
SPECIAL ISSUE

A multi-processor NoC-based architecture for real-time
image/video enhancement

Sergio Saponara • Luca Fanucci • Esa Petri

Received: 18 November 2010 / Accepted: 2 July 2011 / Published online: 21 July 2011

� Springer-Verlag 2011

Abstract The paper presents a multi-processor architecture

for real-time and low-power image and video enhancement

applications. Differently from other state-of-the-art parallel

architectures the proposed solution is composed of hetero-

geneous tiles. The tiles have computational and memory

capabilities, support different algorithmic classes and are

connected by a novel Network-on-Chip (NoC) infrastructure.

The proposed packet-switched data transfer scheme avoids

communication bottlenecks when more tiles are working

concurrently. The functional performances of the NoC-based

multi-processor architecture are assessed by presenting the

achieved results when the platform is programmed to support

different enhancement algorithms for still images or videos.

The implementation complexity of the NoC-based multi-tile

platform, integrated in 65 nm CMOS technology, is reported

and discussed.

Keywords Image enhancement � Real-time image/video

processing � Network-on-Chip (NoC) � Digital IP cells �
Multi-Processor System on Chip (MPSoC)

1 Introduction

In both professional and high-range consumer products

there is a growing interest in image and video enhancement

techniques to improve system performance in terms of

visualization quality, coding efficiency, error resiliency,

and capability of video analysis, understanding and pattern

recognition. The application fields include medical imag-

ing, intelligent transport systems and vehicles, video

telecommunication and multimedia entertainment, vision-

systems in robotics or industrial automation, surveillance

and remote sensing.

From the algorithmic point of view, several techniques

have been proposed in the literature, such as order statistics

and stack filters, median and Retinex-like filters, polyno-

mial and rational operators, morphological algorithms,

fuzzy-based and chaotic processing, to name just a few

[1–8]. Spatial and spatio-temporal operators, with or

without motion compensation, have been proposed. The

above techniques represent a mature solution for noise and

artifact suppression, for high-dynamic-range management,

for spatial and temporal video interpolation, and for image

resolution enhancement.

However the implementation of such techniques in real-

time and with low power consumption in System-on-Chip

(SoC) is a challenging open issue. In most cases the soft-

ware implementation of the proposed algorithms on a

microprocessor is not in real time. Even in the case that

real-time processing is obtained by using Graphic-specific

Processing Units (GPUs) [9, 10] the relevant power con-

sumption is unsuitable for embedded or mobile systems.

Indeed a GPU has a power consumption, depending on the

workload [11], ranging from tens to hundreds of Watts.

Dedicated integrated circuits (ICs), with power consump-

tion of hundreds mW, have been proposed in [12–16] but

they are devoted to a specific task, e.g. dynamic range

compression for display of mobile devices in [12]. On the

contrary, a programmable solution covering multiple tasks

is needed. The availability of low-power and integrated

solutions, offering enough programmability to support

S. Saponara (&) � L. Fanucci

Department of Information Engineering, University of Pisa,

via G. Caruso 16, 56122 Pisa, Italy

e-mail: sergio.saponara@iet.unipi

E. Petri

Consorzio Pisa Ricerche scarl,

C.so Italia 116, 56125 Pisa, Italy

123

J Real-Time Image Proc (2013) 8:111–125

DOI 10.1007/s11554-011-0215-8



different classes of image/enhancement algorithms, is a

strategic target to be achieved to foster the adoption of

these techniques in new application fields. The problem is

not only the design of the computing architecture but also

of the communication infrastructure due to the nature of

image enhancement algorithms, often employing irregular

data flow and irregular operation scheduling.

To address the above issues this work presents a pro-

grammable and scalable MPSoC architecture for image and

video enhancement exploiting two main paradigms:

1) the use of an array of multiple heterogeneous tiles;

2) the use of a Network-on-Chip (NoC) as communica-

tion infrastructure to overcome the bottleneck of

classic circuit-switched bus architectures.

The paper is structured as follows. Section 2 reviews

state-of-the-art computing architectures for real-time

image/video enhancement. Section 3 describes the pro-

posed NoC-based MPSoC for image/video enhancement,

discussing the design of the computing tiles. Section 4

deals with the NoC infrastructure. Section 5 presents some

application case studies assessing the functional perfor-

mances that can be achieved with the proposed MPSoC.

Implementation results in 65 nm CMOS technology are

discussed in Sect. 6. Conclusions are drawn in Sect. 7.

2 Image/video enhancement architectures

The computing architectures proposed in literature to

achieve real-time processing for image/video enhancement

tasks can be classified in three main groups, each group

having some advantages and some limits still to overcome:

1) Software implementation on general purpose CPUs

with clock frequencies in the GHz domain and with

multi-cores, e.g. Core 2 in [17], or a single-core, e.g.

Atom in [15], depending on the computational load.

The power consumption of such solutions can be up to

tens of Watts.

2) Software implementation on massively parallel GPUs

[9, 10] with computational throughput of billions of

floating point operations per second (GFLOPS) but

power cost from tens to hundreds of Watts.

3) Hardware design of programmable platforms achiev-

ing real time for handheld or mobile devices at power

costs lower than 1 Watt, but limited to a specific

algorithmic class [12–16, 18–20].

As example of the first group, pure software imple-

mentations of 3D DCT tasks, used in literature for video

coding or feature extraction applications, have been pro-

posed in [17]. A software optimized design of 3D DCT and

IDCT is implemented in real time at 24 frames/s VGA

format (640 9 480 pixels) on a general purpose multi-core

processor, the Intel Core 2 6300@1.86 GHz. The real time

processing of PAL formats (720 9 576 pixels) at 24

frames/s can be achieved by implementing on the Core 2

6300 device only the 3D forward DCT. To be noted that

the Core 2 6300 processor, realized in 65 nm CMOS

technology, integrates two 64-bit CPU cores and up to

4 MB of L2 cache memory. It has a die size of roughly

143 mm2 and a transistor count of roughly 300 millions; at

1.86 GHz the power consumption is up to 65 Watts.

Therefore, the power consumption of software solutions on

general purpose multi-core CPUs, in the order of tens of

Watts, is unsuited for battery powered, mobile or handheld

terminals.

A lower power consumption can be achieved by tar-

geting single-core CPUs such as the Intel ATOM @

1.6 GHz used in [15] to implement via software a feature

extractor for mobile applications. Although the Atom CPU

is more optimized in terms of power efficiency than the

Core 2 architecture, its power cost, several Watts, is still

high versus the requirements of handheld devices. More-

over, the achieved frame-rate performance in [15] with the

Atom solution is less than 6 images/s, not enough even for

medium-quality real-time video representations.

Real-time performance can be surely achieved with

GPUs, such as the recent Fermi architecture from NVI-

DIA [10]: GPUs are now evolving as massively parallel

platforms for graphic but also for computational-intensive

general purpose algorithms with high degree of parallel-

ism. As example, the Fermi architecture is composed of

512 CUDA (Compute Unified Device Architecture) pro-

cessing cores hierarchically organized in 16 streaming

multi-processors each with 64 kB L1 cache and 128 kB

local register file and sharing a common 768 kB L2

cache. The total amount of on-chip memory is roughly

4 MB. The Fermi GPU architecture has also a PCIe host

interface and 6 64-bit DDR (double data rate) DRAM

interfaces. Each CUDA core is capable of both integer

and floating point operations with 64-bit results. Each of

the 16 streaming processors has also 4 40-bit special

function units for fast approximation of non linear oper-

ators (square root, sin, cos, exp, log functions) and 16

load/store units. The Fermi NVIDIA GPU leads to high

computational power, up to 1,500 GFLOPS in single-

precision, orders of magnitude higher than Core 2 or

Atom general-purpose processors. Although real-time

processing is not an issue for such GPUs, their area and

power consumption is suited only for desktop applications

and workstations, not for handheld or mobile devices. The

Fermi NVIDIA core has an area occupation higher than

300 mm2 and the power consumption, depending on the

computational workload, can be up to several hundreds of

Watts.

112 J Real-Time Image Proc (2013) 8:111–125

123



The considerations done for the Fermi NVIDIA GPU

can be applied to other parallel architectures such as the

Cell Broadband Engine used for real-time video process-

ing, e.g. as [9] where the Cell realizes a real-time MPEG2

encoder on 128 9 128 frames. The cell includes nine

processors: one 64-bit Power PC core in charge of opera-

tion scheduling and data flow control and eight Synergistic

Processors (SP) dedicated to DSP computing and working

according to an SIMD (Single Instruction Multiple Data)

scheme. As far as the memory resources are concerned, the

cell uses 256 kB of local memory for each SP and 512 kB

L2 shared cache. The cell has a capability of more than 200

GFLOPS, with a size higher than 200 mm2 and a power

cost of tens of Watts.

To overcome the power consumption issues of the above

computing classes (general purpose CPUs or high-parallel

DSPs and GPUs) in academia [13–16, 18–20] and industry

[12] several programmable hardware designs have been

proposed. Such designs have a power consumption below

1 Watt but achieve real-time processing only for a specific

enhancement task and for low/mid-size image and video

formats. Most of the proposed solutions use a RISC-like

processing core with local instruction/data cache, for

operation and data control flow, enhanced by external

DRAM controller and hardware accelerators for the most

demanding tasks. However, these works have some limits

still to overcome:

1) The communication between the RISC core and the

coprocessors is based on classic bus architectures, e.g.

AHB bus. This limits the scalability of the solution and

represents a bottleneck in case of algorithms with

irregular data flow, such those used in image enhance-

ment applications.

2) Most of the proposed solutions are customized for a

specific algorithmic class: e.g. dynamic image com-

pression in [12], feature extraction in [15], 3D

rendering in [16]. Hence, if a mobile device needs a

number of these functions several ICs should be used

and mounted on a PCB board.

In the following Sections we propose a single-chip archi-

tecture to achieve real-time processing for different algorith-

mic classes (e.g. video motion estimation, image transform,

dynamic compression, contrast enhancement, de-blocking/

de-noising filtering) at reasonable power cost, within 1 Watt,

and for low/mid-size formats typical of mobile devices: up to

30 frames/s VGA quality (640 9 480 pixels) [21]. To this

aim the following ideas will be exploited:

– NoC as on-chip communication infrastructure, easing

architecture scalability and management of computing

tasks with irregular data flow due to the packet-switch

communication scheme.

– Use of multiple heterogeneous programmable proces-

sors (instead of homogeneous ones as in GPUs and in

general-purpose multi-core CPUs) specialized for dif-

ferent algorithmic classes.

3 NoC-based multi-processor SoC for image/video

enhancement

3.1 MPSoC architecture

The proposed architecture is sketched in Fig. 1. It is

composed of 16 heterogeneous tiles (9 computing/control

tiles with local memories plus 7 shared frame memories)

connected to each other through a NoC, with Spidergon

topology.

The NoC uses 8 5-port Routers (R in Fig. 1): 3 router

ports are dedicated to across, right and left router-to-router

connections and two ports are dedicated to the connections

between the NoC and the computing or memory tiles.

Conversion of protocol, data size and clock frequency

between the NoC and each tile is managed by 16 Network

Interfaces (NIs in Fig. 1).

The computing tiles are in details as follows:

– 1 tile labeled ‘CPU’: a 32-bit SPARC V8 core which is

in charge of instruction and data flow management.

This tile has a 5-stage integer pipeline plus hardware

support of multiply and accumulate (MAC) operations

and local instruction/data cache memory. The CPU tile

R

R

R R R

R

RR

left

right

across

NI NINI NI

NI NINI NI

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

frame
mem

frame
mem

Host
ITF

ME

frame
mem

ME

CPU

frame
mem

Filt SF frame
mem

frame
mem

ext
mem
ctrl

SC

l

Transf

NoC

To external host

To external
DDRDRAM

frame
mem

Fig. 1 Block diagram of the NoC-based MPSoC architecture

J Real-Time Image Proc (2013) 8:111–125 113

123



has also low-speed local peripherals (timers, interrupt

controller, UART and GPIO and JTAG interfaces). It is

realized as a modified and extended version of a

LEON2 IP core and has been enhanced with an IEEE-

754 compliant floating point coprocessor. The compu-

tational power amounts to roughly 0.85 Dhrystone

MIPS/MHz, i.e., 340 MIPS when the tile is clocked

at 400 MHz (see CMOS implementation results in

Sect. 6). The cache size is kept as a parameter of the

HDL description and is configurable at logic synthesis

time: 8 kB of instruction cache and 8 kB of data cache

are used in the implemented platform. The complexity

of the CPU tile amounts to 70 k logic gates.

– 2 tiles labeled ‘ME’, dedicated to motion estimation

processing, working on 2D image blocks, which are

detailed in Sect. 3.2;

– 1 tile labeled ‘Transf’, dedicated to transform func-

tions, such as Discrete Cosine-, Sine- or Fourier-

Transforms and their inverse (DCT/IDCT, DST/IDST,

FFT/IFFT) based on radix-2 butterfly units, detailed in

Sect. 3.3.

– 1 tile labeled ‘FILT’, dedicated to image/video filter-

ing; it supports linear (e.g. FIR) or non-linear (e.g.

rational filters) operators working at image block level.

The FILT tile is detailed in Sect. 3.4.

– 1 tile labeled ‘SF’, dedicated to special functions

widely used in image processing: pixel transformations

such as gamma correction and contrast enhancement

[18], color domain conversion (supporting RGB, YUV,

YCrCb), frame size conversion, log-linear and linear-

log domain conversion, clipping.

– 1 tile labeled ‘SC’, in charge of source coding techniques

such as variable-length coding or context-adaptive binary

arithmetic coding. It has a complexity of 30 k logic gates

plus 30 kbits of local memory. The core of this tile is the

coding engine we proposed in [19].

– 2 tiles labeled ‘Host ITF’ and ‘Ext Mem Ctrl’, acting as

high-speed external host interfaces and external mem-

ory controller (DDR-DRAM or ROM/EEPROM),

respectively; both tiles have DMA (Direct frame

Memory Access) functionalities and local buffers,

1 Mbits each.

All computing tiles and frame memories have a 32-bit

AHB interface towards the corresponding NI. The size of

each frame memory (frame mem in Fig. 1) is a parameter

of the HDL description configurable at synthesis time. In

this work a size of 2.35 Mbits, enough to store a VGA

(640 9 480) frame is considered for each of the 7 frame

mem blocks for a total amount of 16.45 Mbits on-chip

SRAM.

The architecture in Fig. 1 offers a balanced mix between

general-purpose computing capabilities of the CPU tile,

high-throughput DSP capabilities offered by the other

heterogeneous tiles (2 ME, the SF, the SC, the Transf tiles)

and large on-chip memory resources since image/video

applications are data-dominated.

Memory resources are hierarchically organized in a first

level of local memories in the computing tiles, plus a

second level of shared frame memories (SRAM) accessible

via NoC and a third level of off chip DRAMs accessible via

the high-speed ‘Host ITF’ or the ‘Ext Mem Ctrl’ tiles.

Due to the NoC paradigm, the MPSoC architecture can

be easily scaled by modifying the configuration discussed

in this work. The architecture can be scaled in terms of

number of used computing tiles, number and size of the

frame memories, size of the tile bus data and of the NoC

links. This way the desired trade-off between complexity

and performance can be easily set.

Hereafter, we present the architectural block diagram of

the main tiles dedicated to signal processing functional-

ities. By exploiting a design reuse IP approach these tiles

have been implemented by modifying the RTL descriptions

of IP macrocells we have proposed as stand-alone pro-

cessors in past works [18, 19, 23–25]. The NoC design

instead is a completely new design from scratch. This is

why in the following discussion we briefly review the

architectures of the tiles derived by previous IP designs (for

further details we refer to our published literature) while

a deeper analysis is reserved to the NoC in Sect. 4.

3.2 Motion estimation tiles

ME is one of the most diffused and most demanding tasks, in

terms of computation and memory resources, in video pro-

cessing for different applications [19, 22, 26]: video coding,

feature extraction, frame-rate up/down conversion, video

analysis to name just a few. For each image block in the

current frame the best matching block in one or more previous

frames is searched, using a full search (FS) or a fast algorithm,

minimizing a cost function such as the SAD (sum of absolute

difference). Due to the high computational cost required by

ME, billions AD operations with a FS algorithm applied to a

30 frames/s VGA video with ±16-pixel search size, we

adopted two tiles in our MPSoC architecture, see Fig. 1.

Each tile, as reported in Fig. 2, consists of a 2D hard-

ware search engine plus local buffer memories, a 32-bit

AHB interface towards the NoC and a ME controller to

support fast search strategies. The search engine is a reg-

ular array of 256 processing elements (PE) each imple-

menting at pixel-level AD operations plus an adder tree, a

unit for minimum detection calculation and a unit used to

compare SAD block matching results with programmable

thresholds (in case of fast ME search with early stop cri-

teria). The search engine also supports programmable

114 J Real-Time Image Proc (2013) 8:111–125

123



search size. The search engine provides SAD and Motion

Vector (MV) field calculation as results; it is derived from

a parametric 2D search engine we previously proposed in

[23]. In this work the IP has been configured for a 256 PE

array capable of 256 AD operations per clock cycle, i.e.,

more than 100 GOPS when the tile is clocked at 400 MHz.

Hence, the use of both tiles allow for a maximum com-

putational capability of 205 GOPS. The local memory

resources for each ME tile have a size of 40 kbits, enough

to (i) store a 16 9 16-pixel block and its search area with

±16 pixel displacement in horizontal and vertical direc-

tions and (ii) ensuring the prefetch of the next image block

and its corresponding search area. The logic complexity of

each ME tile amounts to about 115 k logic gates. The

architecture proposed in Fig. 2 implements Full Search but

also, having a programmable search area and supporting

early termination criteria, fast ME algorithms such as the

predictive ME in [19, 22, 27, 39]. In case of fast ME

algorithms the context-aware control strategies are elabo-

rated by the ME controller reported in Fig. 2 which, ana-

lyzing SAD and MV results, adapts the search strategy.

The ME controller in Fig. 2 is realized using a simple

programmable core, compliant with 8051 instruction set,

and available as reusable IP cell from [35, 36].

3.3 Transform tile

The ‘Transf’ tile supports frequency transform tasks,

among the following 6 possible configurations: DCT,

IDCT, DST, IDST, FFT, IFFT. These tasks are used in

image and video coding applications for intra-frame data

compression, for motion analysis in the frequency domain

and for image segmentation. By exploiting the separability

technique this tile is composed of the cascade of two 1D

transform engines, see Fig. 3, working on 8 9 8-pixel

blocks plus a transposition buffer memory. The first engine

works row-wise while the second engine works on the

transposed results. Each engine adopts a decomposition of

the 8 9 8-pixel input matrix in 4 radix-2 (R2) butterflies,

implementing MAC operations between input pixels and

twiddle coefficients. As far as the arithmetic accuracy is

concerned, the tile supports MAC operations with a con-

vergent-block floating point (CBFP) arithmetic. CBFP has

been proved [24, 38] providing a better trade-off between

accuracy and complexity versus fixed-point or floating-

point arithmetic. The transform coefficients are uploaded

from ROM memories: by selecting the desired transform a

multiplexer circuitry connects the proper ROM to the data

paths.

The computational throughput of the architecture in

Fig. 3 amounts to 1 transform pixel per each clock cycle.

Therefore a processing capability up to 400 M transform

operations per second is possible by clocking the tile at

400 MHz. The circuit complexity is less than 50 k logic

gates. This tile also adopts a local memory buffer of

32 kbits: 16 kbits to prefetch up to 16 8 9 8 blocks, and

16 kbits to store the results of 16 8 9 8 transform image

blocks. 8 bit per pixel and 16 bit per sample in the trans-

formed domain are considered. The ‘Transf’ tile is con-

nected to the relevant NI by a 32 bit AHB bus. A control

unit, realized as a finite state machine, provides all relevant

control signals.

The ‘Transf’ tile has been described through a para-

metric VHDL model. Therefore, in case of professional

video standards using higher bit depths (e.g., 10 bits in

ITU-R BT.601 or 12 bits in Digital Cinema Initiatives) the

MPSoC platform can be configured at synthesis time to

work with more than 8 bits per pixel.

3.4 Filtering tile

The ‘Filt’ tile is a digital macrocell whose global archi-

tecture is sketched in Fig. 4. This architecture is made up

of the following building blocks:

(i) a programmable filtering core configurable to imple-

ment linear or rational non-linear filters;

Fig. 2 Architectural block diagram of the ME tile

1D transform
engine (ROM+
R2 Data paths)

1D transform
engine (ROM+
R2 data paths)

Transpose
memoryLocal

buffer
AHB

wrapper

Control
unit

Fig. 3 Architectural block diagram of the Transf tile

J Real-Time Image Proc (2013) 8:111–125 115

123



(ii) a unit for noise/artifact estimation and filter tuning to

implement de-noising or de-blocking functionalities;

(iii) memory resources for data flow management;

(iv) a control unit, realized as a finite state machine,

providing all relevant control signals.

The programmable filtering core block in Fig. 4 is

implemented by the circuit sketched in Fig. 5. An array of

programmable linear filters (LF in Fig. 5) elaborates the

input samples of spatial and temporal masks centered on

the pixel to be filtered Xt
0 in the current frame t. Each LF is

realized using a carry-save multiplier cascaded by an

accumulator unit. To realize also rational non linear filters

the outputs of the LF blocks are weighted by non-linear

terms 1/b. According to Eq. 1 the non-linear weights are

produced as a function of spatial neighboring pixels in the

current frame t (indexes i, j belonging to the spatial domain S)

and/or temporal neighboring pixels in the frames t - 1 and

t ? 1 (indexes h, k belonging to the temporal domain T).

As shown in Fig. 5 in hardware the evaluation of the non

linear weights 1/b is based on look-up-tables (LUTs)

receiving as input the results of the comparison between

programmable thresholds and a combination (with sum,

subtraction and absolute difference operations) of the

incoming neighboring pixels. The results of all filtering

directions are provided to the adder tree that produces the

final output value. The adder tree unit is followed by a

programmable output stage that allows the extension of

both mask size and filtering directions. The circuit of Fig. 5

processes concurrently up to 7 filtering directions sup-

porting both 2D spatial (4 directions as the algorithm

proposed in [25]) and 3D spatio-temporal (as the algorithm

proposed in [28]) rational algorithms.

Yt
0
¼
X

i;j2S

1

b Xt
i ;X

t
j

� � � aiX
t
i þ ::þa0Xt

0þ ::þajX
t
j

h i

þ
X

h;k2T

1

b Xt�1
h ;Xt�1

k

� � � ahXt�1
h þ ::þa0Xt

0þ ::þakXtþ1
k

� �

ð1Þ

The extension of both mask size and processing directions

can be obtained by the iterative use of the filtering unit. For

instance, starting from the circuit in Fig. 5 the spatio-temporal

rational algorithm with 13 filtering directions in [28] can be

implemented using 2 processing iterations of a single ‘Filt’

tile. The iterative use of the ‘Filt’ tile can occur also when

multiple passes of the filter on the same image is required to

equalize the phase response in all directions or to achieve a

high order filtering effect.

The unit for noise/artifact estimation and filter tuning in

Fig. 4 receives as input the difference between the original

image and the filtered one. The resulting difference image is

an estimation of the noise/artifact affecting the original image

to be filtered. Using this difference image the noise statistics

are calculated and the type of noise is classified as Gaussian,

contaminated-Gaussian, Impulsive or blocking artifact noise.

As consequence the filter response is properly tuned in terms

of processing coefficients. To reduce complexity, under the

hypothesis of a uniform noise/artifact type affecting a whole

image, the above described noise estimation phase is done on a

64 9 64 pixel sub-image, obtained by sub-sampling (drop of

every second sample) a 128 9 128 area positioned on the

center of each frame.

As discussed before, to avoid the use of power-

consuming divider and square operators, the generation of

the nonlinear weights is based on a LUT approach. In this

Local 
Memory

Programmable 
Filtering Core

FIFO

Noise/artifact 
estimation 

I/O 
Data

-

Filter configuration

In

Out
AHB

Wrapper

Control 
unit

Fig. 4 Architectural block diagram of the Filt tile

LF

LF

LF

LF

LF

LF

LF

Coefficient memory
X0

x

N
ei

gh
bo

r 
pi

xe
ls

x

x

Filter configuration

x

x

x

x

x

A
dd

er
 T

re
e

+
1

0

1: iterative,
0: normal

L
U

T
s

C
om

pa
re

Filter
config

Thresholds

S
u

m
,A

dd
,

A
D

Filter
config

Fig. 5 Block diagram of the programmable filtering core

116 J Real-Time Image Proc (2013) 8:111–125

123



work, for each filtering direction 12 possible LUTs are

defined, each optimized for a different noise distribution

(Gaussian, contaminated-Gaussian or impulsive noise or

blocking artifact) and for spatial, temporal or spatio-temporal

processing.

The ‘Filt’ tile has a throughput of 1 pixel/clock cycle,

i.e., 400 Mpixels/s can be processed in real-time with a

400 MHz clock, and has a 32-bit AHB interface towards

the NoC. The total local memory plus FIFO amount to

35 kbits while the circuit complexity is around 45 k logic

gates. Pixels and coefficients are represented using 8 bits.

4 NoC communication infrastructure design

The need of real time performance in image and video

enhancement applications, such as the case studies con-

sidered in Sect. 5, can be satisfied not only by reducing

algorithms complexity, but also by exploiting parallel

computation. Lots of image/video processing algorithms

are suitable to follow a parallel operation flow, e.g. in

Motion Estimation operations different searches (e.g.:

searches for different macroblocks) can be done indepen-

dently and thus parallelized.

A parallel hardware configuration can take advantage of

innovative communication infrastructures that implement a

scalable, distributed network in multi-core systems [29]:

the so-called Network-on-Chip (NoC), which applies the

layered-stack approach to the design of the on-chip inter-

tile communications.

A clear overview of NoC capabilities for image/video

processing is given in [30], which analyzes the effects of

parallelization and communication backbone on an MPEG-

2 encoder: when increasing the number of processing cores

for parallelization, the NoC communication approach out-

performs classic point-to-point and hierarchical bus inter-

connections in terms of area, power and throughput.

For our design we consider a Spidergon NoC topology

[31–33], where each router is connected to its clockwise

(Right) and its counter-clockwise (Left) neighbors as in a

simple ring topology. In addition, each router is also con-

nected directly to its diagonal counterpart in the network

(Across), to minimize the number of nodes to cross before

reaching the destination. As an example, a maximum of

two hops are necessary to connect any two routers in the

Spidergon network in Fig. 1 (i.e., a maximum of three

nodes shall be crossed by any packet). Each router in Fig. 1

presents two more connections to the local Network

Interfaces, thus resulting in 5-port routers.

The proposed NoC router architecture features worm-

hole packet-switched routing with credit-based flow con-

trol: this approach reduces the amount of network buffering

and allows for a deep pipelined packet communication.

The overall router complexity is kept at a minimum by

assigning routing path and QoS (Quality-of-Service) at

packet injection.

In fact, the router uses a simple source-based routing,

where the entire path is encoded by the NI in the packet

header, that has a fixed size due to the symmetry of the

topology. This enables fast routing decision, because each

router has just to extract the forward information, without

any need of computation or look-up tables.

The router also offers best effort and QoS features in

terms of both latency and throughput. In the implemented

QoS mechanism the requested bandwidth value is pro-

grammed in the packet header at the injection point (Net-

work Interface) and is not explicitly linked to the path of a

data flow through the router. With this mechanism, the

router QoS support is a simple two-step arbitration. When

all data flows have the same bandwidth reservation, the

arbitration can degenerate into the basic Round Robin,

Least Recently Used or fixed priority schemes.

The main blocks of the 5-port router architecture are

sketched in Fig. 6. It consists of the NoC UpStream (US)

interface, i.e., the output to the network, and the NoC

DownStream (DS) interface, i.e., the input from the net-

work; the Input stage, where the routing and QoS infor-

mation are extracted from the header; the switching matrix

to connect any router input port to any output port; the

Output stage, where extra optional buffering is performed;

the Arbiter, selecting the winner among the inputs

requesting access to the same output. The router has a

configurable crossing latency, from zero up to two clock

cycles. This is obtained by means of a flexible pipeline in

the data path, where registers can be removed and buffers

are optional or even bypassable.

Each NoC NI in Fig. 1 interfaces the IP core to the NoC

domain, thus constituting the IP core entry point to the

communication backbone. Two types of NIs are defined:

the Initiator, connecting a Master IP core (e.g. a CPU) to

the NoC, and the Target, interfacing a Slave IP core (e.g. a

memory) to the NoC. These two NIs are basically dual. In

fact, in the NI two data flows can be identified (the pairs of

arrows in Fig. 7): request path and response path. The

request path goes from a Master to a Slave, that means

from the Master IP core to the NoC in an Initiator NI, and

Arbiter

N
oC

 D
S

 in
te

rf
ac

e

In
pu

t s
ta

ge

N
oC

 U
S

 in
te

rf
ac

e

O
ut

pu
t s

ta
ge

Left

NI2

Right
Across

NI1

Left

NI2

Right
Across
NI1

Fig. 6 NoC router architecture

J Real-Time Image Proc (2013) 8:111–125 117

123



from the NoC to the Slave IP core in a Target NI. The other

direction, the response path, goes from a Slave to a Master.

The generic NI is made up of two separate components:

Shell and Kernel, see Fig. 7. The Shell translates IP

transactions (AMBA AHB transactions in our case study)

into NoC packets and encodes in the packet header all

necessary routing and QoS information. The Kernel is IP-

protocol independent and provides optional data bus size

and frequency conversion support between the IP and the

NoC domain, by means of bisynchronous FIFOs. The

FIFOs can also be used to support store & forward trans-

mission, where data are collected up to a specified

threshold before being sent; the feature is particularly

useful to optimize the use of the network in case of inter-

mittent transmission.

The NI data pipeline is also configurable, from a three-

stage one to a zero-latency implementation that removes all

input/output registers and FIFOs (thus not supporting size

or frequency conversion). The selected configuration for

the NoC building blocks implements basic functionalities

(conversion of protocols, data size and frequency), plus the

store & forward support for transmission to the network, to

guarantee efficient parallel communication between cores

and memory spaces.

For the sake of completeness, Fig. 8 provides a more

detailed insight of a basic Initiator NI architecture with a

clear distinction between request (upper part of figure,

from the IP core to the NoC) and response (lower part)

paths. From left to right Fig. 8 highlights the different NI

components: the Shell, interfacing to the Master IP core

and encoding/decoding the NoC packet header; the Kernel,

with header and payload FIFOs; the NoC Upstream and

Downstream interfaces.

A Target NI presents a dual architecture, with a request

path going from a NoC DS (input) interface through a

Kernel and a Shell where NoC packet header decoding is

performed, while the response path is where the Slave IP

core responses are converted into NoC packets to be sent

over the network through a NoC US interface.

Figure 9 shows the format of the NoC packet carrying

header and payload data. The header field includes both a

Network Layer header (HNL) and a Transport Layer

header (HTL). The HNL contains the packet routing and

QoS information to be used by the routers in the network,

while the HTL encodes IP protocol information, necessary

to convert back the NoC packet into a bus transaction, upon

its arrival at destination. The payload of the NoC packet

contains the payload data cells of the bus transaction. Both

header and payload are physically split in header and

payload NoC flits; all flits of a packet are routed through

the same path across the network. Note also that header and

payload information need to travel in separate flits.

In our case study we are not targeting an interconnect

for a general purpose system but for specific image/video

enhancement algorithms. This way it is possible to estimate

the traffic flow and to properly size the interconnection

backbone.

In our application the NIs are in charge of converting

32-bit AMBA AHB data transactions into 128-bit NoC

transactions. At least the size conversion have to be sup-

ported, therefore the zero-latency NI implementation is not

suitable. It is also necessary to support frequency conver-

sion, for connecting tiles running at different speed because

SHELL

(IP specific)

Handshaking 
& encoding 
of AHB data

KERNEL

NoC packet 
assembly & 
frequency/size 
conversion

AHB NoC 
packet

(IP protocol 
independent)

IP 
side

Router 
side

Fig. 7 NI subdivision in Shell and Kernel

Fig. 8 Main blocks in the NI micro-architecture

p g p

Transport 
header

Transport Payload (data)
Network 
header

Flit
first last

header field

Fig. 9 Internal organization of a Spidergon NoC packet

118 J Real-Time Image Proc (2013) 8:111–125

123



of different operation modes (see implementation results in

Sect. 6). Since the maximum AHB bus frequency to be

supported is 400 MHz, we cannot select the NoC NIs

configuration with a single stage of pipeline, constituted by

the bisynchronous FIFOs (necessary for conversion), but

we need an extra pipeline level given by the bus retiming

stage.

The NoC routers have been configured to have one-

cycle latency, as this configuration can support the target

NoC frequency.

When there is no contention to access the link, any

packet entering the network from router i will exit the

network from any router k after no more than three cycles

(because a maximum of three routers will be crossed, each

of them consuming a 1-cycle latency). Moreover, the effect

of size and frequency conversion in the NIs adds up to the

global latency of the system. However, the latency is not an

issue for the target application, as long as the data flow can

keep the local frame memories not empty. As a matter of

fact, the NoC interconnect should be sized as to support a

data flow capable to feed the local memory resources and

avoid them to go empty.

By assuming a 400 MHz NoC clock frequency, that can

be supported by the selected NoC building blocks config-

urations, the 128 bits of NoC data size are enough to

guarantee a nominal throughput of 128 bits 9 400 MHz =

51.2 Gbps per link, which is sufficient to support all target

image/video enhancement functionalities. Moreover, the

supported throughput for each link is 4 times higher than

the maximum throughput theoretically supported by each

IP in Fig. 1 through the AHB interface (considering 32-bit

data and 400 MHz clock frequency).

The enabled store & forward feature allows the NI to

hold the packet until a certain amount of data is received

from the IP. This way, the path in the network is engaged

only when a continuous data flow can be guaranteed, thus

making full use of the available bandwidth.

NoC packet length depends on the amount of data to be

transferred. To utilize the high bandwidth available in the

NoC interconnect it is necessary to execute long AMBA

AHB transactions: obviously, executing ‘‘Store 1 byte’’

operations would waste the available bandwidth to gener-

ate NoC packets composed of a header (whose overhead is

about 80 bits per packet, and is transmitted in a separate

flit) plus a 128-bit payload flit where only a single byte is

significant, thus resulting in a real throughput of 1.6 Gbps.

If we execute at least ‘‘Store/Load 16 bytes’’ operations we

generate NoC packets composed of a header flit and

a payload flit containing 128 data bits, thus achieving a

25.6 Gbps throughput. When further increasing the oper-

ation size, for example, to 32 bytes, the throughput

increases to 34.1 Gbps. It is therefore clear that the oper-

ation size executed in AMBA AHB domain shall be

properly selected to take advantage of the high NoC

bandwidth.

NoC QoS mechanism is also available, to give higher

priority to critical data flows. However, in our application

the NoC bandwidth capability is much higher than the

AHB one and thus there is no real need to boost critical

flows. Therefore, all data flow injected in the NoC by the

NIs have the same bandwidth reservation (i.e., the same

priority), and the arbitration performed in the routers is a

simple Least Recently Used.

5 MPSoC application case studies

To asses the functional performance of the proposed

architecture we show the results achieved when program-

ming the MPSoC for different image/video processing and

enhancement applications. Comparisons with state-of-the-

art techniques addressing similar issues but using different

implementation platforms are also reported.

As a first case study we report the performance achieved

when the MPSoC platform is used to implement a lumi-

nance correction and contrast enhancement algorithm.

The implemented algorithm is the 2D Retinex-like

operator originally proposed in [18]. In the current reali-

zation the input image to be enhanced (gray scale in the

considered example) is processed through the Filt and SF

tiles of Fig. 1 which first extract the luminance component,

by applying a recursive low-pass rational filter (4 passes);

then by division the reflectance component is obtained. The

two image components are separately processed through

gamma correction (for the luminance) and detail amplifi-

cation (for the reflectance) operators. Finally, the two

modified components are combined by multiplication in

the output enhanced image. To be noted that for this class

of algorithms the 2 ME tiles plus the SC and the Transf tiles

and the relevant frame memories are not used and are kept

in idle mode. Figure 10 presents from left to right the

original image to be processed, the output obtained with

the Retinex-like algorithm running on the proposed

MPSoC platform and the results achieved by another sin-

gle-scale Retinex algorithm proposed in literature in [5].

This reference algorithm extracts the luminance component

by adopting a filter with a large Gaussian kernel of

200 9 200 taps and has been implemented in real-time in

[6] on TI DSP processors: a 32-bit floating-point C6713

DSP clocked at 225 MHz and a 32-bit fixed-point DM642

DSP clocked at 600 MHz, both requiring a power cost of

several Watts.

From Fig. 10 it is clear that, although starting from a

bad illuminated image, the algorithm originally proposed

in [18] and implemented in this work on the MPSoC

platform allows an optimal recovery of the image quality

J Real-Time Image Proc (2013) 8:111–125 119

123



by increasing the luminance level of the whole image but at

the same time preserving and enhancing contrasts and

edges. On the contrary in the reference single-scale retinex

proposed in [5, 6], see Fig. 10, there is a smoothing effect

on original image edges and contrast.

The previous technique refers to the use of our MPSoC

video platform for enhancement of still images. The same

platform can be used also for luminance correction and

contrast enhancement of video sequences. As example, by

programming the MPSoC to support the 3-branch Retinex-

like filtering algorithm proposed in [18] with intra-frame

spatial filtering and inter-frame temporal filtering the

results of Fig. 11 can be obtained.

Two adjacent frames extracted from a sequence affected

by an instantaneous variation of illumination are depicted

in Fig. 11. The sequence was acquired by a camera

mounted on a car traveling on a road flanked with trees;

direct sunlight and shadow rapidly alternate in the scene.

The left column shows the original frames, the right one

the processed ones, as obtained from the 3-branch algo-

rithm implemented on the proposed MPSoC platform. It

can be noted that in the output sequence the luminance

variation has been compensated.

Another application case study to assess the functional

performances of the MPSoC platform is combining the

computational capabilities offered by the ME, FILT and SF

tiles to improve the coherency of the MV field extracted

from bad illuminated video scenes, e.g. scenes acquired by

road-surveillance cameras in real road scenarios with non-

controlled light conditions. The implementation of this

algorithm [34] on the MPSoC proposed in this work does

not require the SC and the Transf tiles and the corre-

sponding frame memories, which are kept in idle mode.

The top graph in Fig. 12 shows what happens when

directly applying a ME algorithm to a real-world video: a

car entering a tunnel. A commercial camera working at 30

frames/s SIF video format is accomplishing a horizontal

panning to follow the car. To avoid problems of local

minima the used motion estimation is a FS algorithm which

operates with 16 9 16 blocks, 1 previous frame used for

matching, and a search displacement of ±16 pixels in both

horizontal and vertical directions. The final resulting MV

field in the top graph of Fig. 12 is clearly chaotic and is not

fully coherent with the real motion. Instead, the MV field

reported on the bottom graph in Fig. 12 is the result of a

processing phase realized with our proposed MPSoC

platform: a pre-processing filter is first applied for edge-

preserving luminance correction and then a ME processing

stage is applied on the enhanced video frames.

When using the proposed technique the details are easier

to discriminate and the MV filed becomes more accurate

(see graph at the bottom of Fig. 12). The MV field is

clearly less chaotic and more coherent with the real motion.

Hence, this technique is important also in all applications

Fig. 10 From left to right: a the

original image, b the output of

our algorithm proposed in [18]

and implemented in this work

on the MPSoC platform, c the

image processed using the

single scale retinex in [5, 6],

adopting a large Gaussian

kernel of 200 9 200 taps

Fig. 11 Example of Retinex processing for image sequences affected

by instantaneous luminance variations. The left column shows the

original frames, the right one the filtered frames

120 J Real-Time Image Proc (2013) 8:111–125

123



where MV field estimation is used as a basis for further

enhancement steps.

Finally, a fourth application example of the functional

capabilities of the proposed MPSoC platform is its use for

video coding. To this aim all tiles have been used to

implement a hybrid coding scheme using a fast search

adaptive ME [22] with ±16 pixel search displacement,

max. 5 previous reference frames for best block matching,

SAD error cost function, CABAC entropy coding, 2D

Integer DCT transform, in-loop de-blocking filter. With

reference to scenes with different degrees of dynamism,

such as Football 30 frames/s CIF video formats, a sport

scene, and Mother & Daughter 30 frames/s CIF, a low-

dynamic scene, Figs. 13 and 14 present the obtained rate-

distortion curves (PSNR in dB vs. bit-rate). The achieved

performances are compared to those of a reference MPEG

AVC encoder, using JM software implementation [26],

configured using CABAC and FS ME with a similar

parameter set as described above. From Figs. 13 and 14 it

is clear that the proposed MPSoC achieves optimal per-

formances with a PSNR degradation for a fixed bit-rate of

less than 0.2 dB versus the reference JM software imple-

mentation. As proved in [22, 26, 37], the implementation of

the original JM software on general purpose single-core

CPUs (Athlon AMD 2400? in [22], Pentium4@1.7 GHz

in [26]) does not allow for real-time processing, even

considering small QCIF image formats. Our MPSoC can

ensure real-time processing of 30 frames/s VGA videos

with a power consumption below 1 Watt (see Sect. 6).

6 CMOS implementation results

The proposed MPSoC architecture has been designed using

VHDL language and then synthesized in STMicroelec-

tronics 65 nm low-power CMOS technology. RTL to gate-

level synthesis has been accomplished within Synopsys

CAD environment while back-end phases have been

accomplished within Cadence environment.

The computational and memory complexity of all tiles

in Fig. 1 amounts to 520 k logic gates plus 19 Mbits of on-

chip SRAM hierarchically organized in 16.45 Mbits level 2

frame memories (frame mem blocks in Fig. 1) accessible

via NoC and roughly 2.5 Mbits level 1 local memories

distributed in the tiles: 1 Mbits each for Host ITF and Ext

Mem Ctrl tiles and 500 kbits distributed in the other het-

erogeneous tiles. The overall circuit complexity of the

MPSoC is determined by both the tiles discussed in Sect. 3

and the resources required by the NoC infrastructure pre-

sented in Sect. 4. To meet the functional requirements of

the proposed MPSoC each NI is configured to support

Fig. 12 (Top) MV field without preprocessing and (down) with pre-

process for edge preserving luminance correction before ME

30

32

34

36

38

40

250 500 750 1000 1250 1500 1750 2000 2250

Bit-rate, kbits/s

P
S

N
R

-Y
 (

d
B

),
 F

o
o

tb
al

l

H264 Jm SW

H264 on MPSOC (Fast ME)

Fig. 13 PSNR versus bit-rate for Football

37

39

41

43

45

47

49

0 100 200 300 400

Bit-rate, kbits/s

P
S

N
R

-Y
 (

d
B

) 
M

o
th

er
 &

 D
au

g
h

te
r

H264 Jm SW

H264 on MPSOC (Fast ME)

Fig. 14 PSNR versus bit-rate for mother & daughter

J Real-Time Image Proc (2013) 8:111–125 121

123



32-bit IP AHB bus, 128-bit flits on the NoC side, conver-

sion of protocol, data size and frequency up to a maximum

of 400 MHz, FIFOs sized to store 2 locations (data or

headers). To meet the 400 MHz requirements a retiming

stage has been inserted in the Shell thus each NI presents a

2-stage pipeline. The complexity of this NI configuration is

13.8 k logic gates in 65 nm CMOS technology. As far as

the router is concerned it has 5 ports, 128-bit flits data size,

an input buffer for each port of 2 locations, and supports

the features described in Sect. 4 with a clock frequency of

400 MHz and a complexity in 65 nm CMOS technology of

32.8 K logic gates. The FIFOs in the NoC building blocks

are not memory-based, since their small size makes more

convenient a register-based implementation. The overall

NoC complexity (16 NIs plus 8 Routers) amounts to 483 k

logic gates.

Hence, the total MPSoC complexity, due to computing

and memory tiles plus NoC infrastructure, amounts to

1,003 k logic gates and 19 Mbits of on-chip SRAM. The

number of transistors of the whole platform is about 120

millions.

As far as speed performance is concerned, the maximum

achievable frequency depends on the used standard-cells

library version. Indeed the used technology provides three

types of standard-cells: beside the SVT (standard voltage

threshold) version there are also a HVT (high voltage

threshold) version optimized in terms of leakage power

consumption, and a LVT (low voltage thresholds) opti-

mized in terms of speed but with a much higher power cost.

By using a mix of HVT and SVT cells (HVT for all paths

with non critical time performances, while SVT only for

time-critical paths limiting max. clock speed) we were able

to run all processors at 400 MHz while keeping the cost

figure power consumption/MHz*gate near the minimum

value permitted by the technology library. A faster clock,

about 800 MHz, could be achieved using LVT cells;

however, the power consumption with LVT would be

much higher. The leakage power associated to HVT cells is

about 12 times smaller than in SVT and 115 times smaller

than in LVT. As far as dynamic power is concerned, HVT

cells allow for a reduction of a factor of 1.1 if compared

with SVT cells and 1.3 if compared with LVT cells.

Moreover, the performances achieved at 400 MHz with the

HVT/SVT cells are enough for the target mobile and/or

handheld applications and hence LVT cells are not used for

the synthesis of the proposed MPSoC.

For further power saving three clock configurations are

supported by each tile: power-down mode, where the clock

is deactivated and hence dynamic power consumption is

not paid; low-power mode, where a tile is clocked at

200 MHz achieving half of the computational power but

also spending half of the dynamic power; high-speed mode,

where the IPs are clocked at full speed. Since the NoC is

capable of performing frequency conversion at the NI

boundaries, then the tiles can be independently configured

in power-down mode, low-power mode or high-speed

mode. As example, 3 tiles can be configured to run at

200 MHz, 2 tiles can be kept in idle mode and the others

can be clocked at 400 MHz and all can be connected to the

NoC running at 400 MHz thanks to the frequency con-

version done in the NIs. To be noted that the NoC should

provide enough bandwidth for inter-tile communication

and hence it is usually clocked at its maximum, 400 MHz,

and is kept in idle mode only if all the tiles are in idle

mode. Following similar considerations, also the CPU tile

in Fig. 1, which controls data and operation flows, is usu-

ally kept in one of the two active modes.

The power consumption depends on the workload and

on the configuration status of the different tiles. Table I

summarizes the power consumption estimated from RTL

simulations with reference to the use of the MPSoC for two

applications described in Sect. 5: the 2D retinex-like filter,

and the H.264 video coding algorithm applied to 30

frames/s VGA videos. With reference to the video coding

application example, where all MPSoC computing tiles and

relevant frame memories are used, Fig. 15 reports the

specific power consumption contribution of each unit: for

each block also the contribution of its frame memory is

considered; the block ‘others’ refers to the Host ITF and

Ext Mem Ctrl units and their frame memories. From

Fig. 15 it is clear that the overall power consumption of

950 mW is dominated by the computing and memory tiles,

particularly the ME (up to 40%), while the power cost of

the NoC infrastructure is 90 mW, less than 10%.

A comparison of processors with different architectures,

computing performances and target technologies is diffi-

cult to implement. Just to contextualize the achieved

Table I MPSoC power consumption for 2 different case studies

Resources used Resources in

idle mode

Algorithm Power,

mW

CPU, SF, FILT,

Host Itf and Ext

mem ctrl tiles and

their frame mem,

NoC

ME, Transf,

SC tiles

and their

frame

mem

2D Retinex-filtering 400

All None H.264 encoder with:

fast search ME

with ±16 search

displacement;

max. 5 previous

reference frames;

SAD cost

function; CABAC

entropy coder; 2D

integer DCT

transform, in-loop

de-blocking filter.

950

122 J Real-Time Image Proc (2013) 8:111–125

123



implementation results Fig. 16 provides a visual repre-

sentation of the trade-off between transistor count (due to

circuit complexity spent for increased parallelism and

hence increased performance) and power consumption in

state-of-the-art single-core (the Intel AtomZ530 and the SP

unit of the Cell BE) and multi-core programmable systems

(our MPSoC, the Intel Core 2, the Fermi architecture with

512 CUDA cores). It is worth noting that w.r.t. the

512-CUDA cores Fermi architecture the transistor count

and power cost reductions of our architecture are obtained

at the expense of a reduced computational capability.

7 Conclusions

A multi-processor architecture for real-time and low-power

image and video enhancement applications has been pre-

sented. Differently from state-of-the-art parallel architec-

tures, the proposed MPSoC is composed of heterogeneous

tiles connected through a novel NoC infrastructure. The

architecture offers a good mix between general-purpose

computing capabilities of the CPU tile, high-throughput

DSP capabilities offered by computing tiles dedicated to

different classes of algorithms (e.g. motion estimation,

special functions for pixel transform, image coding, image

transform in the frequency domain, image filtering) and

large on-chip memory resources since image/video appli-

cations are data-dominated. Memory resources are hierar-

chically organized in a first level of local memories in the

computing tiles plus a second level of shared frame

memories accessible via NoC and a third level of off chip

DDR-DRAM. Thanks to the packet-switched data transfer

scheme the MPSoC architecture avoids communication

bottlenecks when more tiles are working concurrently.

Moreover, the proposed approach allows an easy scaling of

the configuration discussed in this work by modifying the

number of used computing tiles, the number and size of the

frame memories, the size of IP data and of the NoC links.

This is the reason why the desired trade-off between

complexity and performance can be easily set. The func-

tional performances of the NoC-based MPSoC have been

assessed by presenting the achieved results when the

platform is programmed to support 4 different image/video

enhancement algorithms.

Finally, the implementation complexity of the NoC-

based multi-tile platform, integrated in 65 nm CMOS

technology, is reported and discussed: the complexity

amount to about 1 million logic gates and 19 Mbits of on

chip memory for a total amount of roughly 120 millions of

transistors. The complexity overhead is mainly due to the

resources required by the computing tiles and frame

memories. Running at 400 MHz the MPSoC ensures real-

time processing up to 30 frames/s VGA frames. The

MPSoC platform supports programmable power-down

modes and its power cost, for the proposed case studies,

varies from hundreds of mW up to 1 Watt.

As further development of the proposed MPSoC plat-

form an acquisition tile with fast Analog–Digital conver-

sion capability, as in [40], can be added for direct camera

interfacing. Given the growing interest of video processing

platforms also for aerospace and automotive applications

also fast communication bus such as Flexray and/or

SpaceWire [41, 42] can be added in the Host ITF tile.

Acknowledgment This work has been partially supported by the

EU integrated project SHAPES of the 6th framework programme

in collaboration with STMicroelectronics, particularly the group of

Dr. M. Coppola (AST, Grenoble).

References

1. Mitra, S., Sicuranza, G.: Non linear image processing. Academic

Press (2001). ISBN 0125004516

2. Marshall, S., Sicuranza, G.: Advances in non linear signal and

image processing. EURASIP book series, Hindawi Publishing

Corp (2006). ISBN 9775945372

Our System

SP_Cell
ATOM

Core2

Fermi-512 
CUDA

1

10

100

1000

10000

1 10 100 1000

Power (W)

T
ra

n
si

st
o

rs
 (

M
ill

io
n

s)

Multi cores
Single core

Fig. 16 Transistor count and power cost of state-of-the-art single

core (ATOM and 1 SP core of the Cell BE) and multi-core (Fermi

with 512 CUDA, Core2, Ours) systems

ME

SC

CPU

FILT

SF

Others

TRANSF

NOC

Fig. 15 % contribution of the MPSoC units to the power consump-

tion, H.264 encoder case study of Table 1

J Real-Time Image Proc (2013) 8:111–125 123

123



3. Marsi, S., Impoco, G., Ukovich, A., Ramponi, G., Carrato, S.:

‘‘Using a recursive rational filter to enhance color images’’. IEEE.

Trans. Instrum. Meas 57, 1230–1236 (2008)

4. Funt, B., Ciurea, F., McCann, J.:‘‘Retinex in Matlab’’. Proc.

IS&T/SID 8th Color Imaging Conf. 112–121 (2000)

5. Jobson, D.J., Rahman, Z., Woodell, G.A.: ‘‘Properties and per-

formance of a center/surround Retinex’’. IEEE. Trans. Image.

Process 6(3), 451–462 (1997)

6. Hines G., et al.: ‘‘Real-time enhanced vision system’’. Proc. SPIE

5802: enhanced and synthetic vision (2005)

7. Shao, Ling, Hao, Hu, de Haan, G.: Coding artifacts robust reso-

lution up-conversion. IEEE. ICIP 5, 409–412 (2007)

8. Ling Shao, Kirenko, I., Leitao, A., Mydlowski, P.: ‘‘Motion-

compensated techniques for enhancement of low-quality com-

pressed videos’’, IEEE. ICASSP. 1349–1352 (2009)

9. N. Parakh, A. Mittal, R. Niyogi, ‘‘Optimization of MPEG 2

Encoder on Cell B. E. Processor’’. IEEE. Int. Adv. Comput. Conf.

423–427 (2009)

10. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE. Micro

30(2), 56–69 (2010)

11. Xiaohan Ma, Mian Dong, Lin Zhong, Zhigang Deng.: ‘‘Statistical

power consumption analysis and modeling for GPU-based com-

puting’’, workshop on power aware computing and systems, Big

Sky, MT, USA, October (2009)

12. QuickLogic’s Visual Enhancement Engine (VEE
TM

) Brings iri-

dix� to Mobile Devices, (2010)

13. Chang, Chia-Ming., Chien, Shao-Yi., Tsao, You-Ming., Sun,

Chih-Hao., Lok, Ka-Hang., Cheng, Yu-Jung .:‘‘Energy-saving

techniques for low-power graphics processing unit’’. ISOCC. 1,

242–245 (2008)

14. Nam, Byeong-Gyu, Lee, Jeabin, Kim, Kwanho, Lee, Seungjin,

Yoo, Hoi-Jun: Cost-effective low-power graphics processing unit

for handheld devices. IEEE Commun. Mag 46(4), 152–159

(2008)

15. Murphy, M., Keutzer, K., Wang, H.: ‘‘Image feature extraction

for mobile processors’’. IEEE. IISWC. 138–147 (2009)

16. Nam, Byeong-Gyu, Yoo, Hoi-Jun: ‘‘An embedded stream pro-

cessor core based on logarithmic arithmetic for a low-power 3-D

graphics SoC’’. IEEE. J. Solid-State. Circuits 44(5), 1554–1570

(2009)

17. Fryza, T.: ‘‘Introduction to implementation of real time video

compression method’’. IWSSIP. 217–220 (2008)

18. Saponara, S., Fanucci, L., Ramponi, G., Marsi, S.: Algorithmic

and architectural design for real-time and power-efficient Retinex

image/video processing. J. Real-Time. Image. Process 1(4),

267–283 (2007)

19. Saponara, S., et al.: ‘‘Motion estimation and CABAC VLSI co-

processors for real-time high-quality H.264/AVC video coding’’.

Microprocess. Microsyst 34, 316–328 (2010)

20. Fanucci, L., et al.: Parameterized and reusable VLSI macro cells

for the low-power realization of 2-D discrete-cosine-transform.

Microelectron. J 32(12), 1035–1045 (2001)

21. iPhone 4 Technical Specifications, available at http://www.apple.

com/iphone/specs.html

22. Saponara, S., et al.: ‘‘Dynamic control of motion estimation

search parameters for low complex H.264 video coding’’. IEEE.

Trans. Consumer. Electr 52(1), 232–239 (2006)

23. Fanucci, L., et al.: A Parametric VLSI architecture for video

motion estimation. Integration. VLSI. J 31(1), 79–100 (2001)

24. Saponara, S., Fanucci, L.: VLSI design investigation for low-cost,

low-power FFT/IFFT processing in advanced VDSL transceivers.

Microelectron. J 34(2), 133–148 (2003)

25. Saponara, S., Fanucci, L., Terreni, P.: Design of a low-power

VLSI macrocell for non linear adaptive video noise reduction.

J. Appl. Signal. Proc 2004(12), 1921–1930 (2004)

26. Saponara, S., Denolf, K., Blanch, C., Lafruit, G., Bormans, J.:

Performance and complexity co-evaluation of the advanced video

coding standard for cost-effective multimedia communications.

J. Appl. Signal. Proc 2004(2), 220–235 (2004)

27. Chimienti, A., et al.: ‘‘A complexity-bounded motion estimation

algorithm’’. IEEE. Trans. Image. Proc 11(4), 387–392 (2002)

28. Cocchia, F., Carrato, S., Ramponi, G.: ‘‘Design and real-time

implementation of a 3-D rational filter for edge preserving

smoothing’’. IEEE. Trans. Consumer. Electronics 43(4),

1291–1300 (1997)

29. Benini, L., De Micheli, G.: Networks on chip: a new SoC para-

digm. IEEE. Comput 35(1), 70–78 (2002)

30. Gyu Lee H., et al.: ‘‘On-chip communication architecture

exploration: a quantitative evaluation of point-to-point, bus, and

network-on-chip approaches’’. ACM. Trans. Des. Automation

Electron. Syst. vol. 12, n. 3, (2007)

31. Maruccia, G., et al.: ‘‘Method for transferring a stream of at least

one data packet between first and second electric devices and

corresponding device’’. US Patent 20090129390 A1, May 2009

32. Vitullo, F., et al.: Low-complexity link micro-architecture for

mesochronous communication in networks on chip. IEEE. Trans.

Comput 57(9), 1196–1201 (2008)

33. Grammatikakis, M.D., Coppola, M., Maruccia, G., Locatelli, R.,

Pieralisi, L.: ‘‘Design of cost-efficient interconnect processing

units: Spidergon STNoC’’. CRC Press (2008)

34. Marsi, S., et al.: ‘‘Integrated video motion estimator with Retin-

ex-like pre-processing for robust motion analysis in automotive

scenarios: algorithmic and real-time architecture design’’.

J. Real.Time. Image. Proc 5(4), 275–289 (2010)

35. Saponara, S., et al.: Architectural level power optimization of

microcontroller cores in embedded systems. IEEE. Trans. Ind.

Electron 54(1), 680–683 (2007)

36. Fanucci, L., et al.: ‘‘Power optimization of an 8051-compliant IP

micro controller. IEICE. Trans Electron E 88-C(4), 597–600

(2005)

37. Ostermann, J., et al.: Video coding with H.264/AVC: tools,

performance, and complexity. IEEE. Circuits. Syst. Mag 4(1),

7–28 (2004)

38. L’insalata, N., et al.: ‘‘Automatic synthesis of cost effective FFT/

FFT cores for VLSI OFDM systems’’. IEICE. Trans. Electron E
91-C(4), 487–496 (2008)

39. Chimenti, A., et al.: ‘‘VLSI architecture for a low-power video

codec system’’. Microelectron. J 33(5–6), 417–427 (2002)

40. Saponara, S., et al.: ‘‘Architectural exploration and design of

Time-interleaved SAR arrays for low-power and high speed A/D

converters’’. IEICE. Trans. Electron E 92-C(6), 843–851 (2009)

41. Baronti, F., et al.: ‘‘Design and verification of hardware building

blocks for high-speed and fault-tolerant in-vehicle networks’’.

IEEE. Trans. Ind. Electron 58(3), 792–801 (2011)

42. Saponara, S., et al.: Radiation tolerant space wire router for

satellite on-board networking. IEEE. Aerosp. Electron. Syst. Mag

22(5), 3–12 (2007)

Author Biographies

Sergio Saponara got the Laurea degree cum laude, and the Ph.D., in

Electronic Engineering from the University of Pisa in 1999 and 2003,

respectively. In 2002 he was with IMEC, Leuven (B), as Marie Curie

Research Fellow. Since 2001, he collaborates with Consorzio Pisa

Ricerche in Pisa. He is a senior researcher at the University of Pisa in

the field of electronic circuits and systems for telecom, multimedia,

space and automotive applications. He holds the chair of electronic

systems for automotive and automation at the Faculty of Engineering.

124 J Real-Time Image Proc (2013) 8:111–125

123

http://www.apple.com/iphone/specs.html
http://www.apple.com/iphone/specs.html


He co-authored more than 130 scientific publications and holds 5

patents. Sergio Saponara is also a research associate of CNIT and

INFN and served as a guest editor of special issues of international

journals and as a program committee member of international

conferences.

Luca Fanucci got the Master of Science and the Ph.D. degrees in

Electronic Engineering from the University of Pisa in 1992 and 1996,

respectively. From 1992 to 1996, he was with ESA/ESTEC,

Noordwijk (NL), as a research fellow. From 1996 to 2004 he was a

senior researcher of CNR in Pisa. He is Professor of Microelectronics

at the University of Pisa. His research interests include VLSI

architectures for integrated circuits and systems. Prof. Fanucci co-

authored more than 150 scientific publications and he holds more than

10 patents. He was the program chair of IEEE Euromicro DSD 2008

and IEEE DATE Designer’s Forum.

Esa Petri received her M.Sc. degree in Electronic Engineering in

2003 and the Ph.D. degree in Electronic Systems for Automotive

Engineering in 2010, both from the University of Pisa (IT). From

2004 to 2005 she was with ESA/ESTEC, Noordwijk (NL). Since 2006

she collaborates with the Microelectronic Systems Division of

Consorzio Pisa Ricerche (IT) on several projects of industrial

relevance in the fields of HW/SW embedded system architectures

and networking.

J Real-Time Image Proc (2013) 8:111–125 125

123


	A multi-processor NoC-based architecture for real-time image/video enhancement
	Abstract
	Introduction
	Image/video enhancement architectures
	NoC-based multi-processor SoC for image/video enhancement
	MPSoC architecture
	Motion estimation tiles
	Transform tile
	Filtering tile

	NoC communication infrastructure design
	MPSoC application case studies
	CMOS implementation results
	Conclusions
	Acknowledgment
	References


