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We assume that the operator is interested in monitoring a multinomial process. In this case the items are classified into (k + 1)
ordered distinct and mutually exclusive defect categories. The first category is used to classify the conforming defect-free items,
while the remaining k categories are used to classify the nonconforming items in k defect grades, with increasing degrees of
nonconformity. Usually the process is said to be capable if the overall proportion of nonconforming items is very small and remains
low, or declines over time. Nevertheless, since we classify the nonconforming items into k distinct defect grades, the operator
can also evaluate the overall level of defectiveness. This quality parameter depends on the k defect categories. Furthermore, we
are interested in evaluating, over time, the proportion of nonconforming items in each category as well as the overall level of
defectiveness. To achieve this goal, we propose (i) a normalized index that can be used to evaluate the capability of the process
in terms of the overall level of defectiveness, and (ii) a two-sided Shewhart-type multivariate control chart to monitor the overall
proportion of nonconforming items and the corresponding defectiveness level.
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1. Introduction

In the modern industrial context, operators are usually
interested in evaluating process quality. Assuming that the
quality depends on several correlated quality characteris-
tics, it is appropriate to use multivariate quality control
methodology. If the quality characteristics are defined on
nominal or ordinal scale, then the corresponding monitoring
process is said to be a multivariate attribute process. For
a general review of methods for monitoring multivariate
attribute process see Topalidou and Psarakis [1]. Each item
is inspected and classified as conforming or nonconforming,
and different criteria for nonconforming classification may
be used. For example, an item may be classified as absent,
incidental, minor, or major defect, see Nelson [2]. Real
example is shown in Taleb and Limam [3] and Taleb [4]
where the porcelain industry items are classified as standard,
second choice, third choice, or chipped.

In general, each item may be classified in (k + 1) ordered
and mutually exclusive quality categories depending on the
level of defect: the first category can be used to classify
the conforming defect-free items, while the remaining k

categories can be used to classify the nonconforming items
in k distinct defect grades, with an increasing degree of
nonconformity. In this case, the probabilistic model is the
multinomial distribution, which is appropriate to define a
statistical procedure to monitor this multivariate attribute
process.

The most applied statistical method of monitoring the
multinomial process is the chi-square control chart, origi-
nally proposed by Duncan [5]. This control chart is based on
the chi-square sampling statistic to test the goodness of fit to
the in control distribution and is a one-sided Shewhart-type
control chart with only the upper approximate probabilistic
control limit. The chi-square control chart is useful for
identifying significant departures of almost one of the (k +
1) proportions from their in control values. The chart
signals any changes in the quality target parameters, but it
is unable to distinguish between increasing or decreasing
levels of quality. If the chi-square sampling statistic plots
out the upper control limit, then we may declare that the
process is out of control, but cannot determine whether the
defect proportion is increasing or not. To solve this limit,
Marcucci [6] proposed a one-sided generalized p-chart, that
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is, specifically designed to indicate departures from the in
control level only for the defect nonconforming proportions
without considering the conforming proportion; but this
chart is still one-sided and is designed to signal increases in
the defect proportion and consequently identifies decreases
in quality level only. Consequently, the chi-square control
chart, proposed by Duncan [5], and the control chart,
proposed by Marcucci [6], can be used only to identify
process performance because they are able only to alert
operators of any deterioration of the process so the potential
damage can be alleviated or averted in time. From the
management point of view, the ability to detect process
improvements is very important since improvements can
take place as a result of process stabilization, subprocess
improvement, or learning effects. Continuous improvement
of a high-quality process, although difficult and not straight-
forward, is an important issue to increase competition in
the global market [7]. So in many manufacturing processes
it is also becoming increasingly important to be able to
detect moderate shifts in the performance of a process [8].
An example of complex process with very low fraction
nonconforming is the manufacturing of integrated circuits;
in this case, different defects can be observed [9], each
of which can be categorized according to defectiveness
grade. Therefore, in this perspective a useful quality control
statistical method have to be able in evaluating whether the
global quality level is increasing or decreasing. The need for
innovating the statistical methodology for monitoring high
quality processes has been stressed in Calvin [10], Bourke
[8], Kaminsky et al. [11], Xie and Goh [12], Quesenberry
[13], Xie and Goh [14], Xie et al. [7, 15], and Niaki and
Abbasi [16].

So it is useful to define a two-sided control chart that
uses, respectively, the upper control limit and the lower
control limit to signal the deterioration or the improvement
of the process quality. In the following, we define the
sampling statistic that may be used as an index of the overall
defectiveness level of the process and as a statistic necessary to
determine a corresponding two-sided control chart with the
approximate probabilistic control limits. In fact, the process
is usually assumed to be capable if the proportion of non-
conforming items is very small and remains low or declines
over time. Therefore, because we have chosen to classify
the nonconforming items into k different defect grades, the
overall proportion of nonconforming items depends on the
k categories, which are not necessarily independent. To get
this purpose we propose (i) a normalized index that can
be used to evaluate the overall defectiveness of the process,
and (ii) a two-sided Shewhart-type multivariate control
chart to monitor the overall defectiveness of nonconforming
items. The corresponding sampling statistic is used to define
the normalized index and the multivariate p-control chart.
The paper is organized as follows: in Section 2 the overall
defectiveness index is defined; in Section 3 a two-sided
multivariate p-control chart with approximate probabilistic
control limits is proposed; Section 4 presents some numer-
ical examples useful for evaluating the performance of the
chart in three different quality situations; the last section
provides conclusions.

2. An Overall Defectiveness Index

For evaluating the overall defectiveness of the production, we
draw from the process a sample of n items. Each sampling
item may be classified only in one of the (k + 1) ordered
and mutually exclusive categories of quality defects. Let
D = (D0,D1, . . . ,Di, . . . ,Dk) be the vector of the (k + 1)
defect categories. The generic component Di indicates the
ith category of defect degree; D0 is the free-defect category
and Dk is the most serious category of defect degree. Since
different defects bring to the process different losses of
quality then, corresponding to the vector D, we can define a
vector of weights that are numerical evaluations of the defect
degree found in the product; these weights may be selected
on the following: dysfunction, dissatisfaction, economical
loss, increasing costs, or demerit caused by defect. For
example, if the vector D has only five categories, like absent,
minor, medium, major, and serious defect, then we may
associate weight zero to the first category, weight one to the
last category, and other weights, between zero and one, to
the other categories. For example, assuming as criterium the
dysfunction present into the item, if the weight is fixed to
0.20 then this means that this type of defect implies a 20%
of dysfunction. If arbitrary weights are used then we have to
transform these data in such a manner as to obtain constants
between zero and one.

Items are classified in each of the (k + 1) quality
defect categories. In this case the multivariate random
variable X = (X0,X1, . . . ,Xi, . . . ,Xk) has a multinomial
distribution with parameters n and probability vector p =
(p0, p1, . . . , pi, . . . , pk), such that 0 ≤ pi ≤ 1 and

∑k
i=0 pi =

1. Specifically, Xi is the number of items in the sample
that are classified in the Di defect category and pi is
the probability that an item may be classified in the Di

defect category. In the quality control procedure, pi is the
proportion of nonconforming items classified as defective in
the ith class. Consequently, the multivariate random variable
X has a multinomial random distribution with parameters
(n, p), where n is the sample size and p the probability
vector.

If the operator has chosen to assign the same weight to
every class of defects, then an overall defectiveness index
may be the overall proportion of nonconforming items in
the process; indirectly, the operator can use this index as
a measure of the process capability. The process will be
considered capable when conforming proportion is very
high. Instead, it is reasonable to think that the operator
assigns different weights for every type of defect, because
they cause, in the process, different grades of dysfunction,
dissatisfaction, economical loss, or demerit. In this case, we
have to consider accurately this differentiation of weights
if we are interested in evaluating and monitoring the real
overall level of defectiveness in the process. This approach
for classification of defective items was used in Lu et al.
[17], to design the multivariate np chart. Further, these
types of problems, particularly in the case of a process
with a very high quality level, are also investigated in Xie
et al. [7]. Moreover in Cassady et al. [18], using a normal
approximation of sampling statistics, this scheme of item
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classification was applied to determine a 3-level control
chart.

Let d = (d0,d1, . . . ,di, . . . ,dk) be a vector of weights
associated to the D vector of quality defect categories, where
0 ≤ di ≤ 1, di < di+1, d0 = 0 and d1 = 1. In general, di
indicates the amount of quality loss that the defect of ith class
introduces into the system. Let us note that it is assumed
that the defects are categorized according to the their effect
on product quality and performance. If there are two types
of defects with the same degree of defectiveness, evaluate
by the constant di, then the possible cases are (i) only one
defect of the two is identified in the selected item; (ii) both
defects are identified in the selected item. In the first case
the item is classified as belonging to the ith defect class; in
the second case, when both defects are identified, the item
should be classified as belonging to defect class with a higher
degree of defectiveness of the ith defect class. Instead, if the
operator assumes that the classes are determined by type
of the defect and not by the degree of defectiveness then
the appropriate probabilistic model to monitor the process
quality degree is the multivariate binomial distribution and
not the multinomial. So, for fixed d and p vectors, a
normalized index of the overall defectiveness degree is

δ =
k∑

i=0

di pi. (1)

To clarify, because 0 ≤ pi ≤ 1 and 0 ≤ di ≤ 1, the index
can take only values between zero and one, that is, 0 ≤ δ ≤ 1.
It measures the weighted degree of overall defectiveness. In
the extreme cases, the index takes a minimum when the
produced items are all free of defects; that is, δ = 0 if and
only if pi = 0, i = 1, . . . , k; or it takes maximum when the
produced items are all classified in the maximum defect class;
that is, δ = 1 if and only if pk = 1.

Given X = (X0,X1, . . . ,Xi, . . . ,Xk), it is well known that
the maximum likelihood-estimator of the parameters p =
(p0, p1, . . . , pi, . . . , pk) is p̂i = Xi/n. Therefore, to monitor the
overall defectiveness parameter δ, we can use the following
sampling statistic:

δ̂ =
k∑

i=0

di p̂i, (2)

that is, an unbiased estimator of the index δ. The variance of
δ̂ is
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A consistent estimator of variance σ2(δ̂) is
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In this paper, the main interest is in defining a statistical
procedure for monitoring the in-control process hypothesis
on the global parameter δ, that is,

H0 : δ = δ0, versus H1 : δ /= δ0, (5)

where δ0 is the expected value of the sampling statistics δ̂
when the process is in control.

Nevertheless, since the parameter of global quality is
defined as linear function of the components in the multi-
nomial parameter vector p, then it is also interesting to verify
all partial hypothesis on the components of the parameter δ,
that is,

H0(i) : pi = pi0, versus H1(i) : pi /= pi0,

for i = 0, 1, . . . , k,
(6)

where pi0 is the expected value of sampling proportion p̂i
when the process is in control.

The null hypothesis in (5) is verified if and only if all the
null hypothesis in (6) are verified; so, in this case, it should
be appropriate to use simultaneous inference procedure, see
Miller [19].

By Gold [20, Theorem 3], the asymptotic simultaneous
confidence interval, with at least (1− α) confidence level, for
the overall defectiveness index is
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(7)

where χ2
k,α is the upper (1− α) quantile of the χ2 distribution

with (k) degrees of freedom.
By the multivariate Lindeberg-Lévy Central Limit Theo-

rem, the vector p̂ has a (k+1) asymptotic multivariate normal
distribution, (see [21, page 108]); therefore, the estimator

δ̂ has asymptotic normal distribution. Using a procedure
based on Bonferroni’s inequality, see Goodman [22], we can
determine a shorter (1−α) simultaneous confidence interval
for the overall defectiveness index, that is
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(8)

where z[1−(α/2(k+1)] is the upper [1 − (α/2(k + 1))] quan-
tile of the standardized normal distribution. A further
improvement in the length of the simultaneous confidence
interval can be obtained using a procedure based on Šidák’s
inequality [23, 24]. Therefore the corresponding (1 − α)
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simultaneous confidence interval for the overall defectiveness
index is

δ =
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di pi
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where z(1−α)1/(k+1) is the upper ((1− α)1/(k+1)) quantile of the
standardized normal distribution. In the nonsimultaneous
approach, since for a large sample, the sample statistics
converge to normal distribution, the (1 − α) confidence
interval is

δ =
k∑

i=0

di pi

∈

⎧
⎪⎪⎨

⎪⎪⎩

k∑

i=0

di p̂i ± z(1−α/2)

√
√
√
√
√
√

1
n

⎡

⎢
⎣

⎛

⎝
k∑

i=0

d2
i p̂i

⎞

⎠−
⎛

⎝
k∑

i=0

di p̂i

⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
,

(10)

where z(1−α/2) is the upper (1 − α/2) quantile of the
standardized normal distribution.

Since we want to design a control chart with control
limits such that the overall error rate is not much larger
than the nominal level α, then in the following we have
to consider only the simultaneous confidence procedures
and compare them with the nonsimultaneous approach.
Besides, simultaneous procedures are suitable to solve the
identification problem in multivariate quality control [25].

3. A Two-Sided Multivariate p Control Chart

If the operators are interested in monitoring a multinomial
process X with items classified in (k + 1) defect classes, then,
assuming equal weights of the losses in quality for the defect
categories, the chi-square control chart may be used [6].
Suppose that we are interested at time t to test

H0 : pit = pi0, versus H1 : pit /= pi0, for i = 0, 1, . . . , k,
(11)

where pit is the proportion of ith defect category at moni-
toring time t and pi0 is the specified in control proportion.
Notice that the hypothesis (6) is equivalent to the hypothesis
(11). In the following, without loss of generality, we assume
that the sample size n is constant in each monitoring period.
Using a sample of size n, the control chart to test the
hypothesis in (11) at time t is based on the Pearson goodness-
of-fit statistic

Yt =
k∑

i=0

(
Xit − npi0

)2

npi0
, (12)

where Xit is the number of items in the sample taken at time
t classified in ith defect class. This statistic has asymptotic
chi-square distribution with (k) degrees of freedom, (see [26,
page 447]). Therefore, the asymptotic probabilistic upper
control limit (UCL) is the (1 − α) quantile of the χ2

distribution with (k) degrees of freedom; that is UCL =
χ2

(k−1),α. If the sampling statistic is plotted out the UCL, then
the process will be said to be out of control and the operator
has to investigate it. Nevertheless, in practical situations,
the pi0, i = 0, 1, . . . , k are usually estimated using a set of
preliminary samples taken in the in control base period.
In this case, the correct statistical procedure based on the
following sampling statistics:

Zt = n0nt

k∑

i=0

(
p̂it − p̂i0

)2

Xit + Xi0
(13)

is appropriate to test correctly the homogeneity of propor-
tions between the base period and each monitoring period t,
see Marcucci [6].

The control charts based on statistics (12) and (13)
suffer from two limitations: first, the defect categories are
assumed to have equal weights in terms of loss of quality
when in the reality this is not true; second, the out of control
signal is indistinct because the sampling statistic increases in
case of a deterioration process and (or) in case of process
improvement. Possible solutions to these limitations are (i)
use different weights for the defect categories, specified in
the vector d, and (ii) design a two-sided control chart that
is able to give correct information on the improvement or
deterioration process. Following the Shewhart procedure, we
can define this control chart using (2) as sampling statistics
and the two simultaneous confidence interval extremes
in (9) as upper and lower control limits. So, let p0 =
(p00, p10, . . . , pi0, . . . , pk0) be the specified parameter vector
under the hypothesis that the process is in control. Therefore,
the control chart has these asymptotic probabilistic control
limits:
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Usually, in practical situations, the vector p0 = (p00, p10, . . . ,
pi0, . . . , pk0) is unknown and it is necessary to estimate
it using m preliminary samples of size n taken from
the process in control, see Montgomery [9]. Let Xt =
(X0t,X1t, . . . ,Xit, . . . ,Xkt), t = 1, 2, . . . ,m, be a set of m
preliminary samples of size n taken from the multinomial
process X with parameters (n, p). Specifically, Xit is the
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number of items in the tth sample that are classified in
the Di defect category. Therefore an unbiased estimator of
parameter pi is

p̂i =
1
m

m∑

t=1

p̂it, i = 0, 1, . . . , k, (15)

where p̂it = Xit/n, i = 0, 1, . . . , k; t = 1, 2, . . . ,m, and the
estimated control chart with asymptotic probabilistic control
limits is
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The sampling statistics (2), (12), and (13) are functions
of p̂it and since that the corresponding procedure test are
asymptotic, then the sample size may be chosen following
Cochran [27]; no more than twenty percent of expected
events in each defect category should be less than five, and
none of the expected events in each category should be less
than one.

The proposed control chart signals the deterioration of
the process when the sampling statistic is plotted out the
UCL or the improvement of the process when the sampling
statistic is plotted out the LCL. Analysis of the pattern of
plotted statistics may be used to identify significant changes
in the process parameters. We note that, for a specified vector

d, the sampling statistic δ̂ increases when at least one of the
nonconforming proportions pi, i = 1, 2, . . . , k, increases and
decreases otherwise. Hence the control chart is able also to
test the global hypothesis in (6) and (11).

The proposed statistical procedure is conservative
because the overall coverage probability inside the control
limits is at least (1− α) and therefore the level of significance
is not larger than α. Consequently, the in control Average
Run Length (ARL0), that is, the average rate of false alarms,
is expected to be larger than that of the chi-square control
chart. Note that in the nonsimultaneous approach, the
coverage probability inside the control limits is expected less
than (1 − α) and for that reason the level of significance is
larger than α. Consequently the in control ARL0 is expected
to be smaller than that of the chi-square control chart.
Nevertheless, the operator is more interested in evaluating
the performance of control charts evaluating the out of
control ARL1, that is the average correct alarm rate to signal
a true change.

Since the ARL1 = 1/(1−β) is a function of the probability
of a type II error, then it is necessary to evaluate β; that is, the
probability to have declared the process in control when it

is not. Under a specified alternative hypothesis, the statistic
(12) has a chi-square noncentral distribution with k degrees
of freedom and the following noncentrality parameter [27]

λ = n
k∑

i=0

(
pi1 − pi0

)2

pi0
, (17)

where pi1, i = 0, 1, . . . , k are the specified alternative
proportions. Numerical evaluation and comparisons of the
ARL of the two-sided multivariate p-control chart, based
on sampling statistics (2), will be done in the next section.
Besides, we may note that in presence of an out of
control signal, the operator is interested in identifying which
defect categories has produced significant changes in the
parameters of the in control process. In this case, estimating
simultaneous confidence intervals for every parameter pi,
the operator may identify which parameters are changed
significantly. Specifically, putting di = 1 and dj = 0, j /= i
in (2), we obtain the following simultaneous confidence
interval for pi, i = 0, 1, . . . , k:

pi ∈
⎧
⎨

⎩
p̂i ± z(1−α)1/(k+1)

√
p̂i
(
1− p̂i

)

n

⎫
⎬

⎭
. (18)

Some considerations on the choice of the weights in vector
d are necessary. From the operator’s point of view, the
choice of the weights di will be made in the function
of a corresponding degree of quality loss for every defect
category; but, from the statistical perspective, it is necessary
to consider also the influence of the weights di on the
performance, in terms of ARL, of the corresponding control.
In the following, assuming that the loss of quality due to the
ith defect category is proportional to the loss of quality due
to the others, we suggest the use of weights that are in terms
of a geometric progression; that is, di = kdi−1, where k is
the common ratio of sequence. Numerical examples will be
proposed in the next section to investigate the influence of
the weights on the performance of the control chart.

4. Numerical Simulations

In this section, the performance of the control chart will be
evaluated using three different cases of overall quality level: a
low, high, and very high quality process. In particular, for the
fixed sample size n and significance level α, fixed at 0.0027,
the influence of the parameter k on the performance of the
control chart will be evaluated through numerical simula-
tion. Furthermore, we propose comparisons of performance
of the control chart, designed by (a) simultaneous confidence
interval based on Šidák’s inequality, (b) upper and lower
quantiles estimated using empirical cumulative distribution
function, and (c) nonsimultaneous confidence interval.

4.1. Example One: Low-Quality Level. A first example is
based on real data reported in Taleb and Limam [3] about the
production of porcelain. The items are classified by experts,
with respect to quality, into four defect categories: standard,
second choice, third choice, and chipped. In this case, the loss



6 International Journal of Quality, Statistics, and Reliability

LCL = 0.1686

Process in control

CL = 0.2358

UCL = 0.303

Deterioration 
of process

Improvement
of process

Sample
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sampling statistic

Parameter k = 1.3;
weights: d0 = 0 d1 = 0.5917 d2 = 0.7692 d3 = 1

Figure 1: Two-sided multivariate p control chart (example one).

of quality may be evaluated in terms of economical loss; in
fact, an item classified as standard or defect-free can be sold
at the standard price, the second and third choice items sold
at lower prices, while the chipped items cannot be sold at all.
The following hypotheses, about the defect proportions in
vector p, are used:

process in control: p0 = 0.65, p1 = 0.24,

p2 = 0.07, p3 = 0.04,
(19)

deterioration process: p0 = 0.5912, p1 = 0.24,

p2 = 0.07, p3 = 0.0988,
(20)

improvement process: p0 = 0.7996, p1 = 0.11,

p2 = 0.07, p3 = 0.0204.
(21)

The in-control process (19) has a low-quality level because
the proportion of defect-free items is fixed at 0.65. The
hypothesis (20) indicates a deterioration in process since the
maximum defect category is increased to 0.098; by contrast,
hypothesis (21) indicates an improvement in process since
the second and fourth defect categories are decreased,
respectively, to 0.11 and 0.0204.

Usually, the operator is interested in identifying a dete-
rioration in process and considers only the null hypothesis
to choose the size of samples, but in our approach we want
to develop a procedure that will also be able to identify
an improvement in process. Therefore, for defining the
appropriate sample size we have to consider the minimum
proportion indicated in the process-improvement hypothe-
sis. In this first example the minimum proportion is 0.0204;
then by Cochran’s rule we have to take a sample of size
n = 250.

For numerical evaluations we have simulated samples
from multinomial processes with parameters n and p,
respectively, defined in (19), (20), and (21). Using a random
number generation procedure [28], for every hypothesis we
have (i) simulated 10000 samples of size n = 250, (ii)

calculated the sampling statistics δ̂ = ∑k
i=0 di p̂i, and (iii)

plotted it on the multivariate p control chart with control
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Parameter k = 1.5;
weights: d0 = 0 d1 = 0.4444 d2 = 0.6667 d3 = 1

Figure 2: Two-sided multivariate p control chart (example one).
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Figure 3: Two-sided multivariate p control chart (example one).

limits designed on the in-control process hypothesis. Only
110 values of 30000 simulated samples are plotted in the
graphical representations of control charts, see Figures 1,
2, and 3; specifically, the first 50 values are taken from
an in-control process, the next 30 values are taken from a
deteriorated process and the last 30 values are taken from an
improved process.

We note that if the parameter k, that is, chosen is small,
near one, then the operator considers the defect categories
similar in terms of loss of quality; instead, if the operator
considers the highest categories more important than the
lowest (in terms of loss of quality inducted in the process),
then a higher parameter k has to be selected. We may note
easily, from analysis of Figures 1–3, that the performance
of control chart changes in conjunction with the value
of parameter k. So we want to evaluate, using simulated
data, the ARL1 in function of different values of parameter
k. In particular, we estimate the two one-sided ARL1:
ARL1(upper) and ARL1(lower). The ARL1(upper) indicates
the control chart’s ability to identify correctly only dete-
riorations in the process; while ARL1(lower) evaluates the
control chart’s ability to identify significant improvements in
process. Combining the two one-sided ARL1 we can estimate
the ARL1. The ARL1 curves in function of the parameter
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Figure 4: ARL1 curves (example one).

k are shown in Figure 4. Figure 4 shows that ARL1(upper)
and ARL1(lower) are, respectively, decreasing and increasing
values of parameter k. Also, for comparison purposes of
the performance of the control chart we have estimated the
values of ARL for charts with control limits determined by
(a) the simultaneous confidence interval based on Šidák’s
inequality, (b) the quantiles q0.00135 and q0.99865, estimated
by the empirical cumulative distribution function, and (c)
the non simultaneous confidence interval. Values of ARL are
reported in Table 1 and graphical comparisons in Figure 5.

If we consider the results in Table 1 we have to conclude,
since ARL1(lower) < ARL1(upper), that the proposed
control chart is better to identify process improvement for
k ≤ 1.8. The same evidence is obtained from the analysis
of the ARL1 curves in Figure 4. In fact, the distance between
the ARL1(upper) curve and the ARL1(lower) curve is high
for small values of k and small for large values. However,
the result is valid from operator’s perspective. Note that it
is reasonable to assume value of k ≤ 1.5; in fact, in this
case the operator assumes that each class of defect, in terms
of defectiveness, is more important of 50% respect to the
previous class.

Besides, to exemplify the methods for calculating the
ARL reported in Table 1 and Figure 4, consider the case
when the operator uses the control chart with simultaneous
Šidák’s approximation control limits, with k = 1.3. One
thousand simulations have been carried out. Each exper-
iment consisted in the generation of 10000 observations
from a multinomial distribution with parameters n = 250
and probability vector defined in (19); that is, when the
process is in control. For each experiment the Run Length
in control (RL0) has been calculated; that is, the number
of observations where the sampling statistic defined in (2)
assumes a value outside the control limits, identifying a
false alarm. Then to estimate the ARL0 the mean of the
1000 RL0 simulation values has been calculated. Under the
assumption of process in control the mean of the 1000 RL0

was equal to 18. The false-alarm probability α is obtained
by the ratio between the mean of RL0 and the sample size;
α = 18/10000 = 0.0018; therefore ARL0 = 1/α = 555.
Instead, using 1000 of simulations, each of which consists
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Figure 5: ARL1 comparisons (example one).

in 10000 observations from a multinomial distribution with
parameters n = 250 and probability vector defined in (20);
that is, when the process is out control. For each experiment
the Run Length out of control (RL1) has been calculated; that
is, the number of observations where the sampling statistic
defined in (2) assumes a value outside the control limits,
identifying a really correct alarm. To estimate ARL1 then the
mean of the 1000 RL1 simulation values has been calculated.
Under the assumption of process out control the mean of the
1000 RL1 was equal to 3503. The correct-alarm probability
(1 − β) is obtained by the ratio between the mean of the
RL1 and the sample size; (1 − β) = 3503/10000 = 0.3503;
therefore ARL1 = 1/(1− β) = 2.855.

4.2. Example Two: High-Quality Level. A second example
considers a process with a higher level of quality than that
considered in case one; in fact, the defect-free proportion,
that is, chosen is equal to 0.83. The following hypotheses,
about the defect proportions in vector p, are used:

process in control: p0 = 0.83, p1 = 0.104,

p2 = 0.04, p3 = 0.026,
(22)

deterioration process: p0 = 0.7823, p1 = 0.104,

p2 = 0.04, p3 = 0.0737,
(23)

improvement process: p0 = 0.9389, p1 = 0.011,

p2 = 0.04, p3 = 0.0101.
(24)

As in the first example, the hypothesis (23) indicates a
deterioration in process and the hypothesis (24) indicates an
improvement in process. Since the minimum proportion is
0.0101, then in accordance with Cochran’s rule we have to
take a sample of size n = 500. The same simulation procedure
described in example one is used. From Figures 6, 7, and 8 the
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Table 1: ARL comparisons (example one).

ARL for chart with simultaneous ARL for chart with exact ARL for chart with nonsimultaneous

Šidák’s approximation control limits estimated control limits approximation control limits

k ARL0
ARL1 ARL1 ARL1 ARL0

ARL1 ARL1 ARL1 ARL0
ARL1 ARL1 ARL1

upper lower upper lower upper lower

k = 1.3 555 2.855 1.063 1.959 370 2.610 1.039 1.824 270 2.377 1.037 1.707

k = 1.5 417 1.963 1.118 1.541 370 2.109 1.073 1.591 286 1.734 1.077 1.406

k = 1.8 500 1.518 1.291 1.405 370 1.583 1.154 1.369 256 1.392 1.194 1.293

k = 2 555 1.406 1.505 1.456 370 1.440 1.231 1.336 303 1.313 1.347 1.330

k = 2.3 555 1.311 1.959 1.635 370 1.344 1.432 1.388 333 1.239 1.639 1.439
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Process in control

CL = 0.1183

UCL = 0.1567

Deterioration 
of process

Improvement
of process
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0
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0.15
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Sampling statistic

Parameter k = 1.3;
weights: d0 = 0 d1 = 0.5917 d2 = 0.7692 d3 = 1

Figure 6: Two-sided multivariate p control chart (example two).
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Figure 7: Two-sided multivariate p control chart (example two).

performance of the control chart evidently depends on the
value of parameter k. For the hypothesis under investigation,
that is, to consider the process at a high level of quality,
the chart seems to perform better. In fact, comparing ARL1

curves in Figures 4 and 9 and data in Tables 1 and 2, we can
conclude that the control chart performs better at a high level
of quality than at a low level of quality, particularly when the
statistical procedure is used to identify improvement in the
process.
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Figure 8: Two-sided multivariate p control chart (example two).
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Figure 9: ARL1 curves (example two).

Table 2 and Figure 10 report for example two, the values
of ARL for procedures based (a) on Šidák’s inequality, (b) on
empirical estimation and (c) on normal approximation.

If we consider the results in Table 2 we conclude that,
as in the example one, since ARL1(lower) < ARL1(upper),
then the proposed control chart is better to identify process
improvement for k ≤ 2. The same evidence is obtained
from the analysis of the ARL1 curves in Figure 9. In
fact, the distance between the ARL1(upper) curve and the
ARL1(lower) curve is high for small values of k and small
for large values. The results, considering data in Table 2 and
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Table 2: ARL comparisons (example two).

ARL for chart with Šidák’s ARL for chart with exact ARL for chart with normal

approximation control limits estimated control limits approximation control limits

k ARL0
ARL1 ARL1 ARL1 ARL0

ARL1 ARL1 ARL1 ARL0
ARL1 ARL1 ARL1

upper lower upper lower upper lower

k = 1.3 455 1.365 1.000 1.183 370 1.428 1.00000 1.214 256 1.271 1.000 1.136

k = 1.5 455 1.169 1.001 1.085 370 1.192 1.00020 1.096 256 1.124 1.000 1.062

k = 1.8 435 1.076 1.015 1.046 370 1.085 1.00370 1.044 270 1.056 1.007 1.032

k = 2 526 1.056 1.04 1.048 370 1.065 1.01060 1.038 312 1.037 1.022 1.030

k = 2.3 625 1.037 1.115 1.076 370 1.037 1.02838 1.033 294 1.024 1.070 1.047

Table 3: ARL comparisons (example three).

ARL for chart with Šidák’s ARL for chart with exact ARL for chart with normal

approximation control limits estimated control limits approximation control limits

k ARL0
ARL1 ARL1 ARL1 ARL0

ARL1 ARL1 ARL1 ARL0
ARL1 ARL1 ARL1

upper lower upper lower upper lower

k = 1.3 1250 1.000 1.080 1.040 370 1.000 1.034 1.017 385 1.000 1.042 1.021

k = 1.5 909 1.000 1.179 1.089 370 1.000 1.085 1.042 400 1.000 1.109 1.055

k = 1.8 769 1.000 1.460 1.230 370 1.000 1.211 1.106 526 1.000 1.302 1.151

k = 2 769 1.000 1.783 1.392 370 1.000 1.378 1.189 526 1.000 1.502 1.251

k = 2.3 909 1.000 2.539 1.770 370 1.000 1.586 1.293 455 1.000 1.999 1.500
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Figure 10: ARL1 comparisons.

Figure 9, obtained in the case of high-quality level, are better
than that obtained in the case of low-quality level.

4.3. Example Three: Very High-Quality Level. A third exam-
ple considers a process with a much higher level of quality
than that considered in cases one and two; in fact, the defect-
free proportion, that is, chosen is equal to 0.99 and the
maximum defective proportion is 0.001, that is, 1000 ppm.
This level of quality will be classified as very high. The
following hypotheses, regarding the defect proportions in
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Figure 11: Two-sided multivariate p control chart (example three).

vector p, are used to evaluate the performance of the
multivariate p control chart:

process in control: p0 = 0.99, p1 = 0.005,

p2 = 0.004, p3 = 0.001,
(25)

deterioration process: p0 = 0.9805, p1 = 0.005,

p2 = 0.004, p3 = 0.0105,
(26)

improvement process: p0 = 0.9964, p1 = 0.011,

p2 = 0.0015, p3 = 0.001.
(27)

The hypothesis (26) indicates a deterioration in process and
the hypothesis (27) indicates an improvement in process,
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Figure 12: Two-sided multivariate p control chart (example three).
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Figure 13: Two-sided multivariate p control chart (example three).

since the minimum proportion is 0.001, then in accordance
with Cochran’s rule we have to take a sample of size n = 5000.
The same simulation procedure described in example one is
used. As in the previous examples, the performance of the
control chart evidently depends on the value of parameter
k. For the hypothesis under investigation, considering the
ARL1 values, the chart works much better than it does at the
low and high quality levels. In fact, the ARL1 in the example
process with very high-quality level is always smaller than
that in the example processes with high or low quality level.
This indicates that our approach is more appropriate in the
case of a process with a very high level of quality (see Figures
11, 12, 13 and 14).

Table 3 and Figure 15 report the values of ARL in the
function of parameter k.

The comparisons of the ARL, reported in the Tables 1–3
point out that (i) ARL1 is always better for the control chart
with non simultaneous approximation control limits; (ii)
ARL0 is always better for the control chart with simultaneous
Šidák’s approximation control limits; that is, the false alarm
probability is always smaller in the simultaneous approach
respect to the nonsimultaneous approach. In general, a good
multiattribute quality control procedure is one that provides
a method for identifying which subset of the classes of defects
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Figure 14: ARL1 curves (example three).
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Figure 15: Comparisons of ARL1 (example three).

are responsible when the process is determined to be out of
control. The control chart proposed in this paper and based
on simultaneous confidence intervals meets this criterium.
On the contrary the non simultaneous approach is not able
to solve the identification problem (see [25]).

5. Conclusions

In this article an index of weighted overall defectiveness
of the process and a two-sided multivariate p control
chart to monitoring the quality of the process are defined.
Using simultaneous confidence interval, based on the Šidák’s
inequality, approximate control limits are determined.
Specifically, the control chart is designed to identify changes
in any of the defective class proportions and, differently of the
one-sided chi-square control chart, is able to identify process
deterioration or process improvement. Besides, if the control
chart signals an out of control situation, then, estimating
simultaneous confidence intervals for every parameters, the
identification problem can be solved.
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The sampling statistic used to estimate the overall
defectiveness of the process and to design the corresponding
control chart is function of the weights associated to the
vector of quality defect categories. Therefore, the perfor-
mance of the control chart is influenced by these values. In
this paper we propose to use weights that are in terms of
the geometric progression; the parameter k is the common
ratio of thegeometric sequence. The performance of the
control chart has been evaluated using simulated data from
multinomial process in three different hypotheses: low, high,
and very high quality level of the process. Properties of the
ARL are examined and investigated by numerical simulations
in function of different values of the parameter k. Some
numerical comparisons, in terms of corresponding ARL, for
control charts with different control limits, are proposed. The
control chart is more effective in presence of very high quality
level, specifically, in identifying improvement of the process.

An interesting methodological development is possible
considering the multivariate binomial distribution as appro-
priate probabilistic model to monitor the process quality
degree, because it is a more general distribution which
contains the one used in this paper.
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