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Introduction
Systemic risk models address the issue of interdependence between financial institutions 
and, specifically, consider how bank default risks are transmitted among banks.

The study of bank defaults is important for two reasons. First, an understanding of the 
factors related to bank failure enables regulatory authorities to supervise banks more 
efficiently. In other words, if supervisors can detect problems early enough, regulatory 
actions can be taken, to prevent a bank from failing and, therefore, to reduce the costs 
of its bail-in, faced by shareholders, bondholders and depositors; as well as those of its 
bail-out, faced by the governments and, ultimately, by the taxpayers. Second, the failure 
of a bank very likely induces failures of other banks or of parts of the financial system. 
Understanding the determinants of a single bank failure may thus help to understand the 
determinants of financial systemic risks, were they due to microeconomic, idiosyncratic 
factors or to macroeconomic imbalances. When problems are detected, their causes can 
be removed or isolated, to limit “contagion effects”.
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Background and literature review
The literature on predictive models for single bank failures is relatively recent: until the 
1990s most authors emphasize the absence of default risk of a bank (see [1, 2]), in the 
presence of a generalised expectation of state interventions. However, in the last years 
we have witnessed the emergence of financial crisis in different areas of the world, and 
a correlated emphasis on systemic financial risks. Related to this, there have been many 
developments of the international financial regulation, aimed at mitigating such risks 
(see, for example, the Bank of International Settlements regulations). In addition, gov-
ernments themselves are less willing than before to save banks, partly for their financial 
shortages and partly for a growing negative sentiment from the public opinion. As a con-
sequence of all of these aspects, the very recent years are seeing a growing body of litera-
ture on bank failures, and on systemic risks originated from such them.

Most research papers on bank failures are based on financial market models, that orig-
inate from the seminal paper of [3], in which the market value of bank assets, typically 
modelled as a diffusion process, is matched against bank liabilities. Due to its practical 
limitations, Merton’s model has been evolved into a reduced form (see e.g. [4]), lead-
ing to a widespread diffusion of the resulting model, and the related implementation in 
regulatory models.

The literature on systemic risk is very recent and follows closely the developments of 
the financial crisis, started in 2007. A comprehensive review is provided in [5]. Specific 
measures of systemic risk have been proposed, in particular, by [5] and [6]. All of these 
approaches are built on financial market data, on the basis of which they lead to the 
estimation of appropriate quantiles of the estimated loss probability distribution of a 
financial institution, conditional on a crash event on the financial market. A different 
approach, explicitly geared towards estimation of the interrelationships among all insti-
tutions, is based on network models, and has been proposed in [7].

Here we shall follow this latter approach, and add a stochastic framework, based on 
graphical Gaussian models. We will thus be able to derive, on the basis of market price 
data on a number of financial institutions, the network model that best describes their 
interrelationships and, therefore, explains how systemic risk is transmitted among them.

All models described so far, both in failure estimation as well in systemic risk model-
ling, are based on financial market data. Market data are relatively easy to collect, are 
public, and are quite objective. On the other hand, they may not reflect the true funda-
mentals of the underlying financial institutions, and may lead to a biased estimation of 
the probability of failure. This bias may be stronger when the probability of multiple fail-
ures are to be estimated, as it occurs in systemic risk. Indeed, the recent paper by Hirsch 
[8] shows that market models are not much reliable in predictive terms.

More generally, it is well known that market prices are formed in complex interaction 
mechanisms that, often, reflect speculative behaviours rather than the fundamentals of 
the companies to which they refer. Market models and, specifically, financial network 
models based on market data may, therefore, reflect “spurious” components that could 
bias systemic risk estimation. This weakness of the market suggests to enrich financial 
market data with data coming from other, complementary, sources. Indeed, market 
prices are only one of the evaluations that are carried out on financial institutions: other 
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relevant ones include ratings issued by rating agencies, reports of qualified financial ana-
lysts, and opinions of influential media.

Most of the previous sources are private, not available for data analysis. However, 
summary reports from them are now typically reported, almost in real time, in social 
networks and, in particular, in financial tweets. Therefore, big data offers the opportu-
nity to extract from them very useful evaluation data that can complement market prices 
and that can, in addition, “replace” market information when not available (as it occurs 
for banks that are not listed). To extract from tweets data that can be assimilated to mar-
ket prices, their text has to be preprocessed using semantic analysis techniques. In our 
context, if financial tweets on a number of banks are collected daily, it becomes possible 
to express, using semantic analysis, a daily “sentiment” towards them that expresses, for 
each day, how each considered bank is, on average, being evaluated by tweeterers.

In this paper we propose how to select and model semantic based tweet data, so to 
compare and integrate them with market data, within the framework of graphical net-
work models. We thus propose a novel usage of twitter data, aimed at assessing sys-
temic risk with a graphical model built on daily variation of bank “sentiment”. We also 
introduce a criteria, the T-index, aimed at selecting in advance the most relevant twitter 
sources, to avoid using non-informative data that may distort the results.

The novelty of this paper is twofold. From a methodological viewpoint, we propose a 
framework that can estimate systemic risks with models based on two different sources: 
financial markets and financial tweets, and suggest a way to combine them, using a 
Bayesian approach.

From an applied viewpoint, we present the first systemic risk model based on big data, 
and show that such a model can shed further light on the interrelationships between 
financial institutions.

The rest of the paper is organised as follows: in “Background and literature review” 
section we introduce our proposal; in “Methods” section we apply our proposal to finan-
cial and tweet data on the Italian banking market and, finally, in “Application and results” 
section we present some concluding remarks.

Methods
In this section we introduce our proposal. First we describe a methodology able to select 
in advance tweets, based on the H-index proposed by Hirsch [8], employed to measure 
research impact, for which a stochastic version has been proposed by Cerchiello [9].

The h-index is employed in the bibliometric literature as a merely descriptive meas-
ure, that can be used to rank scientists or institutions where scientists work. A similar 
ranking can be achieved for tweeterers; however the stochastic variability surrounding 
tweet citations (retweets) is greater than that of paper citations. suggest to formalise the 
h-index for tweet data, named T index, in a proper statistical framework. Here we briefly 
recall such methodology that we will use in the following.

Let X1, . . . ,Xn be n random variables representing the number of retweets of the Np 
tweets (henceforth for simplicity n) of a given twitterer. In the context of research impact 
measurement, the n random variables are the citations of the n papers of a given scien-
tist. We assume that X1, . . . ,Xn are independent with a common retweet distribution 
function F. Beirlant [10] and Pratelli [11], among other contributions, assume that F is 
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continuous, at least asymptotically, even if retweet counts have support on the integer 
set.

According to this assumption, the T index can be defined in a formal statistical way as 
in Glänzel [12] and Beirlant [10]:

The definition should be as much as possible coherent with the nature of the data and, 
therefore, assuming that F is discrete and, in order to define the T index, order statistics 
can be profitably employed.

In this paper, given a set of n tweets of a tweeterer to which a count vector of the 
retweets of each tweet is associated, we consider the ordered sample of retweets {X(i)} , 
that is X(1) ≥ X(2) ≥ . . . ≥ X(n), from which obviously X(1) (X(n)) denotes the most (the 
least) cited tweet. Consequently the T index can be defined as follows:

In our context, only the twitterers with highest values of the T-index will be included in 
the tweet data source that will be employed to estimate systemic risk. This on the basis 
of an implicit assumption that the most cited twitterers, being the most influential, are 
also the most reliable.

Having introduced a method aimed at selecting financial tweets, we now introduce the 
graphical network models that will be used to estimate relationships between N banks, 
both with market and tweet data.

Relationships between banks can be measured by their partial correlation, that 
expresses the direct influence of a bank on another. Partial correlations can be estimated 
assuming that the observations follow a graphical Gaussian model, in which � is con-
strained by the conditional independence described by a graph (see e.g. [13]).

More formally, let x = (x1, . . . , xN ) ∈ RN be a N−  dimensional random vector dis-
tributed according to a multivariate normal distribution NN (µ,�). Without loss of 
generality, we will assume that the data are generated by a stationary process, and, there-
fore, µ = 0. In addition, we will assume throughout that the covariance matrix � is not 
singular.

Let G = (V ,E) be an undirected graph, with vertex set V = {1, . . . ,N }, and edge set 
E = V × V , a binary matrix, with elements eij, that describe whether pairs of vertices are 
(symmetrically) linked between each other (eij = 1), or not (eij = 0). If the vertices V of 
this graph are put in correspondence with the random variables X1, . . . ,XN , the edge set 
E induces conditional independence on X via the so-called Markov properties (see e.g. 
[13]).

In particular, the pairwise Markov property determined by G states that, for all 
1 ≤ i < j ≤ N :

that is, the absence of an edge between vertices i and j is equivalent to independence 
between the random variables Xi and Xj, conditionally on all other variables xV \{i,j}.

(1)t : 1− F(t) =
t

n

(2)T = max{t : X(t) ≥ t}.

(3)eij = 0 ⇐⇒ Xi ⊥ Xj|XV \{i,j};
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Let the elements of �−1, the inverse of the variance-covariance matrix, be indicated as 
{σ ij} Whittaker [14] proved that the following equivalence also holds:

where

denotes the ijth partial correlation, that is, the correlation between Xi and Xj, condition-
ally on the remaining variables XV \{i,j}.

Therefore, by means of the pairwise Markov property, and given an undirected graph 
G = (V ,E), a graphical Gaussian model can be defined as the family of all N-variate nor-
mal distributions that satisfy the constraints induced by the graph on the partial correla-
tions, as follows:

for all 1 ≤ i < j ≤ N .
Stochastic inference in graphical models may lead to two different types of learning: 

structural learning, which leads to the estimation of the graphical structure G that best 
describes the data and quantitative learning, that aims at estimating the parameters of a 
graphical model, for a given graph. In the systemic risk framework, we are mainly inter-
ested in structural learning. Structural learning can be achieved by choosing the graphi-
cal structure with maximal likelihood, or its penalised versions, such as AIC and BIC. 
Here we follow the backward selection procedure implemented in the software R and, 
specifically, in the function glasso from package glasso.

For the aim of strcutural learning, we now recall the expression of the likelihood of a 
graphical Gaussian model.

For a given graph G, consider a sample X of size n from P = NN (0,�), and let Sn be 
the corresponding observed variance-covariance matrix. For a subset of vertices A ⊂ N  , 
let �A denote the variance-covariance matrix of the variables in XA, and define with SA 
the corresponding observed variance-covariance submatrix.

When the graph G is decomposable (and we will assume so) the likelihood of the data, 
under the graphical Gaussian model specified by P, nicely decomposes as follows (see 
e.g. [15]):

where C and S respectively denote the set of cliques and separators of the graph G, and:

and similarly for P(xS |�S).
Operationally, a model selection procedure compares different G structures by calcu-

lating the previous likelihood substituting for � its maximum likelihood estimator under 
G. For a complete (fully connected) graph such an estimator is simply the observed 

(4)Xi ⊥ Xj|XV \{i,j} ⇐⇒ ρijV = 0

(5)ρijV =
−σ ij

√
σ iiσ jj

(6)eij = 0 ⇐⇒ ρijV = 0

(7)p(x|�,G) =
∏

C∈C p(xC |�C)
∏

S∈Sp(xS |�S)
,

(8)P(xC |�C) = (2π)−
n|C|
2 |�C |−n/2exp

[

−
1

2
tr
(

SC(�C)
−1

)

]
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variance-covariance matrix. For a general (decomposable) incomplete graph, an iterative 
procedure, based on the clique and separators of a graph, must be undertaken (see e.g. 
[13]).

Through model selection, we obtain a graphical model that can be used to describe 
relationships between banks and, specifically, to understand how risks propagate in a 
systemic risk perspective. More precisely, in our context, we select one graphical model 
for each given data source: one from market data and one from tweet data.

Besides comparing the two models, it is quite natural to aim at integrating them into a 
single model. This task can be achieved within a Bayesian framework, as follows.

We first specify a prior distribution for the parameter �. Dawid [15] propose a con-
venient prior for �, the hyper inverse Wishart distribution. It can be obtained from a 
collection of clique specific marginal inverse Wisharts as follows:

where l(�C) is the density of an inverse Wishart distribution, with hyperparameters TC 
and α, and similarly for l(�S). For the definition of the hyperparameters here we fol-
low [16] and let TC and TS be the submatrices of a larger “scale” matrix T0 of dimension 
N × N , and choose α > N .

Dawid [15] and Giudici [16] show that, under the previous assumptions, the posterior 
distribution of the variance-covariance matrix � is a hyper Wishart distribution with 
α + n degrees of freedom and a scale matrix given by:

where Sn is the sample variance-covariance matrix.
The previous result can be used to combine market data with tweet data, assuming 

that the former represent “data” and the latter “prior information” in a Bayesian prior-to 
posterior analysis.

To achieve this task we recall that, under a complete, fully connected graph, the 
expected value of the previous inverse Wishart is:

and, therefore, the Bayesian estimator of the unknown variance covariance matrix, 
the a posteriori mean, is a linear combination between the prior (tweet) mean and the 
observed (market) mean.

When the graph G is not complete, a similar result holds locally, at the level of each 
clique and separator.

The previous results suggest to use the above posterior mean as the variance-covari-
ance matrix of a complete graph on which to base (backward) model selection, thereby 
leading to a new selected graphical model, based on a ”mixed” data source, that contains 
both financial and tweet data, in proportions determined by the quantities α and n.

(9)l(�) =
∏

C∈C l(�C)
∏

S∈S l(�S)

(10)Tn = T0 + Sn

(11)E(�|X) = Tn = (T0 + Sn)/(α + n)
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Application and results
In this section we consider the application of our proposed methodology. For reasons of 
information homogeneity we concentrate on a single banking market: the Italian bank-
ing system, a very interesting context, characterised by a large number of important 
banks, dominating the economy of the country, in a rapidly changing environment. We 
focus on large banks that are listed, for which there exist daily financial market data, that 
we would like to compare and integrate with tweet data.

The list of banks that we consider, along with their total assets at the end of the last 
quarter of 2013 (in Euro), a measure of bank size, is contained in Table  1. Banks are 
described by their stock market code (ticker).

For each bank we consider the daily return, obtained from the closing price of financial 
markets, for a period of 148 consecutive days in the year 2013, as follows:

where t is a day, t − 1 the day that preceeds it and Pt (Pt−1) the corresponding closing 
price of that bank in that day.

For the same period, we have crawled Twitter, using the software TwitteR, avail-
able open source within the R project environment, and chosen all tweets that contain, 
besides one of the banks in Table 1, a keyword belonging to a financial taxonomy, that 
we have built, based on our knowledge of which balance sheet information may affect 
systemic risk. Each obtained tweet has then been elaborated by a commercial partner of 
ours, Expert System, that has transformed each tweet into a sentiment class, with cat-
egories ranging from 1 to 5. Such categories are associated to tweets on the basis of a 
semantic analysis that allows a text to be automatically processed on the basis of codi-
fied rules based the experience of our partner company in business textual analysis. The 
higher the category, the more positive the sentiment (or value) that the tweet assigns to 
the bank under analysis.

Table 2 describes our proposed taxonomy, along with the frequency and average senti-
ment associated to each keyword in our considered big database.

(12)Rt = log(Pt/Pt−1),

Table 1 List of considered listed Italian banks

Bank Name Code Total assets

UniCredit UCG 926827

Intesa Sanpaolo ISP 673472

Banca Monte dei Paschi di Siena BMPS 218882

Unione di Banche Italiane UBI 132433

Banco Popolare BP 131921

Mediobanca MB 72841

Banca Popolare Emilia Romagna BPE 61637

Banca Popolare di Milano PMI 52475

Banca Carige CRG 49325

Banca Popolare di Sondrio BPSO 32349

Credito Emiliano CE 30748

Credito Valtellinese CVAL 29896
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The problem with the above data is that information sources (tweets in our case) are 
not selected in advance. All tweets that contain the considered keywords are crawled. A 
tweet on a bank may thus be given a high sentiment because it comes from a twitterer 
that is very favorable with the bank, for example from a bank’s stakeholder. For this rea-
son we made two choices: first we have considered only tweets coming from twitterers 
specialised in economics and finance. Second we have calculated, for each twitterer, its 
T-index, and selected only tweets coming from the twitterers with the highest values of 
such index (see [17] for more details). The selected sources, along with their T-indexes, 
are reported in Table 3.

We have then focused our analysis only on tweets coming from the above sources. For 
each bank we have calculated a sentiment daily variation, that mimicks market returns, 
as follows:

where t is a day, t − 1 the day that preceeds it, and Tt is the corresponding average daily 
sentiment on that bank for that day.

From a descriptive viewpoint, we expect the market and the tweet “returns” to show 
some degree of correlation although, given their different informational content, we do 
not expect such correlation to be very high. Table 4 below reports, for each bank, the 
correlation between financial returns and sentiment returns.

(13)St = log(Tt/Tt−1)

Table 2 Taxonomy proposed and descriptive sentiment analysis

Item Frequency × 100 Average sentiment

Commissions 0.03 2.67

Labour costs 1.49 3.21

Deposits 0.08 2.83

Interbank 0.14 2.19

Management 28.58 3.01

Interest margin 4.91 2.79

Subsidiaries 0.99 3.02

Capital 35.67 3.07

Loan losses 0.73 2.90

Loans 10.11 2.93

Table 3 List of selected twitterers ordered according to their T-index

Source T-index

La Voce 24

Sole 24 ore 18

Dagospia 14

Linkiesta 12

Reuters Italia 8

Milano Finanza 7

Italia Oggi 6

Ansa Economia 4
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From Table 4 note that correlations are low, especially for smaller banks, that have less 
tweet information, and this was expected. A detailed inspection of each bank tweet data 
reveals that banks of similar size show a higher correlation when more information is 
disclosed. This explains, for example, the difference in the market-sentiment correlation 
of UCG and ISP, that between CRG and PMI as well as that between BPSO and CVAL.

Our main interest is, however, not in predicting market returns using tweets but, 
rather, to model systemic risk with both sources of data. In this respect, Fig. 1 reports 
the selected graphical model obtained with market data. In the graph, each bank is indi-
cated with its ticker code, with the subscript r indicating that market returns are being 
considered.

The graph in Fig. 1 shows a core network of banks, highly correlated with each other, 
that comprises the largest banks: UCG, ISP, UBI, MB, BP, BPE, PMI. Smaller, more 
regional banks such as CRG, BPSO, CE, CVAL and, in addition, BMPS, which has gone 

Table 4 Correlation between financial and sentiment returns

Bank code Correlation

UCG 0.31

ISP 0.23

BMPS 0.16

UBI 0.33

BP 0.16

MB 0.27

BPE 0.24

PMI 0.26

CRG 0.09

BPSO 0.08

CE 0.14

CVAL 0.22

UCG_r

UBI_r

MB_r

ISP_r

CVAL_r

CE_r

BP_r

BPSO_r

PMI_r

BPE_r

BMPS_r

CRG_r

Fig. 1 Market network model for Italian banks
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through a period of severe crisis, are independent or less connected. In terms of a sys-
temic risk framework, the first group is more central than the second and, in particular, 
BPE is the most central, followed by UCG and MB.

Figure 2 reports the selected graphical model obtained with tweet data. In the graph, 
each bank is indicated with its ticker code, with the subscript s that indicates that tweet 
Sentiment returns are being considered.

From Fig. 2 note that the network is a little more sparse than that in Fig. 1. This reflects 
the lower variability of tweet data, with respect to market data. Again there is a central 
hub of bigger banks, with smaller ones more isolated ( CRG, BPSO, CE, CVAL). BMPS 
is now linked with bigger banks: this is a negative news for regulators, given the critical 
situation of BMPS, which has the highest probability of failure of all considered banks. 
In terms of systemic risk, note that the most central banks are BP and PMI, that have, in 
the considered period, often appeared in Twitter because of frequent news on possible 
and actual changes in governance and management.

We now consider the selected graphical model, obtained by means of (backward) 
model selection from the mixed data source, obtained by averaging the complete vari-
ance-covariance matrices of financial and tweet data, as shown in the “Application and 
results” section.

Figure 3 reports the selected model. For the sake of simplicity, and without loss of gen-
erality, we have taken α = n so that the market and the tweet data component have equal 
weights. In the graph, each bank is indicated with its ticker code, with the subscript m 
that indicates that mixed data are being considered.

Figure  3 emphasises again the distinction between “large” and “small” banks, that 
especially comes from market data. In addition, it puts in the core of the system banks 
that are more cited in twitter in the period, such as PMI. Coherently with this “mixing” 
behaviour the most central banks appear to be PMI, UBI and UCG. The first is the most 
cited, the third is the largest in size, and the second is highly positioned in both terms. 
In addition, Fig. 3 further emphasises the relevant systemic risks associated with BMPS, 
which is now more connected than before.

UCG_s

UBI_sMB_s

BMPS_s ISP_s

CVAL_s

CE_s

BP_s

BPSO_s

PMI_s

BPE_s

CRG_s

Fig. 2 Sentiment network model for Italian banks
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Conclusions
In this paper we have shown how big data and, specifically, tweet data, can be usefully 
employed in the field of financial systemic risk modelling.

By means of an appropriate selection of tweets, and of the employment of graphical 
Gaussian models to estimate relationships between bank tweet sentiment variations, the 
paper shows how tweet data can be used to estimate systemic risk networks.

Furthermore, the paper shows how to combine tweet based systemic risk networks 
with those obtained from financial market data, using the a posteriori Bayesian mean of 
the complete variance-covariance matrix.

We believe that our proposal can be very useful to estimate systemic risk and, there-
fore, to individuate the most contagious/subject to contagion financial institutions. This 
because it can compare and integrate two different, albeit complementary, sources of 
information: market prices and twitter information.

Another important value of the model is its capability of including in systemic risk 
networks institutions that are not publicly listed, using the tweet component alone: a 
relevant advantage for banking systems as the Eurozone one, where only 45 out of 131 of 
the largest banks, subject to the European Central Bank assessment of 2014, are listed.
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