

<in id="grid" datatype="lattice2DDouble"/>
<out id="mapping" datatype="latticeMapping"/>
<out id="value" datatype="valueDouble"/>

</ports >
</mapper >
<mapper id="gridCombine" type="fan -in">

<ports >
<in id="value" datatype="valueDouble"/>
<in id="mapping" datatype="latticeMapping"/>
<out id="grid" datatype="lattice2DDouble"/>

</ports >
</mapper >

</definitions >

<topology >
<instance id="A" submodel="Macro"/>
<instance id="B" submodel="micro" multiplicity ="10"/>

<instance id="A2B" mapper="gridDivide"/>
<instance id="B2A" mapper="gridCombine"/>

<coupling name="grid" from="A.grid" to="A2B.grid"/>
<coupling name="values" from="A2B.value" to="B.value"/>
<coupling name="mapping" from="A2B.mapping" to="B2A.mapping"/>
<coupling name="diffs" from="B.diff" to="B2A.value">

<apply filter="microArray"/>
</coupling >

<coupling name="grid diffs" from="B2A.grid" to="A.gridDiff"/>
</topology >

</model >
deadlock detection, and overall validity checking. A multiscale
model, as we are proposing, is modular and has internal structure
through the submodel execution loop, coupling templates, cou-
pling topology, and computational elements. In this sectionwe ob-
tain the coupling topology of a multiscale model and propose a
method to predict the models data flow from its MML specifica-
tion.

Several formal models for task dependencies and data flow in
general exist, for instance task graphs, Petri nets, process algebra,
or I/O Automata. In addition, the more informal scientific work-
flows also have associated tools to predict runtime behavior of
modular software. All these methods importantly have some form
of software support, as automation gives a feasible and consistent
way to predict runtime behavior. We will use task graphs, being
the simplest for our purposes.

4.1. Coupling topology: deduction and implications

The coupling topology of a multiscale model can be deduced
from its xMML specification. Firstly,whether a coupling topology is
cyclic or acyclic can be determined from this specification in linear
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time by constructing the graph formed by submodel instances as
nodes and couplings as edges.

Secondly, the multiplicity of the submodels is explicitly speci-
fied in xMML, and can again be verified in linear time.

Finally, whether the number of synchronization points is
dynamic can be determined by evaluating the temporal scales of
the coupled submodel instances. If all submodels with an output
port at their intermediate observation have regular scales then the
number of synchronization points will be static (or ‘fixed’).

The implications of different coupling topologies have the
same tendency: a more dynamic setting makes it more difficult
to manage and predict the runtime behavior of a multiscale
model. In each case the executing framework must anticipate
dynamic changes in the number of computational resources
required, and manage communication in a dynamic environment.
Moreover, since it is up to the model to decide what the dynamic
requirements are, themodelmust also be adapted to communicate
dynamic needs to the execution framework.

4.2. Predicting runtime behavior with a task graph

In this article we analyze the runtime behavior of multiscale
models using task graphs, a formal but conciseway of representing
task dependencies and data flow between tasks. A task graph is a
directed acyclic graph of tasks as nodes and their dependencies
or data flows as edges, as for example in Fig. 12(a). It is used
primarily for scheduling on parallel and/or distributed computing
resources [40]. A close concept is that of the wait-for graph [43],
used for deadlock detection in distributed computing. It can also
be seen as a serialized or unfolded graph of the MML description,
which may be cyclic. Although task graphs themselves are well-
known, converting a problem to a task graph in a nice way is
problem-specific. In this section we convert an MML description
to a task graph, which has not been done before.

A multiscale model can be subdivided into submodel instances,
and those can be subdivided into SEL operators in conjunctionwith
the iteration of the execution loop. These SEL operators are the
main nodes of the task graph.Mappers are also explicit nodes in the
task graph, conduit filters on the other handmay be implicit as long
as they do not aggregate or interpolate over the temporal scale.
Conduits aremodeled as dependencies and thereby form the edges.
Submodel instances, mapper instances, or conduit instances that
are initiated multiple times, for instance from the loop of another
submodel, are distinguished by an initiation number. Multiple
submodel instances that are initiated at once, for instance for
purpose of domain decomposition, form a set. Another type of
dependency is that of the internal flow of a submodel, from one
of its SEL operators to the next; or more broadly, the state of a
submodel to the next in stateful submodels. These dependencies
are implicit to the submodel flow and are consequently displayed
with a dashed edge instead of a solid one. Together, SEL operators
and mappers form the nodes of the task graph, and conduits and
internal submodel transitions the edges.

A task graph node representing an SEL operator has a label
showing that operator. The full format is instanceNamej[k](o, i),
where instanceName is the name of the computational element, o
the SEL operator and i the iteration. Then j indicates the initiation
number of a submodel instance that is initiated multiple times. If
a set of submodel instances is concerned, an index k is added. This
format can be simplified by leaving out any part, as long as a task
remains uniquely identifiable.

The task graph of models with a static number of synchroniza-
tion points and submodel instances can be statically generated in a
linear fashion, as shown in Algorithm 4. The algorithm depends on
the SEL and on the coupling of MML’s computational elements and
as far as we know is an original contribution. If it were to be dy-
namically generated, while the model is executed, it would not re-
quire significant changes, other than some form of communication
with that model. The algorithm starts with a number of submodel
instances that are specified to be initial, and keeps track of active
computational elements. These computational elements have to be
well-specified, so mappers and submodels work quite straightfor-
ward, although they do have to keep track of their timestamps. A
submodel additionally has edges to its next operator and if it is
stateful, also to its next instance. Mappers need a message on each
input, and once a message has been received on that input, subse-
quent messages are buffered. In a task graph, this can be modeled
by sending the message to the next instance of the mapper. For
conduit filters, Algorithm 5 must be evaluated to see where it will
send its output, and when all required messages are received.

In order to keep Algorithm 4 relatively brief, it does not include
the temporal conduit filter. Support for it can be added at lines
B and D, by keeping track of how many messages the filter must
receive before it sends a message, and how many messages the
filter sends when it finally does send. Likewise, the algorithm does
not support conduits with multiplicity, which could be added with
a simple for loop at line D.

Deadlock detection happens in two places: while building the
task graph and afterwards. During building the task graph, a task
that has been active before could be referenced again. Since this
can only happen if that task already had all dependencies resolved
before, there must be a cycle that causes a message to be sent to it
twice. The second time deadlock detection becomes active is after
building the task graph, when it can find that some elements were
still waiting for input but could somehow not receive it.

In Algorithm 4 three lines A, B, and C indicate what part of
the task graph may be distributed. At A, a computational element
doing a computation at a certain operator may decide to send a
number of messages. Deadlock detection is done by the receiving
computational element, which will detect that the timestamp is
not correct. At B, it has to wait for all messages to arrive before
it can do its own computation, which is built in to the MML
specification of an element. The deadlock detection at C, however,
has to be changed to distribute efficiently, seeing that it is activated
only after all operators and submodels were executed as long as
they could. At this point, alternative distributed deadlock detection
algorithm should be used.

4.2.1. Task graph acyclicity
The task graph algorithm presented indeed gives an acyclic task

graph, simply because any cycle will throw a deadlock. Here we
show that inmostwell-defined cases, deadlock as caused by a cycle
will not present itself. To show this, assume that for the interact,
call, and release coupling templates; scale separation, overlap, or
contiguity is strictly adhered to. To begin with, we will showwhen
pairs of submodels yield an acyclic graph. Thereafter, wewill show
when this will also yield a total acyclic task graph. The timelines of
the different submodels, determining the eventual structure of the
task graph, are shown in Fig. 11.

For the first part, consider submodels A and B with temporal
scales S(δt , ∆t , ωt , Ωt) and S(δ′t , ∆′t , ω

′
t , Ω ′t) that have temporal

scale separation with Ω ′t < δt , and that they are coupled with the
call and release coupling templates. A message sent by A at Oi at
time t , arrives at B at finit at time t , a message sent by B at release
arrives at time at most t + Ω ′t . By that time, it reaches the next
iteration of A, which has time at least t + δt > t +Ω ′t . In terms of
task graph nodes this can be expressed as

A(i,Oi)→ B(0, finit)  · · ·  B(nB,Of)→ A(i+ 1, S),

for any 0 ≤ i < nA, nA + 1 and nB + 1 being the length of the time
series of A and B.
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(a) Scale separation. (b) Scale contiguity.

(c) Scale overlap.

Fig. 11. Timelines of two submodel instances A and B with temporal scales S(∆t , Ωt ), S(∆′t , Ω ′t ). The submodels show temporal scale separation, contiguity and overlap,
respectively, and they start at time t0 . Initialization is done at opening braces (finit and Oi), the last solving step and finalization at closing braces (S, B, and Of), and each
intermediate step at a tick (S, B, and Oi). Arrows indicate messages sent, rounded rectangles denote temporal scale conduit filters aggregating or interpolating between
messages.
Next, ifA and Bhave contiguous scales instead, specifically∆′t ≤

δt ≤ Ω ′t ≤ ∆t , then it is not clear that the time tA ∈ [t+δt , t+∆t ]

for one iteration of A is longer than the time tB ∈ [t + ω′t , t +Ω ′t ]

for B to release. On the contrary, this might create an overshoot of
at most Ω ′t − δt ≤ ∆t − δt . It is up to the modeler to prevent this
overshoot; failing to do so can lead to cycles or deadlocks. With
regular scales, however, this problem does not arise.

Finally, A and B can have temporal scale overlap, with ∆t < ω′t
and ∆′t < ωt . As mentioned in Section 3.1, we only consider this
case under the condition that the granularity of the receiving
submodel is fixed, so if the interact coupling template OA

i → SB is
used then δ′t = ∆′t , and if the coupling is reciprocated then also
δt = ∆t . This case is the most involved, and to ensure that the task
graph becomes acyclic, it is important to reiterate that the interact
coupling template specifies that the observation made by Oi at a
certain time t , will only be used by the first solving step S with
time t ′ > t . However, then multiple events in B may occur before
the next event of A. If the ratio between A and B of events occurred
is static, then a time filter may be used on the conduit, which can
aggregate events in one direction and interpolate between events
in the other as shown in Appendix. This time filter must know the
time step of the receiving submodel for this to behave correctly.

So, a message is never sent backwards in time between pairs of
submodels. For more submodels, the problem remains submodels
with overlapping temporal scaleswith a varying granularity,which
cannot be the receiver of the interact coupling template. Indeed,
this remains true for indirect interactions, such as when submodel
A uses the call coupling template for B, which then has a release
template to C . As long as there is no path of coupling templates
starting atOi of one submodel and ending at S of another submodel
with a varying granularity, this problem does not appear. Likewise,
when A uses the call coupling template for B, which uses the
dispatch template for C , which uses the release template for A, the
combined total time of B and C might bemore than the granularity
of A. This problem can only be prevented by amodeler, and itmight
point to a larger problem with the model: if the combined time of
B and C is more than the granularity of A, it might well be that the
computed results of B and C are not valid within the timeframe of
one step of A. By constructing the task graph, the task graph will
detect a cycle and prevent the mistake from happening.
Mappers, not considered so far, cannot introduce cycles that
were not present in the description above because of their behavior
of sending a message when a message is received.

4.3. Task graph reduction

Task graphs can get extremely large, growing exponentially in
the number of temporal scale separated submodels, exacerbated
by submodels that have a lot of iterations. Amethods to reduce the
number of nodes is collapsing redundant nodes as in Fig. 12(b). This
reduction can be performed while the task graph is constructed
or after it is finished. The reduction is straightforward, and can be
performed no matter how dynamic the multiscale model is.

Nodes of the task graph can be collapsed only if the graph is
guaranteed to remain acyclic. For example, a submodel instance A
that only has a input port at finit and an output port at Of could
list all its SEL operators for each iteration as separate nodes, but
that would not add any information regarding its dependencies on
other submodels. Instead, A can be collapsed to a single node in the
task graph, while retaining its dependencies of initialization and
final observation. Tomark it as a collapsed node, a range is assigned
to the iteration number and SEL operator in the label. The label of
a collapsed node encompassing iterations i0 to i1 and SEL operator
o0 to o1 then becomes instanceName (i0–i1, o0–o1). In general, node
p can be collapsed with node q, forming node r , if the following
conditions hold:

• p and q represent the same submodel instance, initialization
number and set number;
• p has an edge to q; and
• p has exactly one outgoing edge or q has exactly one incoming

edge.

If this is the case, p and q can be removed and replaced by r ,
whichwill have the edges of p and q, while excluding the edge from
p to q.

Above conditions ensure that dependencies between submod-
els remain visible, and that no cycle is introduced in the task graph,
as we will show now. Given an acyclic task graph and a reduction
from nodes p and q, and suppose a cycle is introduced in the reduc-
tion, so that besides a path from s to t , where s and t are non-equal
nodes, there is also a path from t to s. First, replacing p and q with
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(a) Task graph. (b) Collapsed nodes.

Fig. 12. A task graph of a simplified ISR3Dmodel, which is described in Section 6.1,
before and after the reduction described in the text. The actual label text is not
important in this example, rather the structure of the task graph can be seen to
remain intact.
Algorithm 4: Generate a task graph, while doing deadlock
detection. Variables a and b are potential task graph nodes.
Input: A full MML specification, with a set of submodel

instances Σ

Output: Task graph G(V , E), with vertices V and edges E

// initialize the graph;
add src, sink to V ;
foreach s ∈ Σ that is marked initial or has no incoming
conduits do

add s(0, finit) to active;
add src→ s(0, finit) to E;

end
// activate one node at a time, and calculate
outgoing edges;
while active is not empty do

a← remove element from active;
add a to V ;
next← nextSet(a);

A foreach b in next do
if b has already been active then

Deadlock: cycle in the task graph detected;
end
add a→ b to E;
add b to sleeping;

end
if next is empty then add a→ sink to E;

B while sleeping contains element b that received all required
messages do

move b from sleeping to active;
end

end
C if sleeping contains elements with other incoming edges than
stateful edges then

Deadlock: elements in sleeping still require incoming
edges but there are no active senders;

end
D define nextSet[a = sj{i, o}], s is a computational element

if s is a submodel instance then
if o = Of then

if s is stateful then add sj+1(0, finit);
else if o = B and |ϑi| > 0 then

add sj(i,Oi);
else

o′ ← SEL operator after o
(finit → Oi → S→ B→ Of);
i′ ← i+ 1 if o = Oi, else i;
add sj(i′, o′);

end
end
foreach outgoing conduit of s to operator o′ of s′ do

(i′, j′)← previous iteration and initiation number
used in this conduit (default: 0, 0);
if o′ = finit or s′ is a mapper then increment j′;
if o′ = S or o′ = B then increment i′;
add s′j′(i

′, o′);
end

end

r is equivalent to creating an edge from q to p, while disregarding
the cycle between p and q. Since only an edge from q to p is added
and this causes a path from t to s to be created, there must be
1. a path from t to q not containing p and
2. a path from p to s not containing q.
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Suppose this is the case, and suppose that the condition holds that
q has exactly one incoming edge, which is from p, then any path
to q must contain p, ruling out item 1. Now, suppose that p has
exactly one outgoing edge, then any path from pmust also contain
q, ruling out item 2. Combined, this contradicts that the given task
graph was acyclic. Thus, a reduction performed under listed the
conditions yields an acyclic graph.

As long as the conditions above hold, the degree of collapse
can vary depending on the intended use of the task graph. If, for
example, the exact receiving SEL operator of submodel A in the
example above must be known, then submodel A can be collapsed
into two parts; one node for finit: A(0, finit); and another for the
rest: A(0–n,Oi–Of). The above list of conditions is then appended
with

• p does not have incoming edges from a node of another
submodel instance, initialization number or set number and
• q has exactly one incoming edge.

If the exact sending SEL operator is also of importance, then in
the example Of must also be kept separate: A(n,Of); ensured by
appending the conditions with

• p has exactly one outgoing edge and
• q does not have outgoing edges to a node of another submodel

instance, initialization number or set number.

With these simple guidelines, it is possible to reduce the
number of nodes in the task graph of a multiscale model.

5. Distributed multiscale execution

A multiscale model, once specified with MML, can be executed
in a multitude of ways such as a workflow system, the GridSpace
workbench [16], or, as outlined here, a specialized framework. Be-
cause of the modular setup we propose for multiscale models, it is
feasible to distribute the computation among multiple heteroge-
neousmachines. For example, a setupwith a single laptop possible,
but also an execution over a university network or full use of net-
worked supercomputers. Outlined below is an automatic method
that reads the model specification and executes it.

At this point we assume that a multiscale model needs dis-
tributed computing capabilities. If, however, the multiscale model
has sufficiently homogeneous submodels in terms of computa-
tional requirements, a single computer or cluster might in fact be
sufficient. Again, the task graph that was presented in the previ-
ous section can be analyzed using existing task graph algorithms,
whether it makes sense to schedule the different modules to dis-
tributed computing resources.

5.1. Implementing a model in MUSCLE

A framework that can execute multiscale models is the
Multiscale Coupling Library and Environment (MUSCLE) [30]. It
consists of two base elements: the kernel, which contains the
submodel code, and the conduit, which transfers information uni-
directionally between the ports of two kernels. The core ofMUSCLE
is implemented in Java, but it has bindings for C++, using the Java
Native Interface (JNI), which form a link to Fortran or C. Although
MUSCLE has its own configuration format, an xMML file can be
converted to that format in a straightforward way.

As said, MUSCLE supports conduits and submodels, the latter
of which should be implemented by the model developer as a
kernel. However, the SEL is currently not enforced by the kernels
and has to be coded by the model developer, simply by making
a loop in which sending and receiving messages are ordered in
the same way as the SEL. Conduit filters are explicitly supported,
and quite a few have already been pre-defined, but others can also
be implemented. On the other hand, mappers are only implicitly
supported; they can be implemented as kernelswith a simple loop.

Submodels can be parallelized by using, for instance, threads,
OpenMP, or MPI. Although the support for threads with MUSCLE is
good, MPI is more laborious to use. Since MUSCLE has a Java core,
it is not straightforward to call it as an MPI program. Currently,
either submodels call code that uses MPI as a separate executable,
excluding the benefits of having native conduits and adding
overhead [8], or they use a recently added MPI interface. MUSCLE
is still in development and a native C++ client is underway to
simplify these issues.

5.2. Execution with MUSCLE

The library part of MUSCLE, as outlined in the previous section,
could in principle be executed by different runtime engines.
In practice, however, MUSCLE is the only runtime engine that
supports executing MUSCLE code.

Amultiscalemodel can be computed by specifying its submodel
instances and conduits, and then starting each submodel instance
on the command-line. Not all submodel instances have to be called
in the same command-line statement, and by starting different
instances on different machines, providing an IP-address of one
of those machines, the submodel computation can be distributed.
Where to execute the submodels depends on their computational
requirements and resources available. If the entiremodel can easily
run on a single computer one can use MUSCLE on that single
computer, with a single command. If the submodels need to be
distributed, they can, as long as there is TCP/IP communication
possible between themachines theywill run on, and they just need
to be started on each machine separately.

If on the other hand the targeted machines are not directly
available, but are part of a grid or e-Infrastructure, it is possible
and advisable to make use of grid middleware. For example the
tools from the QosCosGrid software stack [39] can take care of
reserving and co-allocating different resources to run MUSCLE on.
Given that an MML description can be converted to a task graph,
such middleware or scheduling system could also make use of the
task graph for scheduling submodels on several resources. In this
contribution, we do not consider the specifics of scheduling the
different parts of amultiscalemodel to a distributed infrastructure.
Rather, we refer to existing task graph literature that addresses
this [21,6,40,14].

6. Example applications

The methodology outlined in this paper is being applied to
several multiscale applications in the MAPPER project [55] from
five scientific communities: biomedical physics, nano materials,
hydrology, fusion and systems biology. By way of example, we
will highlight two multiscale models from this project: in-stent
restenosis [12] and the formation of clay–polymer nanocomposite
materials [52].

6.1. ISR3D

First, the methodology is applied to a three-dimensional multi-
scale model of in-stent restenosis (ISR3D) of a stent deployment in
a coronary artery and subsequent processes. The objective of the
model is to help understand restenosis and to indicate improve-
ments in stent design. An extended multiscale model, in terms of
an SSM is described by Evans et al. [22]. A simplified version aswell
as a detailed description of the implementation of the submodels
and the coupling with MUSCLE is provided by Caiazzo et al. [12],
Hoekstra et al. [33]. Some detailed two-dimensional simulations
are reported by Tahir et al. [53].
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The ISR3D model consists of five submodels: initial cell posi-
tions and stent deployment as initial conditions (IC), thrombus for-
mation (Blob), blood flow (BF), drug diffusion (DD) and smooth
muscle cell proliferation (SMC). First, IC initializes the model by
placing a stent in an artery. These initial conditions are sent to SMC
and for each iteration of SMC, the thrombus formed by placement
of the stent is calculated by Blob. The calculated geometry is used
by DD and BF, which are calculated in parallel. Their results are
then used by SMC. For performance reasons BF keeps track of its
last state to simplify subsequent flow calculations.

As seen in Fig. 6, the submodels of ISR3D all have temporal
scale separation, except with IC, which scales from seconds of
stent deployment to days of thrombus formation before the rest
of the model is started. They all have spatial scale overlap, since
they range over the same part of an artery. DD happens on a
corresponding domain to that of SMC, in the vessel wall, so they
have a sD coupling. The coupling between SMC and Blob and BF,
on the other hand, is mD, as BF and Blob are calculated in the
blood vessel lumen. In IC and SMC, a Lagrangian or particle based
domain is used, while Blob, DD, and BF have a Eulerian or grid-
based domain.

The coupling topology of ISR3D is cyclic, and each has a single
instance per submodel. It has a fixed number of synchronization
points: a modeler chooses a fixed timespan that the stenosis will
be evolved over.

The gMML of ISR3D is shown in Fig. 8. It has four mappers:
voxel, add, fanOut and fanIn. First, the voxel mapper converts the
Lagrangiandomain to a Eulerian one, converting positions and radii
of particles to a binary 3D grid, with grid cells valued to true if they
contain part of a particle. That grid is sent to Blob, and the result
of Blob is added to the domain in the addmapper. Then the fanOut
mapper distributes the domain to BF andDD, and the fanInmapper
collects the results. The fanIn mapper also converts the grids used
by BF and DD back to a particle representation using the mapping
created by the voxel mapper.

The model is implemented using MUSCLE. Except BF, each
of the submodels was implemented specifically for this model.
BF uses the general purpose Lattice-Boltzmann library Palabos.1
All mappers and DD are completely written in Java, other
submodels use C++ or Fortran. The BF submodel uses most of the
computational time, although it is also most parallelized.

In total and with one core allocated, ISR3D takes two weeks
to do a single run on a iMac with an Intel i5 3.6 GHz processor.
When parallelizing BF, and running it on a node with a 32 core IBM
Power6 4.7 GHz processor, this is reduced to 5 days. Although the
gain is then large for BF, especially SMC then becomes a bottleneck
since it is not parallelized. By using MUSCLE it runs on distributed
infrastructure [8], by combining it with the QosCosGrid stack it can
also be automatically scheduled [9].

6.2. Nano materials

Another example, is a multiscale model of the formation
of clay–polymer nanocomposite materials, which in certain
formations can be fire-retardant or extremely sturdy. Between
multiple clay sheets, it evaluates quantummechanics (QM) for the
placement of individual atoms, fine-grained molecular dynamics
(FGMD) for the placement of individual molecules, and course-
grained molecular dynamics (CGMD) for the placement of groups
of molecules. The simulation starts by evaluation QM properties,
then the computed values are used in the FGMD submodel, and
finally the placement of the molecules is used in the CGMD
submodel. Domain decomposition is performed on the QM and

1 http://palabos.org.
Fig. 13. The gMML of the Nano materials application. It starts with a few QM
submodels, after which their output is collected by the C fan-in mapper. The
output is then preprocessed by fan-out mapper M to send it to a number of FGMD
submodels. Their output, and the mapping used by M, is collected by the CM fan-in
mapper to be used by the final CGMD submodel.

FGMD submodels, the first into 6 instances and the second to
between 10 and 20 instances.

The three submodels have a typical macro–micro coupling,
from QM to FGMD to CGMD, with spatial and temporal scale
separation, and a scale ranging from picometer to micrometer
and from picosecond to millisecond. Smaller submodels are in a
subdomain of larger submodels, so all couplings are sD.

The gMML of Nano materials is shown in Fig. 13, and also fea-
tures mappers to manage information coming from the submod-
els with decomposition. The coupling topology is acyclic, as can be
seen from the gMML, so it also has a fixed number of synchroniza-
tion points. Also the number of submodel instances is fixed before
the model starts.

The model is implemented using multiple libraries: the
LAMMPS and CASTEP, with Perl scripts acting as mappers. The
workflow is straightforward to implement. It can be run in a dis-
tributed environment using Gridspace 2 as a workflow manager
and the Application Hosting Environment (AHE) [60] as a middle-
ware stack.

7. Conclusions and further work

Multiscale modeling is being embraced as a paradigm to study
and better understand nature. Models produced in this way can be
computationally expensive, leading the way to distributed multi-
scale computing. In this contribution, we have laid foundations for
distributed multiscale computing, from a formal background to a
full computational specification, which can be analyzed to execute
on distributed infrastructure. Moreover, using this methodology it
is already possible to do distributed multiscale computing.

The formal part has been inspired largely by Complex Automata
theory [34] by generalizing it to multiscale modeling, and is duly
influenced by the Heterogeneous Multiscale Method (HMM) [18],
Ingram et al. [37] and the multiscale ontology by Yang and
Marquardt [59]. By formally defining concepts as phenomenon,
scale and scale separation, we were able to restrict and classify
the flow of a submodel and the interaction between submodels.
Moreover, the definitions form a basis for decomposing and thus
modularizing a multiscale model.

The frameworks classification by Ingram et al. [37] is the fol-
lowing: multidomain, embedded, parallel, serial, and simultane-
ous. The first, multidomain integration consists of a macroscale
model M coupled to a microscale model µ on a separate domain.
In our methodology this is represented by a mD coupling between
µ and M , and suppose these models have temporal scale overlap,
then the interact coupling template with the SEL B operator will be
used. If there are multiple micromodels, their data can first be ag-
gregated by a mapper beforeM processes it. In an embedded inte-
gration,µmodels a subdomain ofM , which is a sD interaction. The
call and release coupling templates could be used here if there is no
temporal scale overlap. With parallel integration, two submodels
1 and 2 model the same domain using a different representation.
They will have to have a cyclic coupling topology and have tempo-
ral scale overlap, andwill use the interact coupling templates.With
serial integration, one submodel is executed after the other. This is
exactly what the dispatch coupling template, and the acyclic cou-
pling topology is meant for. Finally, with simultaneous integration

http://palabos.org


J. Borgdorff et al. / J. Parallel Distrib. Comput. 73 (2013) 465–483 481
all submodels run at a microscale and information is integrated
after they run. In our methodology this can be achieved by com-
puting the microscale models and sending the output to a fan-in
mapper, which can process and aggregate the information com-
puted. The strength of our methodology is that it allows multiple
of these strategies to be combined, having for instance parallel in-
tegration on one part and multidomain integration on another.

Finally, the multiscale ontology by Yang and Marquardt [59]
provides a formal background to multiscale modeling. Unfortu-
nately, although their definitions of domain are very thorough,
their definition of scale is too hierarchical to be suitable for mul-
tiple dimensions. By redefining scale in this paper, we have a clear
way to identify the scale of a submodel and relate it to the scales of
other submodels. Their definition of a coupling is similar to ours,
althoughwe do not impose laws on the couplings. Instead, we offer
conduit filters that modelers can use to enforce a rule on a conduit,
which is a more low-level way to represent a coupling laws. Inter-
esting definitions that we do not reproduce are those of couplings
between elements or subdomains of two submodels and compos-
ing submodels to form a system that again acts as a submodel.

From the restricted behavior of our formalism, a computa-
tional specification language, the Multiscale Modeling Language
(MML) [23], is refined and firmly based. It takes advantage of scales
but also includes well-defined computational elements such as
one-way conduits, conduit filters and mappers, used to intercon-
nect the different submodels. It is a high-level language, leaving
the implementation of those elements free. Additionally, since it
is constrained by the definitions in multiscale modeling, it is more
specific and concrete than other component-basedmodeling spec-
ifications, such as CCA [3].

Given such a focused multiscale model specification with well-
defined elements, its properties can be deduced: howdynamic it is,
what dependencies and possibilities for deadlock appear between
submodels, and how the model could be scheduled over multiple
resources. We propose a method to represent the execution of a
multiscale model with a task graph, which can in turn be used to
schedule submodels over multiple (distributed) resources [21,14].
Additionally, if all computational elements adhere to the MML
specification, possible deadlocks can be detected before execution
while constructing the task graph.

Finally, a properly defined and analyzed multiscale model can
be executed for example by the Multiscale Coupling Library and
Environment (MUSCLE) [30]. Within MUSCLE, conduits and some
filters are already supplied and submodels and mappers can be
implemented in Java or C++, or any programming language that
has an interface with C++, such as Fortran or C. MUSCLE is
under active development, which will be the basis for a separate
contribution. MUSCLE does not do scheduling, so for distributed
multiscale computing a combination with grid middleware such
as QosCosGrid tools [39] is being explored.

Alternatives to MUSCLE for executing a multiscale model are
possible, seeing that MML is not tied to a specific implementation.
Particularly, if a multiscale model has a acyclic coupling topology
then there are much simpler systems than to execute it. In such
a case, a lot of workflow composition tools would also suffice, of
which multiple are quite suited for distributed execution [11,2].

One of the goals of the MAPPER project is to further automate
the combined workflow of specifying, analyzing, and doing dis-
tributed execution of a multiscale model by developing additional
MML tools and integrating them with QosCosGrid and GridSpace
2 [16]. To get thorough support for grid computing and high-
performance machines, more parts of MUSCLE will be adapted to
have a more independent C++ code, instead of relying on its Java
core for all submodel management. This has the additional advan-
tage that MPI can becomemore transparent and integrated within
MUSCLE.
Even though this paper addresses how distributed multiscale
computing can be achieved, in future research wewill focus on the
performance of doing distributedmultiscale computing as opposed
to local computing. This research aims to show exactly when
distributed multiscale computing is advantageous. With MML and
the task graph it is possible to reason about this and make precise
calculations.

In this paper no solution is offered for models with cyclic
coupling topologies that contain submodels with non-regular
temporal scales. For full inclusion of event-based submodels, as
well as handling other types of more dynamic models, this will
prove important. At the least an extension to the fan-in mapper is
needed to solve this, withwhich themappermay accept a different
number of messages on certain input ports than on others. This
possibly introduces non-determinism for the dependencies in the
task graph, and its full implications should be further studied.
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Appendix. An algorithm for a conduit filter

The conduit filter used as a computational element in MML
and described in Section 3.1 can alter the data flow between
submodels. As such, it is good to explore what algorithmwould be
good to do this, and show that this algorithm does not introduce
deadlocks.

Consider again, two submodels A and B with temporal regular
scales SA(2 s, 1 h), SB(1 s, 1 h) that are coupled on a single domain.
They have temporal scale overlap and use the interact coupling
templates OA

i → SB and OB
i → SA. To allow these submodels

to have their own time step, while still handling the coupling
correctly, a temporal conduit filter should be used on conduits
between A and B. Messages from A to B should be interpolated
to give B enough messages to process, and in the other direction
messages should be aggregated to ensure A does not receive too
many, as shown in Algorithm 5.

The filter in the direction from A to B has to know the time
series ϑ = (e0, . . . , en) of B, in order to send the correct number
of messages, for instance by the modeler specifying it. It does not
need to know the time step of A, as A sends, with each message,
both the timestamp of the message and the timestamp of the next
event. Thus, the filter can decide whether the next event of A
will need to be aggregated, or, that a message can be sent to B
immediately.

The communication from A to B is correct if the filter sends
the right number of messages at the right time. This statement
can be assessed by three filter properties, with filter f and events
e1, . . . , en of the receiving submodel:

1. for each event ei with 1 ≤ i ≤ n, f sends exactly one message;
2. if f receives a message with time t ≥ t(ei), 1 ≤ i ≤ n, it has

already sent a message for event ei; and
3. if f receives a message with time t < t(ei), 1 ≤ i ≤ n, it has not

yet sent a message for event ei.

Due to the well-ordering of time series, messages received are in-
order. Also given, is that a conduit filter may only send messages
if a message is received. Then the first two properties combined
prevent a deadlock,while the third property ensures thatmessages
sent to B can bemeaningful, that is, it prevents the trivial algorithm
where upon the first message received, nmessages are sent.
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Algorithm 5: Example of a temporal scale conduit filter,
where i is the index of the last event ei for which the receiving
submodel already received a message.
Input: Time series ϑ = (e0, . . . , en) of receiving submodel

1 i← 0;
2 while i < n do
3 m← receive();
4 add m to messages;
5 tm∗ ← time of message afterm, or∞ ifm is the last

message;
6 if t(en) ≤ tm∗ then
7 i′ ← n;
8 else
9 i′ ← k such that t(ek) ≤ tm∗ < t(ek+1);

10 end
11 if i′ > i then
12 (si+1, . . . , si′)← interpolate within messages;
13 send(si+1), . . ., send(si′ );
14 i← i′;
15 end
16 end

The first property is straightforward andprevents a deadlock for
B, without considering other submodels or couplings. The second
property prevents a deadlock that would occur if: the filter waits
for a message from A; B waits for a message from the filter; and
A waits for a message from B. Suppose that all properties above
hold, and that a deadlock occurs due to the filter. Submodel A and
Bwould have model time tA and tB, respectively, which is, by their
SEL, also the time of the next message they will send. Because of
property 2, the conduit filter cannot receive a message with time
tA if tA ≥ tB, so tA < tB. Now Awould onlywait for amessage from B
if tA > tB, following the definition of the interact coupling template
in Table 2. Combined, these statements imply that tA > tB and
tA < tB, contradicting that a deadlock can occur under the stated
conditions.

Take Algorithm 5 as filter f and apply it to the conduit from
A to B. Assume that A starts at model time t0 < t(e1), with
event e1 of B. In words, A must start before or at same model time
as B, approximately, since a conduit filter cannot produce output
without input.

Before showing that f satisfies the properties of a deadlock-free
conduit filter, observe that lines 13 and 14, combinedwith ϑ being
well-ordered and messages of f being sent in-order, ensure that at
the end of each loop, exactly imessages are sent.

First, A will send a last message since it has a finite number
of time steps. At that point line 5 will assign tm∗ ← ∞. After
that, line 7 will ensure that i = n at the end of the algorithm,
fulfilling property 1. Second, starting time t0 of A has t0 < t(e1)
by assumption, so the first message f receives will obey property
2 with time t = t0 < t(e1). Suppose message m with next event
time tm∗ obeyed property 2, then the next message m′ has time
tm′ = tm∗. Nowsuppose that f violates property 2, by assuming that
it sent a message for ek and that tm′ > t(ek). Then in the previous
iteration of the while loop, tm∗ > t(ek). Because time series ϑ is
well-ordered, the conditions on line 6 and 9will ensure that i′ ≥ k.
Now line 13 ensures that a message has been sent for ek before m′
is received. This is a contradiction, showing that f fulfills property
2. Finally, suppose f has sent a message for event ek. Then line 13
has been executed with i′ ≥ k, so lines 6 or 9 had tm∗ ≥ t(ek).
Since f receives messages in-order, this means it cannot receive a
message with time tm < t(ek), fulfilling property 3.

This shows that the three properties for a deadlock-free filter
have been satisfied by Algorithm 5.
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