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Abstract: Computing quantum dynamics in condensed matter systems is an open challenge
due to the exponential scaling of exact algorithms with the number of degrees of freedom.
Current methods try to reduce the cost of the calculation using classical dynamics as the
key ingredient of approximations of the quantum time evolution. Two main approaches
exist, quantum classical and semi-classical, but they suffer from various difficulties, in
particular when trying to go beyond the classical approximation. It may then be useful to
reconsider the problem focusing on statistical time-dependent averages rather than directly
on the dynamics. In this paper, we discuss a recently developed scheme for calculating
symmetrized correlation functions. In this scheme, the full (complex time) evolution is
broken into segments alternating thermal and real-time propagation, and the latter is reduced
to classical dynamics via a linearization approximation. Increasing the number of segments
systematically improves the result with respect to full classical dynamics, but at a cost which
is still prohibitive. If only one segment is considered, a cumulant expansion can be used
to obtain a computationally efficient algorithm, which has proven accurate for condensed
phase systems in moderately quantum regimes. This scheme is summarized in the second
part of the paper. We conclude by outlining how the cumulant expansion formally provides
a way to improve convergence also for more than one segment. Future work will focus on
testing the numerical performance of this extension and, more importantly, on investigating
the limit for the number of segments that goes to infinity of the approximate expression for
the symmetrized correlation function to assess formally its convergence to the exact result.

Keywords: semiclassical statistical properties; time correlation functions; mixed quantum
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1. Introduction

Exact simulation methods to compute either the evolution of the wave function or dynamical statistical
averages for quantum systems in the condensed phase are currently restricted to small sizes and short
times. The exponential scaling of available algorithms with the number of degrees of freedom, in fact,
limits calculations to ten–twenty particles (and this for Hamiltonians of relatively simple form) and to
time scales of at most a few picoseconds. This situation is in striking contrast with analogous classical
calculations, which, when empirical potentials are adopted, are nowadays routinely used to study high
dimensional, complex systems for times reaching, on dedicated machines, microseconds. (Ab initio
classical molecular dynamics is considerably more expensive, but, depending on the number of electrons
that have to be included, even in this case moderately sized systems of up to a hundred particles can
be integrated for hundreds of picoseconds.) Several approximate schemes have thus been proposed
attempting to import, with appropriate modifications, methods from classical molecular dynamics to
quantum dynamics. Two approaches, in particular, can be identified in which classical trajectories play
a crucial role: semi-classical and mixed quantum classical.

In semi-classical schemes, originally developed for approximating wave function propagation, all
degrees of freedom are treated on equal footings. To begin with, the quantum time propagator is
expressed, in the path integral formalism [1], as a sum over all possible paths connecting the initial and
final states, each path being weighted by a complex exponential, whose argument is the classical action
along it. The approximate propagator is then obtained by expanding the action to second order around its
stationary points, which are classical trajectories, and performing the remaining quadratic path integral
analytically [2,3]. Different forms exist for the semi-classical propagator depending on the specific
representation adopted for the path integral (most notably standard coordinates, usually followed by the
so-called initial value transformation [4,5], hybrid coordinate momenta [6] or coherent states [7–9]), but
the evolved wave function has always the same structure, which we illustrate with the most commonly
used Herman Kluk expression [10–12]:

|Ψ(t)〉sc =

∫
dpdq|q(t), p(t)〉W (t)e

i
h̄
Scl(t)〈p, q|Ψ(0)〉 (1)

In the expression above, |q, p〉 indicates a coherent state (in the coordinate representation, 〈r|q, p〉 ∝
e−γ(q−r)2+ip(q−r)/h̄), Scl(t) is the action computed along a classical trajectory propagated to time t from
initial conditions (q, p), (q(t), p(t)) is the endpoint of the trajectory and W (t), a known function, is the
result of the integration over the quadratic fluctuations around the stationary paths. All the functions
of time in the integrand are calculable using classical evolution algorithms and, once the ket has been
saturated (for example, via a scalar product), the integral over the initial conditions can be estimated
via Monte Carlo sampling of a probability density based on the absolute value of the wave function at
t = 0. Although calculations based on this scheme have been used, the semi-classical wave function
is still remarkably expensive, due mainly to the characteristics of W (t). This function is in fact related
to a linear combination of the monodromy matrices of the system (i.e., the matrices of the derivatives
of the endpoints of the trajectory with respect to the initial conditions), and, for chaotic dynamics, it
can assume values varying over several orders of magnitude, hindering the convergence of the Monte
Carlo sampling. Furthermore, the actual evaluation of the wave function requires one to project |Ψ(t)〉sc
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on a basis. While this is, in principle, straightforward (for example, one could choose the continuous
coordinate representation and then discretize it on a grid), in practice it reinstates the exponential scaling
of the numerical effort with the number of degrees of freedom. This last problem can be avoided focusing
on expected values (observables):

sc〈Ψ(t)|Â|Ψ(t)〉sc =

∫
dp̃dq̃dpdq〈Ψ(0)|q̃, p̃〉W̃ ∗(t)e−

i
h̄ S̃cl(t)〈q̃(t), p̃(t)|Â|q(t), p(t)〉W (t)e

i
h̄Scl(t)〈p, q|Ψ(0)〉 (2)

(Â is a Hermitian operator) at the price of doubling the dimension of the Monte Carlo sampling. The
expression above, however, requires averaging the product of the two unstableW functions (for common
operators, the matrix element in the integrand is known analytically, thus posing no problem), and
although some schemes exist to mitigate the problem [13,14], this approach is of limited practical use.
Shifting the focus from the wave function to the observables proves considerably more effective moving
to the Heisenberg representation and taking advantage of the presence of two propagators in their exact
quantum expression to develop alternative approximations. This strategy is most commonly adopted
when calculating time-dependent statistical properties, more specifically, time correlation functions of
operators Â and B̂, usually defined as:

CA,B(t; β) =
1

Z
Tr
{
e−βĤÂe

i
h̄
ĤtB̂e−

i
h̄
Ĥt
}

(3)

=
1

Z

∫
drdrNdr̃dr̃N〈r|e−βĤÂ|r̃〉〈r̃|e

i
h̄
Ĥt|r̃N〉〈r̃N |B̂|rN〉〈rN |e−

i
h̄
Ĥt|r〉

where Ĥ is the Hamiltonian, Z the partition function, β = 1/kBT with kB Boltzmann’s constant and T
temperature. (Throughout the paper, we consider distinguishable particles.) In the second line, the trace
was expressed, in the coordinate representation, as the product of four matrix elements; from left to right,
that of the product of the quantum Boltzmann density times operator Â, the propagator backward in time,
the matrix element of operator B̂ and the propagator forward in time. To pave the way for the so-called
linearized approximation of the correlation function [13,15–18], the two propagators are expressed as
path integrals in the hybrid coordinate-momenta representation, in which the resolution of the identity in
the momentum basis (inserted, as usual, to evaluate the exponential of the kinetic energy contribution in
the Trotter break up of the propagators) are not resolved analytically. The advantage of this representation
is a closer analogy to the phase space representation of classical mechanics. The quantum expression
of the correlation function thus obtained is then manipulated via a change of variables: the forward and
backward paths are changed to semi-sum and difference paths (see the next section for a more precise
definition of these paths), and the key approximation of the approach is introduced. A Taylor series
expansion of the action to the quadratic order in the difference path is performed, allowing all integrals
on the difference variables, except the ones over the initial and endpoint in coordinate space, to be
performed analytically. The integration results in a product of delta functions constraining the semi-sum
path to be a classical (Hamiltonian) trajectory. The remaining integrals over the difference coordinates
define Wigner transforms [19] of operators to give:

C l
A,B(t; β) =

1

(2πh̄)Z

∫
drdp

[
e−βĤÂ

]
w

(r, p)Bw(r(t), p(t)) (4)

where, for example, Bw(r(t), p(t)) =
∫
dξe

i
h̄
p(t)ξ〈r(t) + ξ/2|B̂|r(t)− ξ/2〉. The superscript, l, indicates

the linearization approximation. Compared to the semi-classical expression for the wave function,
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Equation (4) has the remarkable advantage of not containing unstable factors in the integrand, even
though the approximation of the overall dynamics is accurate to the same order in h̄. Indeed, the second
order terms in the action expansion, which originated the W (t) in Equation (1), cancel exactly when
the difference of the action along the forward and backward paths is considered. The absence of the
W s suggests the computing of the approximate time correlation by combining Monte Carlo sampling
of initial conditions and molecular dynamics. The serious difficulty with this idea lies in the sampling
of the initial conditions. The probability density is, in fact, usually defined from the absolute value
of
[
e−βĤÂ

]
w

(r, p)/(2πh̄)Z, but computing this Wigner transform is far from trivial, and the available
methods introduce further, uncontrolled, approximations. In addition to this practical difficulty, there is
also a conceptual problem with linearized calculations: the classical evolution conserves the quantum
probability density only for short times. The rapid decay time of correlations for standard condensed
phase systems is usually invoked to mitigate the consequences of this pathology, but it is known that in
some cases, e.g., low dimensional systems with a long time coherence, it may lead to unphysical results
(this is the so-called zero energy leakage problem).

The problems and numerical cost of semi-classical calculations justify the development of the second,
alternative approximation scheme mentioned at the beginning of this section: mixed quantum classical
dynamics. In this approach, the degrees of freedom of the system are partitioned into two sets, usually
based on their mass ratio. The first set (called the subsystem) is composed of a few degrees of freedom
and is treated quantum mechanically; the second (called the environment or the bath) is often high
dimensional and is treated classically. Existing quantum classical methods differ in the way in which
the coupling among the classical evolution of the bath and the quantum propagation of the subsystem
is taken into account. The first approach of this kind, still very popular due to its efficiency and ease
of implementation, is Tully’s surface hopping [20]. In this scheme, electrons and nuclei constitute
the subsystem and the bath, respectively, and the coupling, designed to mimic dynamics beyond the
Born–Oppenheimer approximation, is defined ad hoc based on heuristic arguments. In more recent,
and more rigorous, developments, the coupling is derived starting from a fully quantum representation
of the evolution equations for the system and then taking a partial classical limit on the bath’s degrees
of freedom. Examples of this type are schemes to propagate the full density matrix of the quantum
subsystem, such as the Wigner Liouville mixed quantum dynamics [21,22], or the iterative linearized
density propagation methods [23,24]. Both surface hopping and Wigner Liouville dynamics (with
particular reference to its most recent developments aimed at computing correlation functions) are
discussed (and/or criticized) in other contributions to this issue. Focusing on the latter, we quickly
recall that it adopts a mixed representation in which the operators related to the bath’s degrees of
freedom are described using the Wigner representation, while for the subsystem an abstract operator
representation is retained. The quantum evolution operator in this mixed representation is then expanded
to first order in the ratio of the thermal De Broglie wavelength of subsystem to the bath to obtain the
generator of the mixed quantum classical dynamics. This generator has the form of a generalized Lie
bracket in which both a commutator (linked to the operators for the subsystem) and Poisson parenthesis
(acting on the bath’s phase space) appear. Once a specific basis set is chosen for the subsystem (e.g.,
adiabatic electronic states [21,25] or, more recently, the so-called mapping representation [26,27]) the
evolution equation for the density matrix, or any observable, becomes explicit, and several different
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algorithms, sharing the characteristic that the bath motion is obtained via classical evolution (possibly
with generalized forces describing the influence of more than one electronic state), have been proposed
to solve them. In spite of its merits, it has been shown that this mixed quantum classical dynamics
lacks several properties that characterize fully quantum and classical dynamics [28]. In particular the
mixed Lie bracket does not satisfy the Jacobi identity exactly, and, similar to linearized calculations,
the quantum thermal density is not stationary under the mixed dynamics. The loss of formal properties
with respect to classical and quantum mechanics arises, in different forms, in all current mixed quantum
classical schemes (see also [29]).

While application driven calculations might not be paralyzed by the state of affairs described above,
in particular, if and when it is possible to verify that these well-known pathologies have no uncontrolled
effects on the results, it is important to pursue alternative approaches in an effort to derive more general
schemes allowing for systematic improvement and/or assessment of the approximations employed.
Indeed, a critical stumbling block common to semi-classical and mixed quantum classical methods is
that it is essentially impossible to go beyond classical trajectories to approximate the quantum evolution
of the full system (semi-classical) or of the bath (mixed). In the semi-classical case, including terms
of higher order, the expansion of the action along the paths makes it impossible to obtain calculable
expressions for the pre-factor in the expression of the wave function (already at third order, the integral
corresponds to intractable Airy functions [2]), while in the linearized correlation function, it kills the
emergence of delta functions that univocally determine the semi-sum path. In mixed quantum classical
calculations, we refer to the Wigner Liouville formalism, but analogous problems appear, for example,
in the iterative linearized propagation methods, including higher order terms in the mass ratio expansion
of the propagator introduces terms in the phase space evolution of the bath that cannot be integrated
numerically. In this paper, we summarize (in the spirit of an extended review) a recently developed
method [30] attempting to overcome this problem. In this approach, the focus is not directly on the
dynamics, but, rather, on statistical time-dependent averages, which are linked (via linear response
theory) to experimental observables. In particular, we focus on time correlation functions expressed
in the symmetrized form first introduced by Schofield [31]:

GA,B(t; β) =
1

Z
Tr
{
Âe

i
h̄
Ĥt∗c B̂e−

i
h̄
Ĥtc
}

(5)

where tc = t − iβh̄
2

. The time Fourier transform of this complex time correlation function is
related to the time Fourier transform of Equation (3) by a known multiplicative factor so both carry
equivalent information. Furthermore, the symmetrized function shares some properties with its classical
counterpart (e.g., it is a real function of time), which makes it a convenient starting point for developing
approximations [32–37]. In the following, we summarize how the path integral formalism can be used
to express the full complex time evolution in Equation (5) as a concatenation of segments alternating
imaginary (i.e., thermal sampling) and real-time propagation. The real-time propagation is then reduced
to classical evolution via a linearization approximation. In our approach, the number of segments, L,
plays a role analogous to that of the number of beads in standard thermal path integral calculations.
Although the precise nature of the limit for L → ∞ is still under investigation, this analogy and
numerical calculations on relatively simple model systems indicate that increasing the number of
segments systematically improves the results with respect to classical dynamics or to the previously
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mentioned linearization schemes. It may be worth stressing that, in this approach, the focus is on
computing the correlation by defining an appropriate stochastic process inspired by the full quantum
expression. Adopting this perspective, the dynamics does not have any meaning per se and is viewed
simply as part of a sampling mechanism, which is implemented via a generalized Monte Carlo scheme.
While this circumvents some of the inconsistency of standard semi-classical and mixed quantum classical
schemes and justifies further investigation of the method, it remains to be seen whether the approach
outlined in the following has practical value. In fact, due to the presence of an increasing number
of phase factors in the Monte Carlo estimator of the correlation function, the numerical cost of the
calculation scales very badly with the number of segments (and of degrees of freedom). In the second
part of the paper, we then summarize (again reviewing published material) how, when only one segment
is considered, it is possible to improve the situation via a cumulant expansion that tames the phase
factor present already in this lowest order approximation of the result [38]. We then present a new
formal development of our approach that generalizes the use of cumulants to the case of more than one
propagation segment, and we give the explicit formal expression for the case L = 2. Future work will
focus on testing the accuracy of this new result. We conclude by stating some of the open questions
related to the approach and indicating possible further developments.

2. Theory

Let us begin by expressing the symmetrized correlation function, Equation (5), in the coordinate
representation. Inserting resolutions of the identity, we have:

GA,B(t; β) =
1

Z

∫
dr0dr̃0drtcdr̃tc〈r0|Â|r̃0〉〈r̃0|e

i
h̄
Ĥt∗c |r̃tc〉〈r̃tc |B̂|rtc〉〈rtc |e−

i
h̄
Ĥtc |r0〉 (6)

The structure of the integrand is represented in Figure 1 in which we show the sequence of matrix
elements to be evaluated. Reading the figure from the bottom left corner up, we see the matrix element
of operator Â, the backward complex time propagator (from r̃0 to r̃c), the matrix element of operator B̂
and, finally, the forward propagator that closes the circuit representing the trace operation. The difficult
task is the evaluation of the propagators in complex time. To set the stage for the approximation we
intend to perform, we use the time composition property to divide the two propagations into L segments
of duration τc = tc/L (τc need not be infinitesimal) and rewrite, for example:

〈rtc|e−
i
h̄
Ĥtc |r0〉 =

∫
dr1...drL−1

L−1∏
J=0

〈rJ+1|e−
i
h̄
Ĥτc |rJ〉 (7)

with rL = rtc . Introducing an analogous expression for the backward propagator changes the scheme
of the integrand as sketched in Figure 2, where each propagation lag (from J to J + 1) is indicated
by the segment with arrows. We can now pair corresponding segments of propagation along the
forward and backward paths, as indicated by the red frame in the figure, and define the product
K(rJ+1, rJ ; r̃J+1, r̃J) = 〈r̃J+1|e

i
h̄
Ĥτ∗c |r̃J〉〈rJ+1|e−

i
h̄
Ĥτc |rJ〉 to rewrite the symmetrized correlation

function as:
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GA,B(t; β) =
1

Z

∫
dr̃LdrL〈r̃L|B̂|rL〉

{
L−1∏
J=1

∫
dr̃JdrJK(rJ+1, rJ ; r̃J+1, r̃J)

}

×
∫
dr0dr̃0K(r1, r0; r̃1, r̃0)〈r0|Â|r̃0〉 (8)

Figure 1. Schematic representation of the integrand in the coordinate representation of the
symmetrized time correlation function; see the text.

Figure 2. Schematic representation of the break up of the propagators in complex time:
the short complex time propagators are represented as the segments with arrows along the
forward and backward path, and the pairing mentioned in the text to obtain theK propagators
is indicated by the red frame.

The expression above is an exact, incalculable, expression of the time correlation function. In the
following, we will work on the generic K to obtain an approximate expression for it that has the
key advantage of being analytically known as a product of functions calculable via an appropriate
combination of Monte Carlo and molecular dynamics. To obtain this result, we first separate the real
from the imaginary time part of the propagation by inserting one more resolution of the coordinate
identity, thus:

K(rJ+1, rJ ; r̃J+1, r̃J) = 〈r̃J+1|e
i
h̄
Ĥτ∗c |r̃J〉〈rJ+1|e−

i
h̄
Ĥτc |rJ〉 (9)

=

∫
dr̃νJdr

ν
J〈r̃J+1|e

i
h̄
Ĥτt|r̃νJ〉〈r̃νJ |e−τβĤ |r̃J〉〈rJ+1|e−

i
h̄
Ĥτt |rνJ〉〈rνJ |e−τβĤ |rJ〉
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The two (thermal) propagators in the integrand above, associated with the inverse temperature, τβ , can
be expressed relatively easily in the path integral formalism as positive definite functions and interpreted,
via the so-called classical isomorphism, as probability densities associated with systems of polymers.
Well established techniques allow one to sample these densities. The real-time propagators, on the
other hand, are prohibitive, even in path integral form. Feynman’s prescription requires, in fact, one to
generate “all possible paths” connecting the initial and final point of the propagation, but, in contrast
to the thermal case in which the probability density provides us with a sampling mechanism for the
paths, no rule is given to determine them. Furthermore, even if we had a recipe for generating the
paths, we would have to sum a (potentially infinite) set of phase factors, the exponential weighting each
path. Capturing accurately the interference among these factors is essentially impossible (this is the
well-known dynamical sign problem). As shown in detail in [30], progress can be made by deriving
an approximate form for the product of the two real-time propagators in Equation (9). In analogy with
the standard linearization methods mentioned in the Introduction, this is done most conveniently using
a hybrid coordinate momenta representation of the propagators. The propagation time is divided into
n intervals of length δt = τt/n, and appropriate resolutions of the identity are introduced to isolate
matrix elements of the propagator for each short time interval. As usual, after a Trotter break up of the
exponential of the Hamiltonian is performed, the (diagonal) exponential of the potential can be trivially
evaluated. The matrix element of the kinetic energy part of the propagator, on the other hand, is easily
evaluated by inserting a resolution of the identity in the momenta. Contrary to what is done in standard
path integrals, however, the resulting generalized Gaussian integral in the momenta is not performed
analytically, but left in the expression. This sequence of operations results in:

〈r̃J+1|e
i
h̄
Ĥτt |r̃νJ〉〈rJ+1|e−

i
h̄
Ĥτt |rνJ〉 ≈

∫ n∏
l=1

dp̃lJ
2πh̄

n−1∏
l=1

dr̃ν+l
J e−

i
h̄
S({r̃,p̃})

∫ n∏
l=1

dplJ
2πh̄

n−1∏
l=1

drν+l
J e

i
h̄
S({r,p}) (10)

where ({r, p}) indicates the full set of path variables and S({r, p}) =∑n
l=1

{
plJ(r

(ν+l)
J − r(ν+l−1)

J )− δt[(plJ)2/2m− V (r
(ν+l−1)
J )]

}
with analogous definitions for the

tilde variables. The expression above becomes exact for n → ∞. At this stage, the forward and
backward path integrals above are independent. Proceeding in analogy with standard linearization
methods, we combine them by introducing the semi-sum and difference variables:

r̄ν+l
J =

rν+l
J + r̃ν+l

J

2
p̄lJ =

plJ + p̃lJ
2

∆rν+l
J = rν+l

J − r̃ν+l
J ∆plJ = plJ − p̃lJ (11)

with l = 0, ..., n. In these variables, the difference of actions in Equation (10) is a linear function
in ∆plJ . Integrals over the difference momenta can then be performed analytically and result in a set
of delta functions (this originates the last set of deltas in Equation (12) below). The dependence of
the difference of the actions on ∆r

(ν+l)
J is more complicated: they appear in an explicit, linear term,

but also in the argument of the potentials. This dependence can also be linearized via the expansion
V (r̄

(ν+l)
J + ∆r

(ν+l)
J /2) − V (r̄

(ν+l)
J − ∆r

(ν+l)
J /2) = ∇V (r̄

(ν+l)
J )∆r

(ν+l)
J + o[(∆r

(ν+l)
J )3]. This is the key

approximation that we perform. An appropriate rescaling of the variables shows that the approximation
is equivalent to a second order expansion in h̄ of the phase, but a more precise analysis of its validity
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is required and under consideration (see, also, the discussion at the end of this section). Bearing this in
mind, we observe that, once the expansion is performed, also the integrals on the ∆r

(ν+l)
J variables can

be analytically solved, producing a second set of delta functions. Thus:

〈r̄νJ −
∆rνJ

2
|e

i
h̄
Ĥτt|r̄J+1 −

∆rJ+1

2
〉〈r̄J+1 +

∆rJ+1

2
|e−

i
h̄
Ĥτt|r̄νJ +

∆rνJ
2
〉 ≈∫

dr̄ν+1
J ...dr̄ν+n−1

J

∫
dp̄1

J ...dp̄
n
Je

i
h̄
p̄nJ∆r

(ν+n)
J e−

i
h̄
p̄1
J∆rνJ (12)

×
n−1∏
l=1

δ
[
(p̄

(l+1)
J − p̄lJ) + δt∇V (r̄

(ν+l)
J )

] n∏
l=1

δ

[
p̄lJ
m
δt − (r̄

(ν+l)
J − r̄(ν+l−1)

J )

]
The linearization approximation then has two crucial consequences: (1) by allowing the integration

over the difference paths, it transforms the quantum expression of the correlation function, which, in the
beginning, includes two propagators and, therefore, two paths, into a formula where only the semi-sum
path appears, thus leading to a structure more similar to classical time correlations in which only one
propagation is present; (2) (perhaps more importantly) it forces the semi-sum path to follow a, classical,
Hamiltonian trajectory, as identified by the arguments of the delta functions.

The final step to obtain a suitable expression for Equation (9) does not introduce any further
approximation. Let us consider again the product of the thermal propagators in the equation. As
mentioned above, these can be written via standard coordinate path integrals. Once this is done, it
is convenient to introduce also for these propagators semi-sum and difference path (this is important,
in particular, to ensure that the common boundaries of the thermal and real-time propagations, rνJ and
r̃νJ , are represented coherently). In the semi-sum and difference variables, the product of the thermal
propagators takes the form:

〈r̄J −
∆rJ

2
|e−Ĥτβ |r̄νJ −

∆rνJ
2
〉〈r̄νJ +

∆rνJ
2
|e−Ĥτβ |r̄J +

∆rJ
2
〉 ≈

[
m

2πh̄δβ

](ν−1)

∫
dr̄1

J ...dr̄
ν−1
J

∫
d∆r1

J ...d∆rν−1
J e−δβ

∑ν
λ=1[V (r̄

(λ−1)
J +∆r

(λ−1)
J /2)+V (r̄

(λ−1)
J −∆r

(λ−1)
J /2)] (13)

× e−
σ2
p
2

∑ν
λ=1(∆rλJ−∆r

(λ−1)
J )2

e
− 1

σ2
r

∑ν
λ=1(r̄λJ−r̄

(λ−1)
J )2

with σ2
p = m/2δβh̄ and σ2

r = h̄δβ/2m. Substituting Equations (12) and (13) in Equation (9), it can be
noted that the integral over ∆rν is of a Gaussian form and can be performed analytically. Introducing the
notation XJ = ({r̄λJ}λ=0,...ν , {∆rλJ}λ=0,...ν−1, {r̄ν+l

J }l=1,...n−1, {p̄lJ}l=1,...,n), after integration over ∆rν ,
the linearized short time propagator can be written as:

K l(r̄J+1,∆rJ+1; r̄J ,∆rJ) =

∫
dXJe

i
h̄
p̄nJ∆rJ+1ρ(XJ , r̄J+1)e−

i
h̄
p̄1
J∆r

(ν−1)
J (14)

with:

ρ(XJ , r̄J+1) =
n−1∏
l=1

δ
[
(p̄

(l+1)
J − p̄lJ) + δt∇V (r̄

(ν+l)
J )

] n∏
l=1

δ

[
p̄lJ
m
δt − (r̄

(ν+l)
J − r̄(ν+l−1)

J )

]
× e−δβ

∑ν
λ=1[V (r̄

(λ−1)
J +∆r

(λ−1)
J /2)+V (r̄

(λ−1)
J −∆r

(λ−1)
J /2)] (15)

× e
− (p̄1J )2

2σ2
p e−

σ2
p
2

∑(ν−1)
λ=1 (∆rλJ−∆r

(λ−1)
J )2

e
− 1

σ2
r

∑ν
λ=1(r̄λJ−r̄

(λ−1)
J )2
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(The Gaussian in p̄1
J , the first factor in the last line of the expression above, is the result of the integration

over ∆rν .) Substituting the approximate form of the propagator between complex time slices J and
J + 1, we obtain for the symmetrized correlation function:

G
(L)
A,B(t, β) =

1

Z

∫
d∆rtcdr̄tc〈r̄tc +

∆rtc
2
|B̂|r̄tc −

∆rtc
2
〉

×
L−1∏
J=1

∫
dXJe

i
h̄
p̄nJ∆rJ+1ρ(XJ , r̄J+1)e−

i
h̄
p̄1
J∆r

(ν−1)
J (16)

×
∫
dX0e

i
h̄
p̄n0 ∆r1ρ(X0, r̄1)e−

i
h̄
p̄1

0∆r
(ν−1)
0 〈r̄0 +

∆r0

2
|Â|r̄0 −

∆r0

2
〉

The expression above is interesting. First of all, assuming that the linearization approximation of
each short time propagator improves when the propagation time goes to zero, there is potential for
systematic improvement with increasing L, and indeed, numerical tests [30] indicate that this is the
case. However, the limit for large L, and, in particular, the validity of the expansion in the difference
path at the intermediate times of the propagation, is delicate. In fact, while it can be argued that the
matrix elements of operators Â and B̂ (usually diagonal) force the forward and backward paths (the
free and tilde variables in the upper panel of Figure 1) to start and end close to one another, and,
therefore, that only small values of the difference among the paths will be relevant close to the initial
and final time, truncating the expansion of the difference of the potentials along the whole pair of
paths is considerably more delicate. This issue, and the nature of the dynamics when L → ∞, are
currently under investigation. In the meantime, note that the ρ functions are positive definite, so that
they can be used to define a probability density for sampling the overall path variables (i.e., the full
set of {XJ}J=0,...,L−1 variables) as Π = 1

Ω

∏L−1
J=0 ρ(XJ , r̄J+1), where Ω is the (unknown) normalization

factor. The method to deal with this factor is illustrated in the next subsection for the case L = 1 and
can be straightforwardly generalized to L > 1. The probability density, Π, corresponds to a stochastic
process, which concatenates the thermal and time propagations within each short time propagator, K l.
The structure of the propagations in real and imaginary time is determined by the definition of ρ in
Equation (15) and can be described as follows. For L = 1, there is only one real-time leg of duration
τt = t, while the imaginary time propagation corresponds to an inverse temperature β/2 for both the
semi-sum and difference variables. The upper panel of Figure 3 illustrates these propagations with
a sketch. In the figure, the horizontal axis is time and the vertical axis temperature. The vertical plane
represents the space of configurations associated with the thermal path integral for both the semi-sum and
difference variables; the thermal beads are represented with the red circles. The harmonic interactions
in the thermal paths are indicated with zigzagged lines connecting adjacent beads, while the interactions
among the two paths due to the potential are drawn as dashed lines. Note that the difference variables
path, on the left in the vertical plane in the figure, has one less bead than the semi-sum variables path,
due to the integration carried out to isolate a Gaussian probability density for the initial momenta. The
propagation in real time is drawn as the curve on the horizontal plane, which represents the phase space
of the system. The red and golden circle at t = 0 represents the initial conditions for the time evolution:
the initial coordinate coincides with the last bead of the thermal path in the semi-sum variables, while
the initial momentum is sampled from the Gaussian mentioned before. A phase factor is associated with
the initial point of the classical propagation. The exponent of this phase couples the initial momentum
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of the trajectory with the last bead of the thermal path in the difference variables. A phase factor is also
associated with the final point of the classical propagation, where, for L = 1, the exponent couples the
momentum at time t with the variable, ∆r1. The integrals over ∆r

(ν−1)
0 and ∆r1 in the expression

for G1
AB(t; β) involve products of these phase factors with the matrix elements of operators Â and

B̂. The end-point integral reconstructs the Wigner transform of the operator, B̂. To see this, consider
Equation (16). For L = 1, the second line of the equation is absent, and boundary conditions impose
∆r1 = ∆rtc (with similar relationships for the sum variables). With this notation, the integral over ∆rtc
is recognizable as the Wigner transform of operator B̂. The structure of the sequence of imaginary and
real-time propagation for generic values of L can be inferred from the lower part of Figure 3, where
we show what happens for L = 2. In this case, there are two segments of classical dynamics, each
of duration t/2, and two propagations of semi-sum and difference variables in imaginary time, taking
the system from zero inverse temperature to β/4 and from β/4 to β/2, respectively. As before, the
first segment of dynamics starts, with a Gaussian initial momentum, from the last bead of the semi-sum
variable thermal path at t = 0. The end-point of this leg of propagation is the initial configuration for the
semi-sum variable thermal path at t/2, and the second segment of dynamics has as initial conditions the
final coordinate of the semi-sum variable thermal path and a new momentum sampled from a Gaussian.
The variances of the Gaussians associated with the momentum sampling are doubled with respect to the
case L = 1. The integrand now contains four phase factors coupling the momenta at the beginning and
end of each classical dynamics segment with the values of the difference path variables at the end and at
the beginning of each thermal slice, respectively. The phase factor that depends on ∆r2p̄

n
1 (i.e., the phase

factor computed at time t) can again be combined with the matrix element of operator B̂ to obtain the
Wigner transform of this operator at the final time of the propagation, so that only three phases remain
to contribute to the result. In general, G(L)

AB(t; β) involves L segments of classical propagation, each of
duration t/L, interspersed with L pairs of thermal paths in the semi-sum and difference variables, each
at an inverse temperature β/2L. The rules for connecting the coordinate and momenta at the initial and
final time of the dynamics with the final and initial points of the thermal paths and for constructing the
2L− 1 phase factors contributing to the integrand (the phase factor at time t can always be absorbed in
the Wigner transform of operator B̂) are completely analogous to the L = 2 case.

A Monte Carlo algorithm to sample Π for different values of L was illustrated in [30]. This Monte
Carlo has several non-standard features, most notably the fact that the normalization of the probability
density is unknown and that Π contains products of delta functions, i.e., singular distributions. These
difficulties can be circumvented as detailed in [30]. The first one is tackled by recasting (without further
approximations) Equation (16) in the form of a ratio of expected values. The second is addressed via an
appropriate choice of the trial moves and acceptance probabilities. The most serious numerical difficulty,
unfortunately, comes from the estimator of the observable. In fact, from Equation (16), it can be seen
that, in addition to the matrix elements of the operators, the integrand contains a product of phase factors
to be evaluated at the beginning and end of each real-time propagation segment. As mentioned above, the
number of these phase factors for the “order L” approximation of the symmetrized correlation function is
2L− 1, and their presence rapidly hinders the convergence of the calculation. Furthermore, for a system
of n particles in three dimensions, the phases take the (generic) form e±

i
h̄

p·∆r, where p and ∆r are
3n-dimensional vectors. The number of phase factors thus scales linearly with the number of degrees of
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freedom, so that, even for small values of L, convergence is problematic. The numerical tests performed
so far on simple model systems confirm both the interest and the difficulties of Equation (16). In [30], we
computed position autocorrelation functions for a set of one-dimensional systems (e.g., quartic potential)
at temperatures low enough to ensure that the system was in the quantum regime. We observed that
increasing the number of complex time slices did systematically improve the length of time for which
we were able to get accurate results. However, the numerical effort to go beyond L = 3, though not
exponential in time, became essentially prohibitive, even for these simple systems. To indicate possible
means to reduce the numerical effort involved in these calculations, we now discuss a recent development
of the method developed to address the problem of the phase in the simplest case, L = 1, in which it
presents itself. We then illustrate how to formally extend this development, which, in its simplest form,
has been successfully applied to realistic models of condensed phase systems, to the case L > 1.

Figure 3. Graphic representation of the propagators in real and imaginary times contributing
to the approximate Schofield function for the case L = 1 (upper panel) and L = 2 (lower
panel). The horizontal axis is real time, while the vertical axis is inverse temperature. The
mean and difference coordinates in the thermal paths are represented as red dots on the
vertical planes (in the upper panel, for example, ν = 6, i.e., we use six beads to represent
the thermal path integrals at inverse temperature β/2). Segments of classical propagation
in phase space are represented as continuous red curves in the horizontal planes. The
golden circles indicate the connection between the coordinate-momentum representation
of the dynamics in real time (horizontal planes) and the representation of the dynamics in
imaginary time that takes place in coordinate space (vertical planes).
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3. L = 1: Fully Linearized Approximation

The expression for the L = 1 approximation of the symmetrized correlation function is given by (see
Equation (16)):

G
(1)
A,B(t; β) =

1

Z

∫
d∆rtcdr̄tc

∫
dX0〈r̄tc +

∆rtc
2
|B̂|r̄tc −

∆rtc
2
〉e

i
h̄
p̄n0 ∆rtc

× ρ(X0, r̄tc)e
− i
h̄
p̄1

0∆r
(ν−1)
0 〈r̄0 +

∆r0

2
|Â|r̄0 −

∆r0

2
〉 (17)

We are now going to simplify the expression above using four steps: (1) observe that the integral
over ∆rtc in the first line of the equation above defines the Wigner transform of operator B̂ (see,
also, the definition below Equation (4)); (2) note that the product of δ functions in the definition of
ρ (Equation (15)) forces (r̄tc , p̄

n
tc) to be endpoints of a classical trajectory of length t starting at (r̄ν0 , p̄

1
0),

so that, after integration over r̄(ν+l) (l = 1, ..., n − 1) and p̄l (l = 1, ..., n), (r̄tc , p̄
n
tc) = (rt, pt) (where

(rt, pt) denote the classically evolved variables); (3) choose, for the sake of simplicity, to specialize
the discussion to an operator, Â, which is diagonal in the coordinate representation (the case of generic
operators is considered in the Appendix of [39]). This choice, producing a δ(∆r0) in the evaluation of the
matrix elements, allows one to integrate also over ∆r0. The surviving variables (i.e., the semi-sum and
difference variables of the thermal path integral and the initial momentum of the classical trajectory) will
be indicated collectively as Γ = {p1, r0, ...., rν ,∆r1, ...,∆rν−1}; (4) simplify the notation by dropping
the bar from the semi-sum variables and the subscript, which identifies the J = 0 propagation segment
in Equation (16), since only one segment is now present. Once these operations are performed, the
correlation function can be written as:

G
(1)
A,B(t; β) =

Q̂

Z

∫
dΓBw(rt, pt)P (Γ)e−

i
h̄
p1∆r(ν−1)

A(r0) (18)

with:

P (Γ) =
1

Q̂
e
− (p1)2

2σ2
p e−2δβV (r0)e

− 1

2σ2
r

∑ν
λ=1(rλ−rλ−1)2

e−
σ2
p
2

∑ν−1
λ=2(∆rλ−∆rλ−1)2

e−
σ2
p
2

(∆r1)2

× e
−δβ

∑ν
λ=2

[
V
(
r(λ−1)+ ∆rλ−1

2

)
+V
(
r(λ−1)−∆rλ−1

2

)]
(19)

and Q̂ the normalization of P (Γ). Note that the expression above for the probability is quite standard,
being an explicit function of the semi-sum and difference variables, which can be sampled via Monte
Carlo, multiplied by a Gaussian term for the momenta. As mentioned in the previous section, the ratio
of the normalization over the partition function, which appears in Equation (18), is, in general, not
known, and we estimate it via the autocorrelation of the identity, G(1)

I,I = 1 = Q̂
Z

∫
dΓP (Γ)e−

i
h̄
p1∆r(ν−1)

.
Using this approach, the L = 1 estimator of the correlation function is given by the following ratio of
expectation values over P (Γ):

G
(1)
A,B(t; β) =

〈Bw(rt, pt)e
− i
h̄
p1∆r(ν−1)

A(r0)〉P
〈e− i

h̄
p1∆r(ν−1)〉P

(20)

As anticipated, both in the numerator and denominator of this expression, a phase factor appears,
which, for high dimensional systems, hinders an efficient convergence of the calculation. To alleviate
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this problem, we proposed a method, described in detail in [39], which starts by obtaining an alternative
expression for G(1)

A,B. As will be shown in the following, the new expression does not introduce further
(analytical) approximations, but it has the advantage of eliminating the phase factor from the observable.
Let us consider in more detail the structure of the probability, P (Γ). This probability is given by the

product of a Gaussian for the momenta, ρG(p) ∝ e
− p2

2σ2
p (note that, with respect to Equation (19), we

dropped the superscript, 1, on the momenta to simplify the notation), times a joint probability function
for the semi-sum and difference thermal variables to be indicated in the following as ρ̃(r,∆r), where we
have introduced the notation r = {r0, ..., rν} and ∆r = {∆r1, ...,∆r(ν−1)}. This joint probability
(whose form can be inferred from Equation (19) by taking out the momentum Gaussian) is most
conveniently expressed as:

ρ̃(r,∆r) = ρc(∆r|r)ρm(r) (21)

where:

ρm(r) =
1

Q̂
e−2δβV (r0)e

− 1

2σ2
r

∑ν
λ=1(rλ−rλ−1)2

∫
d∆re−

σ2
p
2

∑ν−1
λ=2(∆rλ−∆rλ−1)2

e−
σ2
p
2

(∆r1)2

× e
−δβ

∑ν
λ=2

[
V
(
r(λ−1)+ ∆rλ−1

2

)
+V
(
r(λ−1)−∆rλ−1

2

)]
(22)

is the marginal probability for the semi-sum variables and ρc(∆r|r) ≡ ρ̃(r,∆r)/ρm(r) is the conditional
probability for the difference variables given the semi-sum variables. This rewriting of the probability
density is convenient because the phase factors in Equation (20) depend only on the momenta and
difference variables. We can use this observation to define:

F (p, r) =

∫
d∆re−

i
h̄
p∆r(ν−1)

ρc(∆r|r) (23)

which is the average of the phase with respect to the conditional probability density, and investigate the
properties of this function to see if we can use them to improve the convergence of our calculations. To
that end, note that F is also, by definition, the cumulant generating function of the variable ∆r(ν−1) with
respect to the conditional probability, ρc(see, for example, [40,41] for previous use of cumulants in this
field). This means that the coefficients of the Taylor series expansion (with respect to −ip/h̄):

lnF (p, r) =
∞∑
n=1

(−ip/h̄)n

n!
〈
(
∆r(ν−1)

)n〉cρc(∆r|r) (24)

(these coefficients are indicated above as 〈
(
∆r(ν−1)

)n〉cρc(∆r|r)) are the cumulant moments of ∆r(ν−1).
Importantly, the conditional probability density is an even function of the difference variables, implying
that only even order terms in the series above are non-zero and that the series corresponds to a real
function that we will denote in the following with E(p, r). We can then express the average of the
phase as:

F (p, r) = e−E(p,r) (25)

i.e., a positive definite function of the momenta and the semi-sum variables. We now use the function
above to define a new probability density:

P(p, r) =
ρg(p)e

−E(p,r)ρm(r)∫
dpdrρg(p)e−E(p,r)ρm(r)

(26)
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and note that, by direct substitution of this definition in the (explicit) expression of Equation (20),
we obtain:

G
(1)
A,B(t; β) = 〈Bw(rt, pt)A(r0)〉P (27)

The key advantage of the expression above is that the observable does not contain phase factors anymore
and is, therefore, well suited for a Monte Carlo estimate. Sampling the distribution, P , however, is
non-trivial, since this probability density contains two factors, e−E(p,r) and ρm(r), that do not have an
explicit analytic form, but, for each value of r and p, can only be estimated numerically. The numerical
estimate of E(r, p), in particular, requires one to truncate the cumulant series at a given order. The
convergence of the calculation with respect to truncation of the series can always be checked numerically,
and, although the cost scales up where terms of higher order are included, it does not present any
particular difficulty. (In all calculations performed so far, a second order cumulant expansion proved
sufficient.) In the following subsection, we briefly describe how to combine two schemes, known as
the Kennedy and Penalty methods, for Monte Carlo sampling of noisy probability densities and obtain
G

(1)
A,B(t; β). Our goal is to highlight the main differences among these schemes and standard Monte Carlo

and to indicate where the algorithm is most affected by them. A detailed description of the algorithm
can be found in [38,39].

3.1. Noisy Monte Carlo Algorithm

To simplify the discussion, we introduce some notation. Let us indicate the coordinate-dependent
Gaussian terms in Equation (19) as:

e
− 1

2σ2
r

∑ν
λ=1(rλ−r(λ−1))2

= e−Vr(r)

e−
σ2
p
2

∑ν−1
λ=1(∆rλ−∆r(λ−1))2

= e−V∆(∆r) (28)

(above ∆r0 = 0) and write the potential term as:

e−δβ
∑ν
λ=2

[
V(r(λ−1)+ ∆r

2

(λ−1)
)+V(r(λ−1)−∆r

2

(λ−1)
)
]
e−2δβV(r0)

= e−δβV̄(r,∆r) (29)

We also rewrite the marginal probability, ρm(r), defined in Equation (22), isolating the terms that do
not depend on ∆r and have an explicit analytic expression, thus:

ρm(r) =

∫
d∆rρ̃(r,∆r) =

1

Q
e−Vr(r)

∫
d∆r e−δβV̄(r,∆r)e−V∆(∆r)

=
1

Q
e−Vr(r)ρ′m(r) (30)

With the definitions above, P(p, r) takes the form:

P(p, r) =
1

Q
ρG(p)e−E(r,p)e−Vr(r)ρ′m(r) (31)

where Q is the normalization. The scheme that we use to perform the sampling is based on earlier work
by Ceperley [42] and Kennedy [43]. Adapting their ideas to our case, we will introduce a Monte Carlo
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algorithm in which the definition of the probability to generate a new state of the system by changing
either the coordinates or the momenta of the particle (unlike what happens in classical canonical
densities, in our probability, the variables, p and r, are not independent (with the momenta Gaussian and
then integrable) and must be treated numerically) and/or to accept this new state is modified to guarantee
that detailed balance is satisfied also when ρ′m(r) and E(r, p) are estimated with significant noise. Both
the Ceperley and Kennedy scheme require the introduction of appropriate numerical estimators of the
unknown functions that will be indicated with calligraphic fonts.

The Monte Carlo scheme to sample Equation (31) is constructed as follows. Choose, with probability
1/2, if the move will involve r or p.

(1) A move on p has been selected:

choose a new momentum according to p′ = p + δp, where δp is a uniform random number centered
on zero (the magnitude of the displacement is chosen so as to optimize the acceptance). Taking into
account that the r variables are not being updated, detailed balance for this trial move takes the form:

ρG(p)e−E(r,p)Ap(p→ p′) = ρG(p′)e−E(r,p′)Ap(p′ → p) (32)

where Ap(p → p′) is the acceptance probability. The detailed balance relationship above has the same
form as the one discussed by Ceperly et al. within the penalty method [42], a generalized Monte Carlo
for sampling a density given by the exponential of a function, in our case E(., .), known with statistical
errors. According to the penalty method, if a numerical estimate, ∆Ep(p′, p; r), of the difference
E(r, p′)−E(r, p) has been obtained (for example, by averagingNs values of a specific estimator) and an
estimate of its variance, χ2

p, is also known, detailed balance can be satisfied by defining the acceptance as:

Ap(p→ p′) = min
[
1,
ρG(p′)

ρG(p)
e
−∆Ep(p′,p;r)−u

χ2
p

]
(33)

where:

uχ2
p

=
χ2
p

2
+

χ4
p

4(Ns + 1)
+ ... (34)

The expression for the acceptance probability differs from the standard Metropolis prescription for
the presence of uχ2

p
and is valid when χ2

p/n < 1/4 [42]. In the limit of an infinitely precise estimate of
the difference, uχ2

p
→ 0 and the standard criterion is recovered; when non-zero, this function corrects,

on average, for the effect of the noise.

(2) A move on r has been selected:

in this case, indicating with T r(r→ r′) and Ar(r→ r′) the probability to generate and accept a new
configuration, respectively, detailed balance is expressed, after simplifying ρG(p), as:

e−E(r,p)e−Vr(r)ρ′m(r)T r(r→ r′)Ar(r→ r′) =

e−E(r′,p)e−Vr(r′)ρ′m(r′)T r(r′ → r)Ar(r′ → r) (35)

The structure of this relationship is analogous to the one considered by Kennedy et al. [43], who
adapted Monte Carlo sampling to probability densities given by an exponential term times a “noisy”
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(positive definite) function. They showed that detailed balance is satisfied if states are generated
according to the probability:

T r(r→ r′) ∝ e−E(r′,p)e−Vr(r′) (36)

(a method to sample T r(r→ r′) is described after the next equation) and accepted with probability:

Ar(r→ r′) =

cU(r→ r′) if e−δβV(r,0) > e−δβV(r′,0)

c if e−δβV(r,0) ≤ e−δβV(r′,0)
(37)

Above, U(r → r′) is an unbiased estimator of the ratio, ρ′m(r′)/ρ′m(r), and c < 1 is a constant that
ensures Ar(r → r′) ∈ [0, 1] (for details on the meaning and choice of c, see [43] and the discussion
on page 8 of [39]). The conditions on the exponential of the potential enforce an ordering criterion
on the states, whose optimal choice depends on the problem (here, we used the one adopted in our
previous work [39]). In the usual implementation of the Kennedy method, the exponential part of the
probability density is assumed to be known analytically, and the states are generated via a standard Monte
Carlo method. In our case, the situation is more complicated, since e−E(r′,p) is only known with noise.
To solve this problem, we employ the penalty method to obtain configurations distributed according
to Equation (36). These configurations are generated using a Monte Carlo with transition probability
t(r → r′) ∝ e−Vr(r′) and acceptance probability a(r → r′) = min[1, exp(−∆Er(r′, r; p) − uχ2

r
)],

where ∆Er(r′, r; p) is an unbiased estimator of E(r′, p) − E(r, p), and uχ2
r

is defined in analogy with
Equation (34).

This concludes the description of our Monte Carlo moves. The practical implementation of this
algorithm requires the definition of the numerical estimators, U(r→ r′),∆Ep(p′,p; r) and ∆Er(r′, r; p).
While this is an important technical point, it only involves a set of calculations, each performed via an
auxiliary Monte Carlo move, that are quite standard. To provide a typical example, we consider one of
the estimators referring the reader to [39] for a detailed description of the others. Let us then consider
U(r → r′). This quantity, necessary in the Kennedy acceptance test, see Equation (37), is obtained by
writing the ratio of the marginal probabilities as:

ρ′m(r′)

ρ′m(r)
=

∫
d∆r e−V∆(∆r)e−δβV̄(r′,∆r)∫
d∆r e−V∆(∆r)e−δβV̄(r,∆r)

=

∫
d∆r e−V∆(∆r)e−δβV̄(r,∆r)e−δβ

[
V̄(r′,∆r)−V̄(r,∆r)

]
∫
d∆r e−V∆(∆r)e−δβV̄(r,∆r)

(38)

= 〈e−δβ
[
V̄(r′,∆r)−V̄(r,∆r)

]
〉ρc(∆r|r)

whose unbiased estimator is:

U(r→ r′) =
1

Na

Na∑
i=1

e−δβ
[
V̄(r′,∆ri)−V̄(r,∆ri)

]
(39)

where {∆ri} are a sample distributed according to ρc(∆r|r). This sample is obtained via an
auxiliary (standard) Monte Carlo calculation over the conditional probability, ρc(∆r|r), in which new
configurations are generated according to T (∆r → ∆r′) ∝ exp[−V∆(∆r′)] (To do this, we use the
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staging method [44], which allows one to sample exactly a probability density containing Gaussian-like
distributions, see Equation (28)), and moves are accepted or rejected based on A(∆r → ∆r′) =

min
{

1, exp[−δβ(V̄ (r,∆r′)− V̄ (r,∆r)]
}

. As can be seen from the expression above, calculating the
estimator requires Na steps in the auxiliary Monte Carlo calculation. A similar situation arises when the
other estimators introduced above are considered, so that the total number of Monte Carlo moves in our
scheme is given by Nt = Nm × Na, where we indicated with Nm the number of moves in the “main”
Monte Carlo cycle (i.e., each choice of a move on r or p) and with Na the number of auxiliary Monte
Carlo steps per “main” move.

The computational overhead introduced by the auxiliary Monte Carlo calculation increases the
cost of our calculation, but it is very small compared to the number of moves necessary to converge
the estimate of Equation (20). The algorithm just described is, in fact, efficient enough to make
possible calculations on realistic condensed phase systems with relatively little numerical effort. In
particular, the algorithm was used to compute the dynamic structure factor of a model of liquid
neon composed of 64 atoms [38]. Details of the calculation can be found in [38]. Here, we
show, in Figure 4, our results (red triangles with error bars in the figure) and compare them with
experiments (green curve) and the results of a calculation (with the same empirical potential and
simulation parameters) performed by Poulsen et al. [45] using the linearized approximation for quantum
time correlation functions described in the Introduction (see Equation (4) and the discussion above it).

Figure 4. Dynamic structure factor for liquid neon (see the text). The solid green line shows
the experimental curve, our results (with error bars) are the red triangles. We also report
for comparison results obtained with the linearized IVRmethod by Polusen et al. (see the
Introduction); blue circles.
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The results show a rather pronounced asymmetry around zero, due to detailed balance, that indicates
the presence of relevant quantum effects in the system. The agreement between our calculations and
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experiments is very good, as it is the agreement with the standard linearized calculation by Poulsen (a
state-of-the-art reference in the field). The numerical cost of the two calculations is very similar (about
a million Monte Carlo steps in total for initial condition sampling), showing that the auxiliary steps, due
to the noisy distributions in our approach, are essentially irrelevant. Indeed, other tests indicate that,
depending on the system, the overall cost of our method can be less than that of alternative schemes
with comparable or better accuracy. The approach described in this section, for example, has also been
used to obtain the infrared spectra of simple models of molecules in the gas phase [46]. Although
these systems are quite small, the calculations that we performed are known to pose a considerable
challenge to alternative, less rigorous methods, such as Centroid Molecular Dynamics [47] and Ring
Polymer Molecular Dynamics [48], which fail to capture the spectra and/or introduce spurious features.
In contrast, even though obtaining the exact intensities is quite expensive, our method proved remarkably
effective in identifying the positions of the peaks, which could be obtained with only about one hundred
Monte Carlo moves.

3.2. L > 1

In this subsection, we present a new development of the approach summarized above that extends
the use of cumulants to pre-average the phase factors in the expression of the symmetrized correlation
function to the case L > 1 (This possibility came out in discussions with M. Monteferrante.). For
simplicity of notation, in this subsection, we describe how this can be done for L = 2, but the steps that
we shall use can be generalized to a larger number of segments. In the following, we report the formal
result, while the construction and test of an algorithm that generalizes the noisy Monte Carlo scheme
described in the previous section will be the object of future work. Let us begin by rewriting the L = 2

approximation of the symmetrized correlation function, for diagonal Â, as follows (see Equations (16)
and (20) for structure and notation):

G
(2)
A,B(t;β) =

∫
dΓ1dΓ0Bw(r

(2)
t , p

(2)
t )

[
e−

i
h̄
p1

1∆r
(ν−1)
1 P (Γ1; rn0 )e

i
h̄
pn0 ∆r1

] [
e−

i
h̄
p1

0∆r
(ν−1)
0 P (Γ0)

]
A(r0)∫

dΓ1dΓ0

[
e−

i
h̄
p1

1∆r
(ν−1)
1 P (Γ1; rn0 )e

i
h̄
pn0 ∆r1

] [
e−

i
h̄
p1

0∆r(ν−1)
P (Γ0)

] (40)

In the equation above, (r
(2)
t , p

(2)
t ) is the endpoint of the propagation obtained by combining

the two segments of classical dynamics described in the lower panel of Figure 3; Γ0 =

{p1
0, r

0
0, ..., r

ν
0 ,∆r

1
0, ...,∆r

(ν−1)
0 } and Γ1 = {p1

1, r
1
1, ..., r

ν
1 ,∆r

0
1, ...,∆r

(ν−1)
1 } indicate the variables

associated with the first and second set of thermal path integrals, respectively (the first set does not
include ∆r0

0, since this variable can be integrated over for diagonal Â, and the second does not include
r0

1 ≡ rn0 , since this is the endpoint of the, deterministic, classical propagation from zero to t/2 in
Figure 3). P (Γ0) was defined in the previous section (see Equation (19)), and:

P (Γ1; rn0 ) = ρG(p1
1)ρm(r1; rn0 )ρc(∆r1|r1) (41)

where r1 = {r1
1, ..., r

ν
1} and ∆r1 = {∆r0

1, ...,∆r
(ν−1)
1 }. The Gaussian probability for the momenta,

ρG(p1
1), and the marginal, ρm(r1; rn0 ), and conditional, ρc(∆r1|r1), probabilities are defined in analogy

with the expressions introduced in Section 3, with the caveat that for J = 1 (and, in general, for
J > 0), the sum involving the potentials in the second line of Equation (22) runs from one to ν − 1. In
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the marginal probability, we have also indicated the (parametric) dependence of the density on rn0 , i.e.,
the endpoint of the classical propagation of the first segment, which corresponds, due to the boundary
condition mentioned above, to the first bead of the concatenated semi-sum thermal path. The square
brackets in Equation (40) isolate the terms that play the most significant role in the following. The first
bracket from the left (corresponding to the J = 0 term in the approximation of the correlation function)
is the same as the one we encountered in the previous subsection, while the second shows the general
structure of the terms involving the phase factors for J > 0. As summarized when discussing Figure 3,
in this bracket the first phase factor is given by the product of the momentum at the endpoint of the first
segment of classical dynamics (i.e., a variable fixed by the classical evolution) and the first difference
variable of the second thermal segment. The second phase factor is given by the product of the initial
momentum of the second leg of classical dynamics (a variable to be sampled in analogy with p1

0) and the
final difference variable of the thermal path. As in the L = 1 case, these phase factors do not depend on
the semi-sum variables and can be pre-averaged with respect to the conditional probability density. Let
us indicate this average as:

F (πJ , rJ) =

∫
d∆rJe

− i
h̄
πJ ·δrJρc(∆rJ |rJ) (42)

where, for J = 0, π0 = p1
0 and δr0 = ∆r

(ν−1)
0 , while for J = 1, and, more in general, for J > 0,

πJ = {−pnJ−1, p
1
J} and δrJ = {∆r0

J ,∆r
(ν−1)
J }. The equation above is formally identical to

Equation (23), with the important difference that, when J > 0, the phase is now given by the scalar
product of two vectors and can be recognized as the definition of the joint cumulant generating function
for the components of δrJ [40]. Although such joint cumulants are formally more complex, the cumulant
moments of δrJ are still given by the coefficients of the expansion:

lnF (πJ , rJ) =
∞∑
|λ|≥1

(−i)|λ|

λ!h̄|λ|
πλJCλ(rJ) (43)

For J = 0, the definition above is to be read as identical to Equation (24). For J = 1 (and, in general,
J > 0), λ = {λ1, λ2} is a vector of positive integers (including zero), |λ| is their sum, λ! = λ1!λ2! and:

Cλ(rJ) = Cλ1,λ2(rJ) =

(
∂|λ| lnF (πJ , rJ)

∂(−pnJ−1)λ1∂(p1
J)λ2

)
πJ=0

(44)

As in the previous subsection, the conditional distribution density is even with respect to the difference
variables, implying that only even terms are non-zero in Equation (43). The function F (πJ , rJ) is then
real and positive, so we can set F (πJ , rJ) = e−E(πJ ,rJ ) and define, in analogy with Equation (26), the
probability density:

P(πJ , rJ ; rn0 ) =
ρG(p1

J)ρm(rJ ; rn0 )e−E(πJ ,rJ )∫
dp1

JdrJρg(p
1
J)ρm(rJ)e−E(πJ ,rJ )

(45)

Substitution of the definition above in the expression for the symmetrized correlation function shows
that we can write the two-segment approximation as the following expectation value:

G
(2)
A,B(t; β) = 〈Bw(r

(2)
t , p

(2)
t )A(r0)〉P(2) (46)
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where P(2) = P(π1, r1; rn0 )P(p1
0, r0) (with a straightforward generalization of the notation adopted

here, the L-segment approximation of the correlation function can be written as G
(L)
A,B(t; β) =

〈Bw(r
(L)
t , p

(L)
t )A(r0)〉P(L) , where P(L) =

∏L−1
J=1 P(πJ , rJ ; rnJ−1)P(p1

0, r0)). The average above presents
the same immediate advantage of the L = 1 case in that the “observable” does not contain any explicit
phase factors. It also presents the same numerical difficulties, given that the probability density contains
analytically unknown quantities (the marginal probabilities, ρm(rJ), and the cumulants). Although it is
possible to construct generalization of the noisy Monte Carlo scheme described in the previous section, it
is not certain that the favorable convergence properties of the auxiliary sampling necessary, in particular,
for computing the cumulants (the decisive ingredient in the L = 1 case) will be preserved in this more
general situation. Developing and testing the most appropriate algorithm for this generalization will be
the focus of future work.

4. Conclusions

In this paper, we summarized a recently developed method to approximate symmetrized quantum time
correlation functions. The method recasts the problem as the calculation of averages over a stochastic
process based on a linearized approximation of the complex time propagators in the correlation function.
This approximation can be enforced either on the full length of the evolution (fully linearized approach)
or in an iterative form obtained via the (complex) time composition property of the evolution operators.
Thanks to the use of a cumulant expansion, which tames the phase factors present in the observable,
the fully linearized approach has proven efficient and accurate in calculations on moderately quantum
systems in the condensed phase. The iterative form offers, in principle, a way to improve the accuracy
of the results with respect to the fully linearized case and may be useful when higher order quantum
effects must be kept into account. While the potential for systematic improvement with respect to the
fully classical limit for the dynamics is indeed the most interesting feature of the approach (and the one
that distinguishes it from other available methods for which there is no way to improve upon the classical
or semi-classical approximation), the practical use of the approach for L > 1 is currently hindered by
numerical instabilities. In the final section of the paper, we have shown how to extend the use of the
cumulant expansion to obtain a formal expression for this case that does not require one to average
phase factors in the observable. This expression may be a promising starting point for considerable
improvement of the algorithm for more than one segment, and future work will focus on developing and
testing an appropriate algorithm. However, importantly, while numerical evidence on model systems
supports the claim that systematic improvements can be obtained by higher order iterations, an exact
statement on the convergence properties of the method is lacking, and further investigation is needed to
formally assess the features of the scheme.
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