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Abstract. Capability of patterning carbon nanotubes (CNTs) growth is of tantamount 
importance for a number of applications ranging from thermal to electronic. This article reports 
on the columnar growth of vertically aligned multiwall carbon nanotubes (VA-MWCNTs) on 
patterned Silicon (Si) surface. We have developed procedures based on negative as well as 
positive masking approaches which allows the growth of predetermined MWCNTs patterns. 
We describe in detail the process steps leading to Si surface patterning. As quoted above, 
patterns are exploited to grow VA-MWCNTs. We have focused in particular on the growth of 
CNT pillars by chemical vapor despoition (CVD) technique at 850oC with camphor and 
ferrocene as carbon precursors and catalyst respectively. Field emission scanning electron 
microscopy (FESEM) is employed at low magnification to verify the correct patterning, and at 
high magnification to examine the surface morphology of CNTs pillars. The pillars are up to 2 
mm high, their height being tailored through the deposition time. The diameter of each 
MWCNT is in the range 30-70 nm and the length is up to few hundred micrometers.  The small 
CNT pillars produced, have several electrical and thermal applications. For instance they can 
be very useful for heat transfer systems as the lower thermal conductivity of fluids can be 
improved by the inclusion of nanotubes thanks to their peculiar 1-dimensional heat transfer 
characteristics. 

1. Introduction  
Nowadays Carbon based nanomaterials are among the most interesting materials. Following Ijima 
report [1], these materials have stimulated quite a lot of activity in different areas of science and 
engineering because of their extraordinary physical and chemical properties. Due to their high thermal 
and electrical conductivity, rigidity, strength, … [2], CNTs are ideal for a wide variety of applications. 
CNTs can be produced by various processes [3] including arc discharge, laser ablation and chemical 
vapor deposition (CVD). The most promising of these techniques for large scale production is CVD as 
it opens opportunities of controlled massive [4] as well as precise growth on patterned substrates [5]. 
The vertically aligned carbon nanotubes (VACNTs)  uniformly grown by CVD on a patterned surface 
feature interesting unique mechanical, electrical and thermal properties which led to propose a variety 
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of potential application such as heat dissipation systems [5], biosensors [6], field emission sources [7], 
conductive electrodes and micro mechanical devices [8].  
An efficient and economical method of patterning by soft lithography, which enables to produce 
highly dense VA-MWCNTs columns, is described in the present work. Exploiting such patterning we 
have grown a number of CNTs structures using precursors that allow fast growth and good CNT 
quality. 

2. Surface patterning of silicon substrate 
We have developed a procedure to pattern silicon wafer by soft photolithography technique in both 
positive and image reversal mode that ensure the growth of well defined structures of CNTs. The 
protocol we have used for the patterning of silicon surfaces involves the following steps; 

2.1.  Realization of the mask 
The first important step for this patterning is to design the mask on a Mylar sheet. There are two types 
of photomasks: positive and negative photomasks (figure 1). Black colored parts represent the areas 
which stop the UV radiation while these radiation can transmit through the white parts of the mask.  
 

.  
 

Figure 1. Soft Mylar photomasks a). Positive mask b). Negative  mask 
 
2.2. Mask transfer to the substrate 
After the realization of photomasks, the substrates are prepared for the application of photoresist. The 
steps required to transfer the mask to the substrate are; 
 
2.2.1. Wafer Cleaning. Silicon (100) substrates were cleaned with an acetone ultrasonic bath for 10 
minutes followed by soaking in 2-Propanol for a few minutes to get rid of contaminations, debris and 
particulates. Furthermore, the wafers were washed in Piranha solution 3:1 (H2SO4:H2O2) for 5 minutes 
to enhance the hydrophilic behavior [9] as well as to remove organic residues from the surface. At the 
end of this procedure wafers were extensively rinsed in de-ionized water, dried under nitrogen flux 
and subsequently heated at 120°C for a few seconds to obtain moisture free cleaned Si substrates 
(figure 2-a). 
 

 

a). Cleaned Wafer  
 
b).Uniform application of  photoresist by spin coating 
 
c). Soft baking at 120°C  
 
 
d). In contact mask alignment on photoresist surface   
 
 
e). Controlled UV exposure 

Figure 2. Steps involved in the transferring of mask to the substrate 
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2.2.2. Photoresist Application. Commercially available photoresist AZ5214E from MicroChemicals 
has a capability to work for both positive and negative masks. The cleaned wafers were held on 
spinner’s stage by creating a vacuum between substrate and sample holder. After dispensing enough 
quantity of photoresist on silicon wafer, a uniform layer of photoresist (figure 2-b) was obtained using 
a spinner programmed at 600 rpm for 5 seconds and at 4000 rpm for the subsequent 40 seconds.  

2.2.3. Soft Bake. After the uniform application of the photoresist layer, the silicon substrate was soft 
baked at 120°C for 2 minutes (figure 2-c). The temperature and duration of soft baking are critical 
parameters in photo-imaging as it transfers the photoresist coatings to imageable layer. Soft baking for 
a too long time or at high temperatures can degrade the sensitivity of photoresist by destroying the 
sensitizer or reducing its solubility in the developer. It may also produce cracks in the photoresist film 
which ultimately leads to poor resolution. Shorter than needed baking may tend to affect the adhesion 
and exposure to the photoresist layer as both exposed and unexposed areas would be attacked by the 
developer. It could make the photoresist layer non uniform and patchy, resulting in the poor precision 
of photolithographic process [10]. 
 
2.2.4. UV Exposure. Before the UV exposure, the mask was aligned with the wafer, so that the pattern 
could be transferred onto the wafer surface precisely. It is important to remove any kind of particles, 
trapped between the resist and the mask, which may damage the mask and lead to defects in the 
pattern. The photoresist-coated silicon wafer was brought into physical contact with the photomask 
and held in vacuum to avoid the diffraction effect and to attain high resolution (figure 2-d). Once the 
mask and wafer were accurately aligned, the photoresist was exposed through the pattern with a high 
intensity ultraviolet light with UV light power density of 3mW/cm2 (figure 2-e). The exposure to the 
UV light changes the chemical structure of the resist so that it becomes more soluble in the developer. 

  

 

 
Figure 3.  Fabrication of patterned structures in Positive and Image Reversal Mode 

2.2.5. Development of photomask. 
a) Development of positive mask. The next step was to dissolve soluble areas of photoresist by basic 
developer and to get visible patterns on wafer. The wafer with positive mask was directly developed in 
1:1 solution of commercially available AZ 351 developer (from MicroChemicals) in de-ionized water. 

a). Reversal bake at 120°C 
 
 
b). Flood exposure  
 

c). Development of structure  
 
 
d). Metallic deposition by  electron 
beam deposition 
 
 
e). Lift off process 
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The areas that were exposed to UV light were removed after developing, leaving windows exposing 
the underlying material. In other words, the mask, contains an exact copy of the pattern which will 
remain on the wafer (figure 3-c). 
b) Development of negative mask. For the negative photomask (image reversal mode), few extra steps 
were involved after the UV exposure. After such step, the system is baked at 120°C for 2 minutes 
(figure 3-a) and a flood exposure in UV light without mask for 70 seconds (figure 3-b) is applied. 
These steps lead to an inversion in the chemistry of the photoresist that was not exposed to UV light at 
step 2.2.4.  This resist become polymerized and more difficult to dissolve in 1:1 AZ Developer: de-
ionized water solution. Hence it remains on the surface and the developer solution removed only the 
remaining resist portions (figure 3-c).  
 
2.3. Fabrication of Patterned Structure: 
After the successful imaging of the photomasks on the substrate the next step is to coat with a metal 
layer the areas where we don’t want carbon nanotubes growth to occur. The following steps are 
required to such purpose.  
 
2.3.1. Metallic Deposition by Electron beam Evaporation. CNTs can be grown on silicon substrate 
using an appropriate carbon source and a catalytically active metal. On the other end, non catalytic 
metals can be used to inhibit CNT growth. Hence, we used copper to cover the substrate where we 
don’t wanted carbon nanotubes growth [11]. Metallic deposition was performed by electron beam 
evaporation technique in a vacuum chamber at 10-7 torr pressure. First a 20 nm thick titanium (Ti) 
layer was deposited and then a 200 nm thick copper (Cu) one added on top of it (figure 3-d). Ti is used 
as a buffer layer to overcome the poor adhesion of copper to silicon improving copper adhesion and 
stability. 
 
2.3.2.  Lift off Process. After deposition of metallic layers on the silicon substrate, a lift off process 
was performed in an ultrasonic bath at 60°C in acetone or normal methyl pirrolydinone (NMP) for 10-
15 minutes (figure 3-e). During the lift off process the polymerized layer of photoresist under the 
metallic layer was detached from the silicon surface, leaving behind the required structures on the 
silicon substrate.  

3. Growth of CNTs Columns by Thermal Chemical Vapor Deposition 
The growth of vertical columns of multiwall carbon nanotubes on patterned silicon wafer was 
achieved by catalytic chemical vapor deposition of a reagent containing both the carbon and the 
catalyst sources. Ferrocene was used as catalytic source as it is a fine precursor to obtain iron 
nanoparticles, which leads to the formation of carbon nanotubes [12]. Commercially available 
camphor was used as carbon precursor as it is inexpensive and non-toxic. Furthermore, the 
arrangement of pentagonal and hexagonal carbon rings in camphor atoms makes it a good source to 
produce nanotubes [13].  
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The CVD unit used for CNTs growth is shown in Figure 4. A 100 cm long horizontal steel tube was 
placed in a 3-Zone furnace which has the ability to maintain a uniform temperature up to 1200°C  
throughout its length i.e. 60cm. The silicon substrates were placed in the central region of the furnace 
and inert atmosphere was maintained by nitrogen gas flux (420 ml/min). The pressure of the gas was 
kept slightly higher than the atmospheric pressure to avoid inward air leakages ensure. A pyrex 
conical flask containing the reagent mixture of camphor and ferrocene (20:1) was connected to the 
steel tube by a T joint between the furnace and nitrogen inlet. The pyrex flask assembly was rested on 
the hot plate. 
The furnace temperature was maintained at 850°C and the pyrex flask was heated up to the 
vaporization of the reagent which starts above 200°C. The vaporized reagent was carried into the 
furnace by the nitrogen gas flux. The uniformity of the vapors flow was maintained by the temperature 
of the flask.  
Because of the pyrolysis of the gases, the iron particles and carbon species were carried through the 
high temperature furnace.  The iron particles works as catalyst and the deposition of carbon species on 
Si substrate resulted in the growth of carbon nanotubes. After a suitable time i.e.60 to 90 minutes, 
depending upon the required thickness of the CNTs carpet, the furnace was turned off. The similar 
method is described in further details by Musso et. al [4].  
 
2. Surface Morphology 
After the growth step is carried out, the produced structures were examined by FESEM. A ZEISS 
SUPRA-40 FESEM was used to study the structure, orientation, size and dimensions of nanotubes. In 
figure 5 (a,b), the circular patterning of different sizes on silicon substrate is shown. The vertical 
columns of carbon nanotubes grown by CVD  shows that the length of circular columns is up to 1.5 
mm. The diameters of the cylindrical columns are 250 m (figure 5-c) and 500 m (figure 5-d) and 
correspond to the mask features. The length of the columns, can be tailored by tuning the growth time 
in the range from a few micrometers to few millimetres. 
 
 
 
 

 
 

Figure 4.  Thermal Chemical Vapor Deposition Growth System 
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Figure 5. Patterned silicon substrates (a) & (b)  and CNT columns (c) & (d) 

 
Figure 6 shows some variety of structures based on MWCNTs varying in dimension and spacing as 
well as in structures type grown in our CVD system. 
 

  

 
 

Figure 6. CNT based structures grown by CVD Technique 
 
Figure 7 shows the structure, orientation, and dimension of carbon nanotubes inside the specific 
macroscopic structure. The diameter of a MWCNT is in the range of 30nm-70nm, only a few having 
diameter under 20 nm. The length of carbon nanotubes is up to few hundreds of micrometers. Most of 
the carbon nanotubes are well vertically aligned. Micrographs shown in figures 5 (a, b and c) are from 
the middle part of a column and micrographs in figure 5 (d, e and f) are from the top edge. 
  

(a) (b) 

(c) (d) 
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Figure 7. SEM micrographs of carbon nanotubes based structures  
 

3. Structural Characterization 
CNTs have been characterized by Raman spectroscopy to gain information about their structure. The 
Raman spectra of CNTs contains rich information about the electronic states and the phonon 
dispersion as it involves strong resonances of the incoming and outgoing photons and the vibrational 
states with the electronic energy levels of a tube [14].  

 
Figure 8. Raman Spectra of CNT based column 

 
The D mode (breathing mode, A1gband) is peaked in the 1300-1400 cm-1 range when excited with a 
visible laser. It is a typical disorder band observed in MWCNTs. The shorter intensity of D peak 
indicates the fineness of graphite layers. The G mode (Tangential Mode, E2g-band) is peaked in the 
1550-1615 cm-1 range and corresponds to the stretching mode of sp2 bonds in the graphite plane. A 
second-order-mode, often called G’ mode is observed between 2620 and 2775 cm-1 [15, 16] which is 

(a) (b) 

(a) 

(c) 

(d) (e) (f) 
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based on double resonance mechanism. Its intensity increases with the decrease in the lattice disorder 
[17].  
 
4. Conclusion and Future Viewpoints 
An efficient protocol has been developed for the pattering of silicon substrate for different shapes and 
dimensions of carbon nanotubes columns. The patterning do not hinder the growth of CNTs as 
demonstrated by the results reported. The obtained vertically aligned multiwall carbon nanotubes 
based columns can be used for different applications including thermal dissipation system, 
microelectrodes etc. 
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