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The seismic response of structures is often enhanced by introducing passive control

devices that can operate through the dissipation of the input energy or by modifying

the dynamic characteristics of the main structure. The inherent non-linearities in the

constitutive laws of some of them lead to computation difficulties and have limited

the large-scale use and design of these devices. In this study, a procedure for the

optimal design of multi passive control devices is proposed. The general case of linear

Multi-Degree-Of-Freedom (MDOF) not-classically-damped structural systems controlled

by Fluid Viscous Dampers (FVD) are investigated in a stochastic framework. The

procedure consists of evaluation of the device optimal pattern by minimizing an objective

function related to the dampers cost and subjected to a constraint on the structural

behavior. For each configuration, the complete probabilistic characterization of the

response is achieved by employing random vibration theory, Stochastic Linearisation

(SL) techniques and a novel analytic model which provides closed-form PSD functions

of earthquakes accelerations coherent to response spectra suggested by seismic codes.

Exploiting this model, a procedure to speed up the Stochastic Linearisation technique

by avoiding any numerical integration is proposed. Applications on MDOF building

structures have been carried out to validate the proposed approach in terms of accuracy

and reduction of the computational effort and to obtain optimal pattern of the passive

control device coherently with the provisions of seismic building codes.

Keywords: passive control device, stochastic linearisation technique, PSD coherent to response spectra, optimal

design, spectral moments, closed-form expressions

1. INTRODUCTION

The solution of a structural design problem generally requires the evaluation of a set of parameters
in order to fulfill several requirements, for instance, in terms of strength, serviceability and dynamic
performance of the structural system at hand. Each requirement is usually indicated as a limit state
and the design problem, in other words, can be expressed as the measurement of the violation of
a given set of limit states (Melchers, 1999). Since there are infinite sets of design parameters that
ensure the respect of the limit states, optimization techniques may be deployed, in order to choose
those parameters that satisfy the requirements and, at the same time, minimize a properly defined
cost function.

Most of the established design strategies define structural safety in a deterministic way, assuming
that both structural parameters and applied loads are known, even if conservative values, derived
from statistical studies, are utilized. This approach leads to consider only the mean response
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and to neglect its dispersion. Since the uncertainties affect both
structural properties and load characteristics, a more reliable
analysis should be defined into a probabilistic framework. In
the last decades, several methodologies have been developed for
the probabilistic measure of the structural safety, in which any
uncertainty about a design variable, a structural property or a
load feature has to be taken into account explicitly and modeled
through its respective probability density function (Melchers,
1999). Accordingly, also limit states and cost functions have to
be described in terms of their probability of occurrence.

The dynamic response of structural systems subjected
to seismic loads is often enhanced by introducing passive
control devices, such as Fluid Viscous Dampers (FVD), Tuned
Liquid Column Dampers (TLCD) or Non-linear Energy Sinks
(NES). These devices operate through several different physical
mechanisms by increasing the energy dissipation or by changing
the dynamic characteristics of the system to which they
are attached. Their use has received increasing attention in
recent decades (Housner et al., 1997; Spencer and Nagarajaiah,
2003) and important applications for improving the structural
performances to dynamic loads (e.g., earthquakes or winds) of
new or existing building structures have been developed. The
design parameters of passive control devices depend on the
dynamic features of the structural system to be controlled as
well as on the characteristics of the considered dynamic load.
Moreover, some of the passive control devices exhibit non-linear
constitutive laws and, even admitting that the primary system
behaves linearly, in the controlled system a non-linear behavior
may arise. This increases the computation difficulties and limits
the large-scale use and design of these devices.

In fact, the probabilistic optimal design of non-linear passive
control devices should be performed by means of Monte Carlo
simulations, involving a very large computational effort (Oliva
et al., 2017). On the other hand, in case of linear systems, the
tools of random vibration theory allow for a full probabilistic
characterization of the structural response, provided that a
reliable stochastic model of the seismic input is available. Aiming
at this, it is common to replace the non-linear equations
of motion of a system equipped with a passive device with
linear equivalent ones by using well-established procedures
as Stochastic Linearisation (SL) techniques (Atalik and Utku,
1976; Roberts and Spanos, 1991; Elishakoff, 2000; Alibrandi and
Ricciardi, 2012). The conditions of equivalence, when passing
from the non-linear to the equivalent linear system, may be
established in order to preserve some response quantities in
statistical sense. Since the parameters of the linear equivalent
system depend implicitly on response statistics, most of SL
algorithms require the solution of a system of algebraic non-
linear equations, although it has been found (Roberts and
Spanos, 1991) that a simple recursive loop is adequate to
simultaneously satisfy them. Hence, the computational burden
required for the analyses increases, even if it is drastically
reduced with respect to Monte Carlo simulations. Moreover,
calculations are very often carried out only numerically,
since analytical closed-form solutions for response statistics
are available just for a limited class of problems (Artale
et al., 2017). In Spanos and Miller (1994), formulae for the
computation of the response spectral moments have been derived

for the case of random excitations with band-limited white
noise, Gaussian and Kanai-Tajimi seismic spectra. In order to
overcome some limitations of the conventional SL, Fujimura
and Der Kiureghian (2007) proposed an alternative method of
linearisation, called “tail equivalent linearisation.” This is a non-
parametric method which consists in replacing the non-linear
system with a linear one, so that the tail probability of the
linear response above a specified threshold corresponds to the
first order reliability approximation of the tail probability of
the non-linear response above the same threshold. It provides
superior accuracy for the distribution of the maximum response,
especially in the tail region and it was mainly used for reliability
purposes (Der Kiureghian and Fujimura, 2009).

Alternatively, Giaralis and Spanos (2010) defined a stochastic
dynamic-based algorithm in order to estimate the seismic
demand of bilinear hysteretic SDOF oscillators consistently
with seismic code provisions that does not require non-linear
numerical integrations. Their algorithm consists in the definition
of a non-parametric RS-consistent stationary PSD function and
in the use of the SL in order to define the so-called equivalent
linear parameters (ELPs) and, finally, in the estimation of the
peak inelastic response of the non-linear oscillator. Since the
applicability of this latter approach was limited to relatively mild
non linear response, an higher-order SL scheme was further
proposed in Spanos and Giaralis (2013) for the treatment of
a wider class of hysteretic constitutive laws with a resulting
higher accuracy. Recently, Mitseas et al. (2018) proposed a
novel stochastic dynamics framework to estimate the peak
inelastic response of MDOF strongly non-linear system in a
seismic context without undertaking non-linear step-by-step
integrations of the response. The algorithm allows for the
seismic demand estimation of MDOF systems without numerical
integrations nor modal combination rules involved. Starting
again from the definition of a non-parametric RS-consistent PSD
function, SL is used in order to decouple the MDOF system into
several SDOF oscillators characterized by ELPs. These oscillators
are able to capture the peaks of the non-linear response for each
DOF of interest directly in the geometric space. In order to
achieve high accuracy, the algorithm requires an iterative scheme
in which, for each DOF, the PSD is updated basing on the RS
defined by damping modification factors.

Among the several passive control devices proposed and
realized in the last decades, Fluid Viscous Dampers (FVDs) have
received great attention and have been widely used in order to
reduce the effects of wind or earthquakes on civil structures
and to mitigate the vibrations due to shocks in mechanical
equipment. Their appeal for use in seismic engineering derives
from the low maintenance required, from their re-usability for
subsequent earthquakes, but also from the fact that the forces
exerted by the dampers and elastic forces are out of phase and the
stress level in the structure is not increased by their presence. A
great amount of research papers have been devoted to the optimal
design and optimal placement of fluid viscous dampers to
enhance the structural performance. The most relevant scientific
literature in this field has been recently collected in a very
comprehensive review paper (De Domenico et al., 2019) which
allows for a comparison of the different strategies used to identify
the optimal design configurations of FVDs. Nevertheless, it is
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noteworthy to recall two approaches. In the first one (Tubaldi and
Kougioumtzoglou, 2015), the non-stationary stochastic response
of a hysteretic SDOF system equipped with FVDs is calculated
by an approximate analytical technique that makes use of a
modified SL scheme and allows to consider realistic seismic
excitations with time-varying frequency content. In Gidaris
and Taflanidis (2015) the performance assessment and optimal
design of fluid viscous dampers in a probabilistic life-cycle cost
framework is discussed to obtain optimal design under different
seismic scenarios.

From a mathematical perspective, the procedure presented
in this work belongs to the wider class of the constrained
optimization problems. In particular, the optimal pattern of
the device parameters is evaluated by minimizing an objective
function related to the device cost and by ensuring that a
constraint function based on the structural behavior is not
violated. Both cost and constraint functions are defined into
a probabilistic framework. For each damper configuration,
the controlled system response is evaluated by using random
vibration theory in conjunction with SL technique.

In order to reduce the great computational burden involved
in these problems, two novelty aspects have been here
proposed and introduced. Firstly, assuming that earthquake
time-histories can be modeled as samples of a stationary
stochastic process, an analytical representation of earthquake
load Power Spectral Density (PSD) functions consistent with
seismic codes Response Spectra (RS) (Barone et al., 2015,
2019) have been adopted. Secondly, an algorithm has been set
up in order to obtain approximate analytical expressions of
the response first spectral moments for not-classically damped
Multi-degrees-of-freedom (MDOF) systems, without performing
any numerical integration.

It is to remark that the more recent SL techniques for the
determination of the seismic demand for hysteretic systems
(Giaralis and Spanos, 2010; Spanos and Giaralis, 2013; Mitseas
et al., 2018) can greatly benefit of these novelty aspects, both in
terms of a significant reduction of the computational efforts in
the derivation of RS-consistent PSD functions, and in accuracy,
since some approximations in evaluating the response statistics
can be removed without increasing the computational burden.

In the following, it will be shown how these spectral moments
can be used in order to perform SL and to evaluate the optimal
design of passive control systems in an efficient and accurate
way. The paper is organized as in the following: in section 2
the probabilistic optimal design problem is firstly formulated
in general form and then particularized for the case of n-DOF
linear structural systems controlled by means of m concurrent
non-linear FVDs (Di Paola et al., 2007; Di Paola and Navarra,
2009); in Section 3, in order to take advantage of the random
vibration theory, the classical SL approach is described for the
problem at hand and a procedure for the analytical evaluation
of the response statistics, useful for SL technique, is proposed
for linear n-DOF non-classically damped systems; section 4 is
devoted to numerical applications in which the reduction in
computational effort and the accuracy of the proposed procedure
are investigated and the optimal design of FVDs is performed for
a plane shear-type five-story frame and for a three-dimensional
building structure. For this last application, the accuracy of

the proposed procedure is further assessed in time-domain
by performing a non-linear response history analysis on a set
of spectrum compatible ground motion records. Finally, some
conclusions are drawn. In Appendix brief details on the deriving
of RS-consistent analytical PSD function and the expressions for
its evaluation are provided, along with the analytical expressions
that lead to the evaluation of the cross-spectral moments in
modal space, once the direct spectral moments are determined.

2. PROBLEM FORMULATION

The equations of motion of a n-DOF linear structural system in
its so-called uncontrolled state, subjected to a sample of ground
motion acceleration process Üg (t) can be expressed as:

MÜ (t) + CU̇ (t) + KU (t) = −Mτ Üg (t) (1)

where M, C and K are the (n× n) mass, damping and stiffness
matrices, respectively, U (t) is the (n× 1) vector collecting the
degrees of freedom of the structural system, dots means time
derivatives and τ is the (n× 1) influence vector.

Aiming at reducing the dynamic response of the uncontrolled
structure, it is common to introduce in the system passive
control devices. The latter, operating through different physical
mechanisms, generate additional damping forces or modify the
dynamic characteristics of the so-called controlled system. Since
many of the practically used passive control devices, such as
Fluid Viscous Dampers (FVD), Non-linear Energy Sinks (NES)
or Tuned Liquid Column Dampers (TLCD), present non-linear
constitutive relationships, the general form of the equations of
motion of the controlled system can be written as:

g
( ¨̂
U, ˙̂U, Û

)

= f (t) (2)

where Û is the new degree-of-freedom vector, which may
differ from U (t) for those categories of devices that introduce
additional degrees of freedom, for example passive absorbers;

gi(
¨̂U, ˙̂U, Û) and fi (t) are the total internal non-linear forces and

the external applied loads, respectively, acting in the i-th degree-
of-freedom direction.

The dynamic behavior of the controlled system and its ability
in mitigating the seismic response are governed by the design
variables of the control devices, which, in turn, depend on
both dynamic features of the uncontrolled system and on the
characteristics of the considered dynamic load.

In general, the greater the size and cost of the used control
devices, the greater reductions in response may be achieved,
until allowance criteria provided by building codes are satisfied.
Therefore, the problem of the optimal design of passive control
devices can be properly set and, since earthquakes are random in
nature, it should be tackle into a probabilistic framework, as in
the following:

min
x

φ (x, r)

subjected to :

Ps (x, r) − P̄s ≥ 0

x ∈ �

(3)
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where φ (x, r) is the cost function to be minimized, x and r

are the vectors collecting the design variables and the uncertain
parameters, respectively, Ps (x, r) is the survival probability, P̄s is
the target survival probability and � is the feasibility domain of
the design variables. Cost function and survival probability can
be expressed in terms of design variables and of the response
statistics, but their analytical expressions are specific for each
kind of passive control device.

Generally, the uncertain parameters r can be divided into
two categories. The first one is related to the definition of the
structural model (uncertainty in mass, stiffness and damping
values, or model uncertainties), whereas the second one accounts
for the randomness of the load. However, in case of seismic input,
it is possible to neglect the uncertainties of the structural model
as they lead to smaller dispersions of the response (Pinto et al.,
2007). Hereinafter, the system parameters are hence considered
as deterministically known and x collects only the location
patterns and the design variables of the control devices.

Moreover, it is assumed that earthquake acceleration time-
histories may be modeled as finite time duration samples of
a zero-mean Gaussian stationary stochastic process, completely
defined by the knowledge of its Power Spectral Density (PSD)
function. In this case, the vector r collects the parameters of
the seismic input stochastic model, obtained by using recently
proposed analytical expressions of PSDs consistent with assigned
RS, that cover most of the international building codes (Barone
et al., 2015, 2019). The Appendix reports further details of this
PSD model along with the closed-form relationship between the
RS parameters and the consistent PSD function ones. In recent
studies (Giaralis and Spanos, 2010; Spanos and Giaralis, 2013),
RS-consistent PSDs have been numerically derived and used also
for stochastic analyses of non-linear yielding structures by the
application of the SL. The joint use of such technique and an
analytical model of the seismic PSD function could certainly
improve the overall computational efficiency.

The solution of the problem expressed in Equation (3)
requires, for each tentative set of the design variables, the
stochastic analysis of a non-linear system, which is often
performed by means of Monte Carlo simulations, involving
very large computational efforts. On the other hand, in case of
linear systems and a properly defined stochastic model of the
seismic input, the probabilistic characterization of the structural
response can be easily computed by means of the tools of
stochastic analysis.

In the following, an optimal design problem is considered
when FVDs are used as passive control devices. However, similar
approachesmay be addressed for other types of non linear passive
control systems as, for instance, TLCDs (DiMatteo et al., 2014a,b,
2015) or NESs (Navarra et al., 2019b).

Viscous dampers have been widely used to mitigate the effects
of wind or earthquakes on civil structures and in the shock and
vibration isolation of equipment. Their appeal derives from the
low maintenance required and their re-usability for subsequent
earthquakes, but also from the fact that the forces exerted by
the dampers are out of phase with respect to the elastic forces
and do not increase the stress level in the structure. Moreover,
they can be used for the protection of new constructions as

well as for retrofitting purposes. Conversely, the major drawback
in using viscous dampers consists in handling their non-linear
force-velocity constitutive law.

The equations of motion of the controlled system in Equation
(2), whenm viscous dampers are concurrently deployed become:

MÜ (t) + CU̇ (t) + KU (t) + FD (t) = −Mτ Üg (t) (4)

where FD (t) is the vector of the non-linear forces exerted by the
viscous dampers. Although in literature there are several attempts
to model the constitutive law of viscous dampers by using the
theory of visco-elasticity (Schwann et al., 1988) or the fractional
calculus (Makris et al., 1993), most of the manufacturers
currently use a force-velocity relationship, validated by several
laboratory tests, expressed as:

fd
(

Ẏ
)

= Cd

∣

∣Ẏ
∣

∣

α
sign

(

Ẏ
)

(5)

being Cd and α the characteristic parameters of the damper
device, Ẏ the relative velocity at the damper ends and sign (·)
the signum function. For sesmic protection purposes, values of
α between 0.15 and 0.50 are used, in order to attain quite large
control forces even for small relative velocities and to have almost
constant output forces for large velocity values.

The non-linear forces vector FD (t) can be expressed as:

FD (t) = RTfd (Ẏ) (6)

where Y (t) is a m-ranked vector that collects the relative
displacements at the ends of each damper and all the response
quantities whose statistics are useful for the computation of the
cost function and of the survival probability. These quantities
can be obtained as linear combinations of the degrees of freedom
U (t), through the definition of a (m× n) transformation
matrix R as:

Y (t) = RU (t) (7)

Since the selection of the degrees of freedom and of the response
quantities of interest depends on the geometry of the problem
and on the passive control devices locations, it is not possible
to attain to a general expression of the matrix R. However,
since FVDs are usually inserted into the frame braces, from a
computational point of view, it is convenient to include in Y (t)
all the inter-story drifts of the structure. The i-th element of the
vector fd (Ẏ) is expressed as in Equation (5), taking into account
that each damper may have, in general, different characteristic
parameters Cd,i and αi. Obviously, if no dampers are deployed at
the i-th inter-story, a value of Cd,i = 0 is set.

2.1. Cost Function and Survival Probability
In literature, several estimators of the cost function have been
proposed (De Domenico et al., 2019). In Bahnasy and Lavan
(2013), the use of the sum of the dampers constants Cd,i at the
various floors has been proposed, whereas the expected value of
the sum of the peak forces of each damper has been considered in
Altieri et al. (2018) and Tubaldi et al. (2016). Herein, recalling the
probabilistic aspects of the proposed approach, the cost function
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has been defined as the sum of the characteristic values of the
peak force of each damper, that represents a reliable measure of
its cost, being related to its dimensioning (Navarra et al., 2017).
Hence, the cost function φ (x, r) in Equation (3) can be written as:

φ (x, r) =
m
∑

i=1

fdk,i =
m
∑

i=1

Cd,i

∣

∣ηk,i σẎi

∣

∣

αi (8)

where fdk,i is the characteristic value (at 95% percentile) of the
peak force exterted by the i-th damper, σẎi is the standard
deviation of the relative velocity at the ends of the i-th damper
and ηk,i is the correspondent peak factor, as defined in the
classical first-passage reliability theory (Vanmarcke, 1972, 1975):

ηk,i

=

√

√

√

√

√2 ln







2νẎiTs

− ln (0.95)



1− exp



−q1.2
Ẏi

√

π ln

[

2νẎiTs

− ln (0.95)

]















(9)

In Equation (9), Ts is the duration of the time window, νẎi and
qẎi are the mean zero-crossing rate and the bandwidth factor,
respectively, whose expressions can be evaluated in terms of the
first spectral moments λẎi ,j of the i-th relative velocity process:

νẎi =
1

2π

√

λẎi ,2

λẎi ,0
; qẎi =

√

√

√

√1−
λ2
Ẏi ,1

λẎi ,2λẎi ,0

(10)

Spectral moments are defined as the geometric moments of the
one-sided PSD function GX(ω) with respect to the axis ω = 0,
so that the m-th order spectral moment of a generic stochastic
process X(t) is given by:

λX,m =
∫ +∞

0
ωm GX(ω) dω . (11)

Spectral moments, indeed, are related to peculiar statistics of
stochastic processes and allow for their characterization. For
example λX,0 and λX,2 represent the variances of the processes
X(t) and Ẋ(t), respectively, and other quantities as central
frequency and bandwidth parameter, as well as approximate
solutions for the first-passage problem can be evaluated in
terms of spectral moments (Vanmarcke, 1972, 1975, 1976b;
Der Kiureghian, 1980; Di Paola and Muscolino, 1988).

The survival probability Ps
(

bmax,i,Ts

)

is associated to the non
occurrence of crossings, into the time window Ts, of the i-th
maximum allowable inter-story drift bmax,i, computed from the
actual story height and can be evaluated as:

Ps
(

bmax,i,Ts

)

=
[

1− exp

(

−
b2max,i

2σ 2
Yi

)]

exp
(

−2α̃Yi

(

bmax,i

)

Ts

)

(12)

where the risk function α̃Yi

(

bmax,i

)

is:

α̃Yi

(

bmax,i

)

= 2νYi

1− exp

(

−
√

π

2

bmax,i

σYi
q1.2Yi

)

exp

(

b2max,i

2σ 2
Yi

)

− 1

(13)

and the quantities νYi , qYi and σ 2
Yi

= λYi ,0 are the mean
zero-crossing rate, the bandwidth factor and the variance of
the relative displacements, respectively. Therefore, they can be
computed as in Equations (10), but with reference to the process
Yi, in terms of the first spectral moments λYi ,j. Assuming that
the failure condition is attained when only one inter-story drift
exceeds the allowable value, the global survival probability Ps in
Equation (3) is finally obtained as:

Ps = min{Ps
(

bmax,i,Ts

)

} (14)

3. EFFICIENT STOCHASTIC
LINEARISATION TECHNIQUE

Since Equation (4) is non-linear, the evaluation of the response
statistics useful for solving the optimal design problems has to
be performed through Monte Carlo simulations, which require
heavy computational efforts. In order to overcome this difficulty,
the Stochastic Linearisation (SL) technique may be an effective
tool (Atalik and Utku, 1976). The basic idea of SL is to replace
the original non-linear system in Equation (4) with an equivalent
linear one:

M(e)Ü (t) + C(e)U̇ (t) + K(e)U (t) = f (t) (15)

in which the equivalent system matrices M(e), C(e) and K(e) are
evaluated by minimizing the difference between the two systems
in statistical sense. The expressions of equivalent linear matrices
for MDOF systems equipped with several kind of passive control
devices, such as Tuned Liquid Column Dampers and Non-linear
Energy Sinks, may be found in Navarra et al. (2019a). In the
case of FVDs, it can be shown that the equivalent linear mass
and stiffness matrices coincide with those of the uncontrolled
system (i.e.,M(e) = M and K(e) = K), while the equivalent linear
damping matrix C(e) can be obtained as:

C(e) = C+ RTDFVDR (16)

in which R is the (m× n) transformation matrix, whereas the
diagonal matrix DFVD can be expressed as (Di Paola et al., 2007;
Di Paola and Navarra, 2009):

DFVD,ij = E

[

∂fd,i

∂Ẏj

]

=

α Ĉd,j
2α/2Ŵ (α/2)√

2π
σ α−1
Ẏj

δij,
(

i, j = 1, 2, . . . ,m
)

(17)
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being Ŵ (·) the Euler Gamma function, δij the Kronecker delta
and σẎj = λYj ,2 the standard deviation of the j-th relative velocity.

It is to remark that Equation (17) is derived based on a
statistical equivalence in terms of damper force and by assuming
the Gaussianity of the response process. Recently, other different
equivalent damping formulae based on energy equivalency or by
assuming other non-Gaussian probability distributions have been
proposed (De Domenico and Ricciardi, 2018, 2019). However, in
all these approaches the equivalent linear system is completely
defined when some response statistics are evaluated. This is, in
general, achieved by using an iterative procedure. In the first
iteration, it is assumed that the equivalent linear system coincides
to the uncontrolled system whereas, at subsequent iterations,
the estimations of equivalent linear matrices computed at the
previous iteration are considered.

In conclusions, it appears that the optimal design problem
into a probabilistic framework requires the evaluation in a
efficient way of the first spectral moments of the response
process. Furthermore, even assuming that the uncontrolled
system, Equation (1), may be considered classically damped,
the presence of passive control devices makes the controlled
system a non-classically damped one. In this context, in order
to determine the response spectral moments, two approaches
may be followed. In the most common one the evaluations are
carried out through numerical integrations in the geometric
space, accordingly to the flowchart reported in Figure 1A. In
this case, the computational burden required for the analyses
increases, even if it is drastically reduced with reference to
Monte Carlo simulations. In the second alternative approach,
herein proposed, the computations of spectral moments, taking
advantage of the analytical model of the seismic action, does
not require any numerical integrations, aiming at drastically
reducing the computational efforts. A flowchart of this procedure
is reported in Figure 1B and these two approaches are addressed
in the following subsection.

3.1. Numerical Approach for the Evaluation
of Spectral Moments
The evaluation of the j-th order spectral moment matrix in terms
of the response quantity of interest vector Y may be performed
through numerical integration in the geometric space of the
response PSD matrix:

3Y,j = R

(∫ ∞

0
ωjGUU (ω) dω

)

RT (18)

being GUU (ω) the one-sided PSD matrix of the response:

GUU (ω) = H∗ (ω)M(e)ττTM(e)THT (ω)GÜg
(ω) (19)

in which H (ω) = [−ω2M(e) + iωC(e) + K(e)]−1 is the transfer
functions matrix, the asterisk denotes complex conjugate and
GÜg

(ω) is the seismic load PSD function, whose expression is

reported in Appendix for seismic actions consistent with several
building codes RS. The spectral moments for the evaluation of the
equivalent linear system, for the computation of the cost function

FIGURE 1 | Flowchart for Statistical Linearisation technique. (A) Numerical

approach. (B) Proposed procedure.

and for the determination of the survival probability may be
properly extracted from 3Y,j.

For lightly damped and flexible systems (large period of
vibration), the accuracy of Equation (18) decreases mainly due
to an insufficiently long duration assumed for the stationary
excitations so that the steady-state conditions are not met. In
order to enhance the accuracy, a frequency-dependent corrective
damping factor can be adopted (Vanmarcke, 1976a). Spanos
and Giaralis (2013) provided numerical results to facilitate the
selection of sufficiently long duration of stationary excitation as a
function of the structural natural frequency and damping ratio.

Numerical integration of Equation (18) requires large
computational efforts and may lead to inaccurate estimations of
spectral moments, due to the very sharp functions involved in
the case of low damping values. Since numerical integrations
are required at each step of the SL, the approach above
described is highly time consuming, especially when used into an
optimization problem.

3.2. Analytical Evaluation of the Spectral
Moments
Generally, the equivalent linear system is not classically damped
and a generalized modal analysis needs to be applied. Equations
of motion, as customary, can be reformulated into a set of 2n
first-order differential equations:

Ż = D(e)Z+ VÜg (t) (20)
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where the state-variables vector Z, the systemmatrixD(e) and the
load vector V are defined as:

Z=
[

U

U̇

]

, D(e)=
[

0 In
−M(e)−1K(e) −M(e)−1C(e)

]

, V= −
[

0

τ

]

(21)
The eigenvalues square roots γi and the eigenvectors ψ i of D

(e)

occur in conjugate pairs and they can be collected in such a way
that γi = γ ∗

i+n and ψ i = ψ∗
i+n. Moreover, due to the structure

of the state-variables vector, the i-th eigenvector and the modal
matrix are:

ψ i =
[

φi
γiφi

]

, 9 =
[

ψ1 ψ2 · · · ψ2n

]

=
[

8 8∗

Ŵ8 Ŵ∗8∗

]

(22)
where Ŵ = diag{ γ1, γ2, · · · , γn} and 8 =

[

φ1, φ2, · · · , φn
]

are the diagonal matrix of the eigenvalues square roots and
the reduced modal matrix in terms of only displacements,
respectively. Lastly, the modal participation factors vector can
be defined as p = 9−1V. The i-th eigenvalue square root can
be rewritten as γi = −ζi ω0i ± iωDi, where ω0i, ωDi and ζi are
determined by:

ω0i = |γi| , ζi = −Re [γi]

|γi|
, ωDi = ω0i

√

1− ζ 2
i (23)

These parameters designate natural frequency, modal damping
and damped frequency of the i-th modal oscillator (Igusa et al.,
1984), respectively. Taking advantage by the analytical definition
of the seismic input PSD function reported in Appendix, it is
possible to perform a closed-form approximate evaluation of
direct spectral moments in the modal space, without resorting
to numerical integrations (Barone et al., 2019). Referring to the i-
th modal oscillator response process Qi (t), the expression of the
j-th spectral moment λj,Qi ,k is:

λj,Qi ,k =
GÜg

(ω0i)

4 ζiω
3−j
0i

ϕj,k +
1

ω4
i

k−1
∑

s=1

GÜg
(ωs)ω

j+1
s γj,s (24)

when ω0i falls within the k-th branch of the input PSD (see
Equation 32), while the dimensionless quantities ϕj,k and γj,s are
defined as follows:

ϕj,k = π − 4ζi

(1+ j)(1+ j+ ek)







ek j = 0, 2;
2 (1+ ek) j = 1;
8+ 3ek j = 3;

γj,s =
es+1 − es

(1+ j+ es+1)(1+ j+ es)
(25)

and the quantities ei, ωs and GÜg
(ωs) are the parameters of

the analytical model of the PSD function, whose meaning is
detailed in the Appendix. Further details on the derivation and
application of Equations (24) to (25) can be found in Barone et al.
(2019).

Di Paola and Muscolino (1988) demonstrated that the cross-
spectral moments of any order λj,Qi ,Qk

, if they exist for a given
PSD function of the excitation, may be obtained recursively

as linear combinations of the direct spectral moments. These
analytical expressions are reported in the Appendix for the sake
of simplicity. Furthermore, it is noted that equations from (20)
to (23) account for unitary values of modal participation factors
p. In this way, closed-from expressions for the determination of
modal spectral moments—like those in Equation (24)—can be
used straightforwardly. Conversely, when analytical expressions
are not available for the problem at hand, only a limited number
of numerical integrations should be performed in the modal
space. Once the cross-spectral moments of the modal oscillators
are obtained, the j-th order spectral moment of a set of quantities
of interest in the geometric space defined by the vector Y can be
computed as (Igusa et al., 1984):

λYr ,j =
n
∑

i=1

n
∑

k=1

(

Cr,ikRe
[

λj,Qi ,Qk

]

− Dr,ikIm
[

λj+1,Qi ,Qk

]

+

Er,ikRe
[

λj+2,Qi ,Qk

])

(26)

where the modal combination coefficients Cr,ik, Dr,ik, and
Er,ik, which depend on the modal participating factors, can be
determined as:

Cr,ik = ariark, Dr,ik = aricrk − arkcri, Er,ik = cricrk (27)

being ari and cri the entries of the following matrices:

a = −2Re
[

bŴ∗] , c = −2Re [b] (28)

whereas the matrix b = R8pn, with pn = diag{p1, p2, · · · , pn}.
It is worth to note that this procedure can be generally applied

for both classically and non-classically damped systems and
it can be easily implemented in a computer program routine.
In general, approximate evaluations of the spectral moments
are achieved since analytical closed-form solutions for response
statistics are available just for a limited class of problems (Spanos
and Miller, 1994; Artale et al., 2017). In these cases, exact
analytical evaluation of the direct spectral moments in the modal
space may be used in place of the Equation (24), thus obtaining
exact results. Ultimately, the evaluation of spectral moments of
response quantities of interest needs only the estimation of 4n̂
direct spectral moments in modal space, if a modal truncation is
applied and only n̂ ≤ n modal contributions are retained. The
estimation of the spectral moments λYr ,j allows for the updating
of the linear equivalent system, for the estimation of the cost
function and for the evaluation of the survival probability, as
described in the previous section 2.

4. NUMERICAL APPLICATIONS

In this section, aiming to show the validity of the proposed
approach, the results of numerical applications are reported. Case
studies of optimal design of fluid viscous dampers are addressed
for a plane five-story shear-type frame and for an irregular
three-dimensional building structure.

Firstly, it is to be remarked that the analytical procedure
proposed in section 3.2 is based on the approximate evaluation
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of the direct modal spectral moments, Equations (24 and 25), by
taking advantage of the definition of the probabilistic analytical
model of the seismic input reported in Appendix. The same
approach would also apply for other environmental hazards, i.e.,
wind or ocean waves, when a PSDmodel of the input is available.
The issue of accuracy of the seismic PSD analytical model has
been investigated in Barone et al. (2019), to which the reader is
referred for further details. In Figure 2, however, a comparison
between first order closed-form spectral moments (m = 0, 1, 2)
and their numerical counterparts is shown for several values
of natural periods and viscous damping ratios. Results are in
very good agreement and small differences can be observed for
high-order moments at large natural periods and damping ratios.

Therefore, when a specific application needs the evaluation
of spectral moments in those cases in which larger errors can

FIGURE 2 | Comparison between the first spectral moments evaluated

numerically (solid lines) and by closed-form approximate expressions (dots)

against natural period. (A) Zero order moments. (B) first order moments. (C)

second order moments.

be anticipated, an alternative approach may consist in using
numerical integration only for the 4n first direct modal spectral
moments, instead of Equations (24, 25), and in evaluating
all other response statistics accordingly to section 3.2. In this
way both computational efficiency and high accuracy may
be obtained.

In all the following numerical applications. the seismic load is
modeled accordingly to RS prescribed by Eurocode 8 (UNI ENV
1998:2005, 2005). In particular, it has been modeled as a process
having an EC8-compatible PSD function, obtained considering
the ground type A and a pseudo-stationary duration Ts = 20 s.
Nevertheless, similar results can be obtained for a wide range of
building codes RS covered by the model adopted (Barone et al.,
2015, 2019). In Table 1, the parameters used to define the RS and
the correspondent values in PSD analytical model, are reported.

Lastly, it is worthwhile noting that, since viscous dampers are
usually installed in the braces of the structural frames, the relative
displacements at the damper ends constitute a subset of the inter-
story drifts at each story and in each direction. Therefore, it is
convenient to denote with Y (t) the vector of all the inter-story
drifts, to evaluate R accordingly, and to set the parameters Cd,i =
0 for all the locations in which actually there are no dampers.

4.1. Accuracy and Computational
Efficiency
In order to investigate the proposed procedure both in terms of
accuracy and computational efficiency, a plane five-story shear-
type frame, originally proposed in Takewaki (1997) and then
modified in Trombetti and Silvestri (2004) has been considered.
In this structural system, referred to as Model 1, both horizontal
stiffness of the columns and the story mass do not vary along the
height. In particular, the mass and stiffness at each floor aremi =
8 · 104 kg and ki = 4 · 107 N/m, respectively. It is also assumed

TABLE 1 | Parameters for the definition of the design earthquake in terms of

Response Spectrum and PSD function.

Parameter Value Parameter Value

S0 0.250 g G0 1.8148 10−2 g2/(rad/s)

a 2.50 e1 2.5688

T1 2.00 s e2 0.7526

T2 0.40 s e3 −1.3247

T3 0.15 s e4 −2.6468

TABLE 2 | Computational times and mean errors for application of numerical and

analytical procedures.

Computational time [ms] Mean errors [%]

Numerical Analytical ēU ē
Ẏ

Uncontrolled 380 24 0.12 0.20

FB-G 3,812 31 0.88 1.13

FB-NG 3,841 32 0.92 1.04

EE-G 4,158 30 0.34 1.28

EE-NG 4,035 28 0.91 1.10
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a constant modal damping ratio ζi = 0.02 and the horizontal
displacements Ui at each story have been chosen as degrees of

freedom. The location vector is given as τ =
[

1 1 1 1 1
]T
.

In this application, the inter-story drifts are obtained as Y (t) =
RU (t), where the linear transformation matrix R is:

R =













1 0 0 0 0
-1 1 0 0 0
0 -1 1 0 0
0 0 -1 1 0
0 0 0 -1 1













(29)

As a first application, two identical FVDs having αi = 0.15 and
Cd,i = 1×105 N/(m/s)αi and positioned only at the first and third
inter-story, are considered. Stochastic linearisation is performed
using four statistical equivalences criteria, chosen among those
described in De Domenico and Ricciardi (2018). In particular,
force-based Gaussian SLT (FB-G), force-based non-Gaussian SLT
(FB-NG), equal energy Gaussian SLT (EE-G) and equal energy

FIGURE 3 | Cost function for P̄s = 0.90 and P̄s = 0.98.

non-Gaussian SLT (EE-NG) criteria are used. Response statistics
are computed for uncontrolled and controlled system and, in the
latter case, for each of the aforementioned equivalence criteria.
Results are reported in Table 2 in terms of computational time
and ofmean relative errors in the evaluation of the displacements,
Ui and relative velocity standard deviations Ẏi. The two mean
errors are defined as follows:

ēU = 1

n

n
∑

i=1

σUi ,ana − σUi ,num

σUi ,num
;

ēẎ = 1

m

m
∑

i=1

σẎi ,ana − σẎi ,num

σẎi ,num
(30)

where the subscripts ana and num stand for analytical and
numerical evaluation, respectively.

Outcomes of computational times for uncontrolled system
show that a great reduction of more than 90% is achieved for each
evaluation of response statistics, whereas the mean errors with
respect to numerical integrations, in terms of both displacements
and relative velocities, are negligible.

The advantage in using analytical procedure becomes more
and more evident when it is used inside a SL procedure. In fact,
for the present case, eleven iterations are needed, irrespective
of the equivalence criterion adopted; the computational efforts
of the numerical approach increase proportionally, while no
significant increments of computational time are observed for the
analytical procedure. During the iterations, discrepancies due to
the use of analytical procedure tend to accumulate, but the mean
errors are limited below few percentage points.

4.2. Optimal Patterns and Optimal Design
In this section, the proposed analytical procedure is applied
to determine the optimal pattern of fluid viscous dampers,
accordingly to the minimization problem outlined in Equation
(3). The minimization procedure is carried out by using the

FIGURE 4 | Optimal pattern of viscous dampers. for (A) P̄s = 0.90 and (B) P̄s = 0.98.
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FIGURE 5 | Cumulative distribution functions of inter-story drifts. (A) Uncontrolled structure. (B) optimal design for α = 1.00. (C) optimal design for α = 0.30. Target

survival probability P̄s = 0.90.

routine fmincon in MATLAB environment that uses the interior-
point algorithm. Following this approach, the constrained
minimization is reduced to a sequence of approximate
minimization problems (Byrd et al., 2000).

The probabilistic constraint in the optimization loop is
defined by assuming that structure fails when the maximum
inter-story drift ratio at any story and in any direction exceeds the
value of 0.5%, as suggested by Eurocodes. Such a value ensures
almost elastic behavior of the structure. The minimum allowable
survival probability P̄s is treated as a parameter and numerical
analyses are performed for different values of P̄s.

With reference to the aforementioned Model 1, the optimal
design of viscous dampers is performed by considering the
presence of a device at each floor and assuming a constant story
height hi = 3.50 m. Optimal patterns have been evaluated for
several values of the dampers coefficient α, ranging from 0.15
to 1.00, and for two values of the target survival probability P̄s,
0.90 and 0.98. Figure 3 depicts the cost function of Equation (8)
against α, whereas the correspondent optimal values of Cd,i are
shown in Figure 4.

It is worth to note that, for every value of α, the optimal
pattern remains practically the same and the presence of dampers
at fifth inter-story is excluded (i.e.,Cd,5 = 0).Moreover, the use of
strongly non linear devices has proven to be beneficial as it allows
for a great reduction of the maximum forces exerted by dampers,
thus reducing their size and, consequently, their cost.

In Figure 5, cumulative distribution functions of the inter-
story drifts have been computed for probability values from 1%
to 99% and compared with the maximum allowable drift (0.5%
of the inter-story height). For the uncontrolled structural system

(Figure 5A), i.e., when no dampers devices are used, all inter-

story drifts largely exceed the limit, whereas Figures 5B,C depict
the configurations correspondent to the optimal deployment
of viscous damper devices for α = 1.00 and α = 0.30,
respectively. In the latter configurations, optimal control of

FIGURE 6 | Geometrical characteristics of the six-story three-dimensional

building.

structural displacements is achieved, since most of inter-story
drifts reach the maximum allowable value at the same time, thus
obtaining an almost uniform distribution of deformations and
stresses throughout the height of the frame (Connor, 2003).

The second structural model, denoted as Model 2, consists
of an irregular three-dimensional six-story building structure,
whose geometrical characteristics are illustrated in Figure 6.
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Each floor height is 4.00 m, the first three floors have an
overall dimension of 8.0 m by 16.0 m, while the top three
story have plan dimension of 8.0 m by 8.0 m. All the columns
are made up by HE400A profiles, whereas beams have IPE360

cross section. An uniform gravity load of q = 5.5 kN/m2

is considered. This structure is representative of a low-to-
medium rise civil steel building. Under the assumptions of
rigid diaphragms at each floor and of inextensible columns, the

TABLE 3 | Natural frequencies, mass participation ratios and equivalent linear damping of Model 2 system.

Mode Frequency Participating mass ratio Equivalent linear damping [%] ζi/ζ ratio

[Hz] θ = 0◦ [%] θ = 90◦ [%] UNC OPT-X OPT-Y UNC OPT-X OPT-Y

1 0.735 0.0 81.1 2.00 2.03 21.03 1.02 1.02 1.00

2 1.585 83.6 0.0 2.00 3.35 2.00 1.00 1.00 1.00

3 1.593 0.0 11.2 2.00 2.48 30.64 1.00 1.00 1.00

4 2.059 0.0 2.6 2.00 2.53 19.14 1.00 1.00 1.00

5 3.103 0.0 3.8 2.00 2.00 3.80 1.00 1.00 1.00

6 3.779 11.3 0.0 2.00 3.28 2.00 1.00 1.00 1.00

FIGURE 7 | Peak values of inter-story drifts of the Model 2 uncontrolled system. (A) θ = 0◦. (B) θ = 90◦.
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dynamically significant degrees of freedom of the i-th floor can
be reduced to two translations (ui and vi) and a rotation ϕi, for
a total of 18 degrees of freedom. A constant modal damping of
ζi = 0.02, (i = 1, . . . , 6) is assumed.

The structure is composed of two frames in x-direction and
of three frames in y-direction. In this case, the vector Y collects
all the 27 inter-story drifts (six for the frames X1, X2, Y1, and
Y2 and three for the frame Y3), useful for evaluate the constraint
function and the Rmatrix is derived accordingly.

The first columns of the Table 3 reports the modal parameters
of the stiffer modal oscillators in terms of natural frequencies
and of mass participating ratios for two epicentral directions
of the ground motion, namely θ = 0◦ (x-direction) and
θ = 90◦ (y-direction). For each frame, Figure 7 depicts the
distribution of inter-story drifts peak values along the height
computed for 25%, 50% (mean value), 75% and 90% percentiles.
It can be observed that the building exhibits inter-story drift
ratios that exceed the value of 0.5% for both the epicentral

TABLE 4 | Cost function and characteristic parameters for optimal configurations.

cost function Cd,xl Cd,xh Cd,yl Cd,yh IDRmax

[kN] [kN/(m/s)α ] [kN/(m/s)α ] [kN/(m/s)α ] [kN/(m/s)α ]

θ = 0◦ 89.204 24.04 0.00 0.00 0.00 X1, 1st floor

θ = 90◦ 292.74 0.00 0.00 100.26 0.00 Y1, 1st floor

FIGURE 8 | Peak values of inter-story drifts of the Model 2 in its optimal controlled configuration. (A) θ = 0◦. (B) θ = 90◦.
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directions, even if these are larger when earthquake strikes
in y-direction.

Four typologies of dampers are considered for optimization
purposes, all having the non-linear coefficient α = 0.3.
In particular, the characteristic parameters of the dampers at
the three lower floors of x-direction and y-direction frames
have been denoted as Cd,xl and Cd,yl, respectively, whereas the
correspondent parameters of the dampers at the three higher
floors have been denoted as Cd,xh and Cd,yh, respectively.

Two analyses have been performed in order to evaluate the
optimal pattern of the viscous dampers for a target survival
probability of P̄s = 0.90 and for θ = 0◦ (OPT-X) and
θ = 90◦(OPT-Y). In Table 4, the cost function and the values
of the characteristic parameters of the four damper typologies
are reported for θ = 0◦ and θ = 90◦. It is to be noted
that, irrespective of the epicentral direction, the optimal damper
configurations require dampers only at lower floors, since the
dynamic behavior of the building structure is dominated by the
first bending mode. Table 4 also shows that the maximum inter-
story drift occurred at the first floor of X1 frame for θ = 0◦ and
at the first floor of Y1 frame for θ = 90◦. Moreover, in the last
columns of Table 3 the values of equivalent linear damping at
each of the first six modes are reported for uncontrolled system
(UNC) and for the optimal configurations attained for θ = 0◦

(OPT-X) and θ = 90◦ (OPT-Y). The corrective damping ratios
ζi/ζ (Spanos and Giaralis, 2013), also reported in Table 3, show
that, for the problem at hand, the stationarity assumption has
negligible effects in the determination of the response statistics.
Since optimal design leads to inter-story drifts close to the limit
value, larger dampers are required in y-directed frames. This
is obviously reflected also in equivalent linear damping values.
Figure 8 depicts the distribution along height of the peak values
of the inter-story drifts resulting from the optimal design for the
epicentral directions θ = 0◦ and θ = 90◦.

Since the proposed approach contains several approximations
(mainly related to the modeling of the seismic action and on
the use of SL), its effectiveness in determining the optimal
configuration of dampers is further assessed in the time domain.
Aiming at this, a set of seven natural recorded ground motion
time-histories has been selected in order to match the EC8 RS
used in the previous analyses (Iervolino et al., 2010). Individual
ground motion records have been scaled and the spectrum
compatibility has been achieved by imposing a ±10% tolerance

with respect to the target RS in the period range between 0.10
and 2.5 s. In Table 5, all the selected records are listed, together
with the main characteristics of the considered earthquakes.
The results of the spectrum-compatibility check are shown in
Figure 9 in terms of individual and mean RS together to the
target RS and the tolerance zone.

Equations (1) and (4) have been solved by means of a step-
by-step fourth-order Runge-Kutta integration scheme in order to
evaluate the dynamic response of theModel 2 building subjected
to the selected ground motions for the two epicentral directions
θ = 0◦ and θ = 90◦. Peak values of the inter-story drift have been
computed for each record and theirmean value has been reported
in blue dashed line for comparison purposes in Figure 7 and
Figure 8 for uncontrolled and optimal controlled configurations,
respectively. The comparison in the uncontrolled system shows
that, although stochastic analysis tends to overestimate the inter-
story drifts, both the methodologies are able to capture the
distribution of the inter-story drift along the height of the
building. Also for the optimal damper configuration cases, the
time-domain analysis shows a good agreement with the results
of the stochastic analysis, thus demonstrating the effectiveness
of the proposed approach in the optimal design of a passive
control system. However, it is to be remarked that the time-
domain analysis allows to evaluate only the mean values of the
response peaks, whereas the stochastic analysis provides the full
probabilistic characterization of the response.

5. CONCLUSIONS

In this paper, a methodology for the optimal design of
passive control systems into a probabilistic framework has been
described. In this way, uncertainties and response dispersion have
been taken into account and, at the same time, a seismic analysis
consistent with the Eurocode 8 response spectra has been carried
out. The following conclusions can be drawn:

• A general form of Stochastic Linearisation approach for
the cases of MDOF structural systems controlled by multi
concurrent passive control devices has been presented and an
iterative efficient solution, able to avoid any use of numerical
integrations, has been proposed for the case of seismic loads.

• Herein, an optimal design procedure for fluid viscous dampers
has been formulated. For this purpose, a cost function has been

TABLE 5 | Characteristic of selected ground motion records.

Event Station Earthquake Date Mw Fault Original Scaled Scale

ID name mechanism PGA [g] PGA [g] Factor

1 ST2557 South Iceland 21/06/2000 6.4 Strike slip 0.127 0.25 1.965

2 ST222 Umbria Marche 26/09/1997 6.0 Normal 0.025 0.25 9.922

3 ST20 Friuli 06/05/1976 6.5 Thrust 0.316 0.25 0.792

4 ST132 Kozani 13/05/1995 6.5 Normal 0.142 0.25 1.757

5 ST3311 Avej 22/06/2002 6.5 Thrust 0.446 0.25 0.561

6 ST2486 South Iceland 17/06/2000 6.5 Strike slip 0.318 0.25 0.787

7 ST93 Campano Lucano 23/11/1980 6.9 Normal 0.181 0.25 1.381
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FIGURE 9 | Spectrum compatibility check results.

used as objective function to minimize. This has been defined
as the sum of the characteristic values of the forces exerted by
the dampers themselves.

• Taking advantage of an analytical model for the computation
of response spectra compatible PSD functions as well as of
complex modal analysis in state-space, analytical evaluations
of the first spectral moments of a set of response quantities of
interest have been derived for not-classically damped systems.

• The design problem has been posed in terms of survival
probability considering that the failure of the structural system
is identified with the over-crossing of a maximum allowable
relative displacement.

• The validity of the proposed approach has been investigated
in terms of accuracy and computational efficiency and two

applications have been presented. The first one is related to
a plane shear-type five-story frame, while the second one deals
with a six-story three-dimensional building structure. Optimal
damper configurations and cumulative distribution functions
of inter-story drifts have been evaluated and it is proved that
the proposed procedure leads to an accurate evaluation of
response statistics.

• The proposed procedure allows for a dramatic reduction of
the computational time, especially when is used for those
problems that make intensive use of stochastic linearisation
technique, as optimal design of passive control device.

• The effectiveness of the proposed approach has been assessed
against the results of time-domain analyses by using a
set of seven scaled spectrum-compatible natural ground
motion records.

• The most recent SL techniques for the hysteretic systems
seismic demand evaluation can benefit of the two novel
aspects herein presented, namely the analytical model of PSD
functions and the algorithm for evaluating spectral moments,
in terms of both computational efficiency and accuracy.
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APPENDIX

Stochastic model of the seismic action
consistent with Response Spectra
The procedure for the optimal design of passive control
devices into a probabilistic framework requires the modeling
of the seismic ground motion as a stochastic process.
Generally, international building codes define the seismic
action by means of pseudo-acceleration elastic uniform
hazard spectra associated with the peak response of linear
single-degree-of-freedom systems having viscous damping.
A general class of RS can be expressed as in the following
four-branches expression:

Sa (T) =
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(A1)

where T is the natural period of the SDOF system, S0 is the
peak ground acceleration, a is the dynamic amplification factor,
T1, T2 and T3 are the periods that define the various branches,
and k1 and k2 are shape factors. In this paper we refer only to
RS with k1 = 1 and k2 = 2 and in Figure A1A a qualitative
representation of RS is depicted.

Several building codes allow for an alternative representation
of the seismic groundmotion bymeans of artificial accelerograms
of nominal duration Ts that can be generated as samples of a
zero-mean Gaussian stationary process, fully characterized by its
one-sided PSD function GÜg

(ω).

In this work, the RS-consistent PSD was intended as
an alternative conventional way to define the seismic
action or, in other word, as a mathematical tool to
conveniently represent the seismic action and to be used
into the linear stochastic dynamic context. With this in
mind, the RS-consistent PSD function is determined by
solving an inverse stochastic dynamic problem in order
to produces the same effects of the target RS, hence in
Equation (A2) a value of ζ = 0.05 has been used. Once
the PSD function was determined, it completely defines
the input process from a probabilistic point of view,
irrespective of the characteristics of the superimposed
structure (linearity, damping values and so on). It is
remarked that in some recent SL approaches (Mitseas
et al., 2018) the PSD is updated at each iteration to be
consistent with a RS in which damping modification factors
are applied.

Seismic codes do not define the process, but require,
instead, that it has to be compatible with an assigned RS, by
providing the compatibility conditions. For instance, following
the provision of Eurocode 8 (UNI ENV 1998:2005, 2005),
a ground acceleration PSD function GÜg

(ω) is considered

FIGURE A1 | (A) Pseudo-acceleration Response Spectrum; (B) Power

Spectral Density function coherent with Response Spectrum.

compatible with an assigned acceleration RS, Sa (T), if a
SDOF system with an assigned damping ratio (usually ζ0 =
0.05), subjected to accelerogram samples generated from
GÜg

(ω), experiences into a time window of the nominal

duration Ts of the earthquake an average absolute peak
acceleration larger than 90% of Sa (T) for each value of the
natural period T. If the ground motion PSD was known,
the corresponding RS could be easily obtained by stochastic
analysis. However, the inverse problem (i.e. determining the
PSD function corresponding to an assigned RS) is not easy
to solve. An approximate recursive solution for this problem
has been provided in (Cacciola et al., 2004) in order to obtain
an estimate of the PSD function GÜg

(ω) compatible with

the assigned RS:

GÜg
(ω) = γ

ω

[

(

Sa (ω, ζ )

ηU (ω, ζ )

)2

−
∫ ω

0
GÜg

(

ω̂
)

dω̂

]

(A2)

where the parameter γ = 4ζ/ (π − 4ζ ) and the peak
factor ηU (ω, ζ ) is computed for 50% probability of non-
exceedance. In this choice, a further little approximation
is introduced, i.e. by confusing the mean value with the
median.

Recently, an analytical model of PSD function, compatible
with RS building code defined by Equation (A1), has been
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proposed (Barone et al., 2015, 2019) as:

GÜg
(ω) = G0
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where ωi = 2π/Ti (i = 1, 2, 3) is the circular frequencies
corresponding to the periods Ti (i = 1, 2, 3) and G0 represents
the peak value of the PSD function that occurs at the frequency
ω = ω2. The proposed model, whose graphical representation is
reported in Figure A1B, depends on only five parameters, namely
G0 and the four exponents e1, ..., e4.

In Barone et al. (2019), the procedure to determine
closed-form expressions for all the parameters, starting from
those of the assigned RS, is extensively reported, whereas
herein only the final expressions are recalled for the sake
of brevity.

e1 = 2k2 − 1− L (ω1)

e2 = 2k1 − 1− L (ω2)
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(
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β2ω2

(
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(A4)

in which the following positions have been made:
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(A5)
Lastly, some seismic codes define the ground motion
accelerations by means of three-branches (by setting ω1 → 0)
or two-branches RS (ω1 → 0 and ω3 → ∞). In these cases, the
PSD analytical model is easily obtained by Equations (A4) and
(A5), by taking into account the same positions with regards
to ω1 and ω3.

Analytical expression for evaluating the
cross-spectral moments
The proposed analytical procedure to derive the spectral
moments of a set of quantity of interest Y, requires the
following steps: a) execution of the generalised modal analysis;
b) evaluation of the direct spectral moments of the modal
oscillators; c) determination of the cross-spectral moments in
the modal space; d) evaluation of the spectral moments in the
geometric space. With reference to the step c), Di Paola and
Muscolino (1988) demonstrated that the cross-spectral moments
of any order λj,Qi ,Qk

may be obtained recursively as linear
combinations of the direct spectral moments. In particular, real
and imaginary parts of even-order cross-spectral moments can
be determined as:

Re
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2
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)

while for the odd-order cross-spectral moments:
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In Equations (A6) and (A7), the following positions have been
made:

αm,j,k = αm−1,j,k + ωDkβm−1,j,k;
βm,j,k = −ζk ω0k βm−1,j,k − ωDkαm−1,j,k;

γm,j,k = ζkω0kαm,j,k + ωDkβm,j,k;
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being:
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