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Abstract

In this paper we present a declarative language that aims at combining valuable fea-
tures of CLP languages—namely, nondeterminism, unification, constraint solving,
dynamic data structures—with features of conventional programming languages we
are accustomed to and that we do not want to give up, such as the syntactic form of
programs, the deterministic control structures—in particular the iterative ones—,
the notion of procedure and parameter passing. A key role to gain these objectives
is played by the notion of sets: sets serve not only as a powerful data abstrac-
tion, but also as the (only) source of nondeterminism and as the main support for
declarative (constraint) programming. Furthermore, semantics of the whole lan-
guage can be described in terms of a CLP language with sets, which is used also as
a straightforward implementation of the proposed language.

1 Introduction

Many of the efforts in designing declarative programming languages have been
based at some extent on (Constraint) Logic Programming ((C)LP) languages.
However, it is known that these languages (and Prolog in particular) present
peculiarities that in practice make them not as well appreciated as they should
be. This “negative reputation” is often inherited by those declarative lan-
guages that, though different in name and possibly more powerful than con-
ventional LP languages, still clearly show their Prolog-based nature. Among
the aspects of LP languages that are often criticized we can enumerate:

• the syntactic form of programs which is quite far from the usual syntactic
form of conventional languages we are usually accustomed to

1 This work is partially supported by MURST project Ragionamento su aggregati e numeri
a supporto della programmazione e relative verifiche.
2 Email: gianfranco.rossi@unipr.it
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• the difficulty to understand the LP computational model, in particular the
notion of nondeterministic computation

• the absence of the usual iterative control structures (e.g., for, while) and
consequently the recursion based nature of many LP programs.

Conversely, there are a number of other features of LP languages that,
though sometimes criticized, surely represent valuable features to support a
real declarative programming style. Among them, the use of “logical” vari-
ables (instead of modifiable “programming language” variables), the uniform
use of unification both to test and to assign values, the dynamic nature of
its data structures and the capability to perform computation with partially
specified data (i.e., those containing uninitialized variables). Moving form LP
to CLP [5], we can add the capability to decide satisfiability of formulae on a
specific domain, disregarding the order in which they are encountered and the
instantiation of variables occurring in them. Last but not least, the availabil-
ity of a precise formal semantics is also a feature of (C)LP languages which
surely deserves to be preserved.

In this paper we describe a language—called Singleton—which tries to
preserve as much as possible the valuable features of CLP languages, while
avoiding as much as possible their controversial aspects. The proposed lan-
guage superficially resembles conventional languages (e.g., Pascal, C) but in
the depth it is akin to CLP languages.

Specifically, some notable features of Singleton are:

• a Pascal-like syntax, with Pascal-like control structures, in particular, iter-
ative control structures

• nondeterminism, but confined to set operations, which are inherently non-
deterministic and provide therefore a more natural and easier explanation
of nondeterminism (see, e.g., [7])

• a powerful set constraint solver that allows to deal with sets and set oper-
ations in a real declarative way.

Furthermore, Singleton still preserves various features of LP languages,
such as the availability of (only) “logical” variables (without assignment), the
ability to compute with partial information, the use of unification, and the
absence of any static type structure.

Other remarkable features are the possibility to use expressions as state-
ments and also, vice versa, statements as expressions, and the presence of
intensional sets (i.e., sets defined by property).

Sets play a key role in Singleton. In fact, not only sets can be used as a
powerful data abstraction, but also they provide the (only) source of nonde-
terminism in the language and the main support for declarative (constraint)
programming. Actually, the whole language semantics can be described in
terms of a CLP language with sets, namely CLP(SET ) [3]. CLP(SET ) is also
used to provide a straightforward implementation of Singleton.
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The paper is organized as follows. In Section 2 we give an informal presen-
tation of Singleton by showing a simple Singleton program. In Section 3
we introduce the fundamental data structures of Singleton, namely sets and
lists. In Section 4 we define a few key notions concerning program compu-
tation and the use of expressions and statements. In Section 5 we introduce
uninitialized variables and then, in Section 6, we briefly describe the (set)
constraint handling facilities supported by the language. The fundamental
notion of nondeterminism and its relationship with sets are addressed in Sec-
tion 7. In Section 8 we present the constructs used to simulate the usual
iterative control structures, while procedure definition and parameter passing
are briefly discussed in Section 9. In Section 10 we provide a few hints on
the technique used for dealing with intensional sets possibly denoting infinite
sets. Next, in Section 11 we show the core part of the translation function
which maps Singleton constructs to CLP(SET ) clauses and terms. Finally,
in Section 12 we briefly discuss related and future work.

2 An informal introduction to Singleton

First of all we show a simple example of a program written in Singleton
which allows us to give the flavor of the programming style supported by the
language.

Problem: Read a sequence of integers (ended by end-of-file) from the stan-
dard input, compute and print its maximum.

We present first the subprogram that computes the maximum of a set S
of integers. Then we show the main program that implements the required
input/output facilities and calls the subprogram. Observe that the proposed
implementation does not take care of execution efficiency. Indeed, Singleton
is mainly conceived as a tool for rapid software prototyping, where easiness of
program development and program understanding prevail over efficiency.

procedure max(in S; inout x)

begin
x in S;

for y in S do x>=y end
end

The subprogram is implemented as a procedure, named max. The over-
all syntax is that of conventional block structured languages (e.g., Pascal).
Procedures are the only abstraction available in Singleton for defining sub-
programs. Formal parameters in a procedure can be either input parameters
(in), or output parameters (out) or both (inout). The first statement uses
a possibly uninitialized variable x. The statement is a boolean expression
(actually a constraint expression) used as a statement. If the expression is
evaluated to true the statement succeeds; if it is evaluated to false the state-
ment (hence the computation of max) fails. x in S is evaluated to true if S is
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a set and x belongs to S. If x is uninitialized when the expression is evaluated
this amounts to nondeterministically assign an element of S to x.

The for statement allows to test if the condition x >= y holds for all
y belonging to S, with x initialized to a specific element of S. y is implicitly
declared as a local variable in the for construct. A new instance of y is created
for each element of S, each time the statement part of the for is executed.
Again, an expression (x >= y) is used as a statement. If the evaluation of
this expression gets a false result, the whole statement for fails. If the for
terminates with success (i.e., x >= y is evaluated to true for each y) then
the whole procedure terminates with success. The value of x represents the
integer we are looking for. If, on the contrary, x >= y is evaluated to false
for some y, backtracking takes place and the computation goes back till the
nearest choice point. In this case, the nearest and only choice point is the one
created by the in operator. Its execution will bind nondeterministically x to
each element of S, one after the other. If all values of S have been attempted,
there is no further alternative to explore and the whole computation of the
procedure fails.

The use of the inout mode for the second parameter of max allows the
procedure to be used both to check whether a specified value for x is the
maximum of the set S and to generate the maximum of S.

The main program that uses max can be defined as follows:

procedure main()

begin
var L in list;

var S,m;

L = [x | read(x) & x in integer];

ListToSet(L,S);

max(S,m);

writel("The maximum is " <+ m)

end

The main program is declared as a procedure with the special namemain.
The var keyword introduces variable declarations. L, S, and m are three local
variables. There are no type declarations. However, one can constraint the
value of a variable to a set of possible values, using set constraints (hence,
checked at run-time). For example, L is constrained to be a list, being list a
predefined set (namely, the set of all possible lists).

The value of L is computed by using an intensional list definition. In gen-
eral, intensional formers are used to define sets/lists by properties rather than
by enumerating all their elements. In this example the intensional definition
is used to collect into a list all values of x which can be read from the standard
input and which satisfy the constraint to be integer numbers. The collection
operation terminates as soon as the end-of-file marker is encountered. The
ListToSet operation is a library procedure that transforms a list into a set.
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This transformation allows the program to subsequently pass the collection
of numbers that have been read to the max procedure as a set. max requires
to work on a set (rather than on a list) in order to be able to exploit the
nondeterminism offered by set operations (specifically, by set membership).

Finally, the writel instruction prints on the standard output all elements
of the list which is passed to it. The string literal (in double quotes) is just a
syntactic notation for the list of its component characters, whereas the <+ is
one of the built-in operators for list management: the result is the list obtained
by adding the value of m as the tail element to the list represented by the string
literal.

Most features of the language (e.g., atomic data objects, expressions) are
very much like those provided by conventional programming languages and
will be skipped. Hereafter, we shall concentrate, instead, on those features
that differentiate Singleton from conventional languages (and, on the other
hand, that make it closer to a CLP language).

3 Atomic and composite data objects

Singleton provides two kinds of composite data objects: sets and lists. In
sets the order of elements and the repetitions do not matter. We shall use the
term set/list aggregate expression to refer to a data expression which denotes a
set or a list data object. There are three kinds of set/list aggregate expressions,
namely extensional, intensional and compound set/list aggregates.

Definition 3.1 An extensional set aggregate is a data expression of the form
{e1, . . . , en} (n ≥ 0), where e1, . . . , en are data expressions. The set denoted
by this expression is the set {val(e1)} ∪ · · · ∪ {val(en)}. In particular, {} is
used to denote the empty set.

Definition 3.2 An intensional set aggregate is a data expression of the form

{DExpr | varVarList;BoolExpr}

where DExpr is a data expression containing a not empty set of variables
C , VarList is a (possibly empty) list of variables with C ∩ VarList = ∅, and
BoolExpr is a boolean expression involving all the variables in C∪VarList. The
set denoted is the collection of all the values obtained by evaluating DExpr
over all possible values of the variables occurring in it such that the boolean
expression BoolExpr is true. Variables occurring in DExpr and those in VarList
are local variables, i.e., their scope is the intensional aggregate. When the list
VarList is empty the whole variable declaration can be omitted.

From a logical point of view the meaning of S = {T | varV1, . . . , Vn;E},
where T contains the variables Y1, . . . , Ym, is

∀x(x ∈ S ↔ ∃V1, . . . , Vn, Y1, . . . , Ym(x = T ∧ E))
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Example 3.3 Given a set S build a new set R whose elements are those of S
incremented by 1.

• R = {z + 1 | z in S}
(or, equivalently, R = {x |var z; x = z + 1 and z in S}).
A special form of an intensional set aggregate is the interval aggregate.

Definition 3.4 An interval aggregate is a data expression of the form {ei..ef},
where ei and ef are integer expressions and val(ei) ≤ val(ef). {ei..ef} denotes
the set {val(ei), val(ei) + 1, . . . , val(ef)− 1, val(ef )}.
A set can be also obtained as the result of evaluating a compound set

aggregate expression.

Definition 3.5 Let e be a data expression and s be a set aggregate. A com-
pound set aggregate is a data expression of one of the forms:

(i) e >> s (element insertion) (ii) e << s (element removal)

Expression (i) denotes the set obtained by removing from s the element, if
it exists, whose value equals val(e) (i.e., val(s) \ {val(e)}). Expression (ii)
denotes the set obtained by adding val(e) to s (i.e., s ∪ {val(e)}).
Example 3.6 (Compound set aggregates)

• 3 + 2 >> {1,3,7} and 5 >> 1 >> {1,3,7} denote the set {1, 3, 7, 5}
• 0 << 1 << {1,2} denotes the set {2}.

List aggregates have almost the same syntactic form as set aggregates,
apart using square instead of curly brackets. The element insertion and re-
moval operators, however, are different from those of sets. In fact, when
dealing with lists it is common to have to apply insertion and removal to the
first (the head) or to the last (the tail) element of a list, while the order of
elements is immaterial in sets.

Definition 3.7 Let e be a data expression, l a list aggregate, and x an unini-
tialized variable. A compound list aggregate is a data expression of the form:

(i) e +> l (head element insertion) (iii) x <- l (head element removal)

(ii) l <+ e (tail element insertion) (iv) l -> x (tail element removal)

Expressions (i) and (ii) denote the list obtained by adding val(e) as the first
and the last element of the list l, respectively, whereas expressions (iii) and
(iv) denote the list obtained by removing from l the first and the last element,
respectively. Evaluation of expressions (iii) and (iv) also causes the value of
the removed element to become the value of x.

Character list aggregates can be used to denote strings. A more con-
venient syntactic notation is also introduced: the character list aggregate
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[′c′1,
′ c′2, . . . ,

′ c′n], n ≥ 0, can be equivalently written as ′′c1c2 . . . c′′n.
The language provides also some predefined sets : char, integer, real de-

note the set of characters, integer and real numbers, respectively; list and set
denote the (infinite) sets of all possible lists and sets, respectively. Operations
on predefined sets, as well as on interval aggregates, however, are limited to
the membership and not membership relations.

4 Expressions, statements and program computation

All user defined subprograms in Singleton take the form of procedures with
an implicitly associated boolean result which can be exploited whenever the
procedure call is used as an expression (see below). The computation of a
procedure can terminate with either success or a (run-time) error or failure,
according to the following definition.

Definition 4.1 (Failure) A statement fails if it is a boolean expression used
as a statement, or it contains a boolean expression used as a statement, and
the expression evaluates to false, or it is a procedure call and the sequence of
statements in the body of the procedure fails. A sequence of statements fails
if one of its statements fails. The program computation fails if the sequence of
statements in the main procedure fails. Otherwise, the computation succeeds.

The computation in Singleton is nondeterministic. Nondeterminism in-
troduces choice points and backtracking. Once a computation branch termi-
nates with failure, the computation backtracks to the most recently created
choice point. If no choice point is left open the whole computation fails.

There is no assignment statement. Control structures are similar to those
of conventional programming languages (at least superficially) and will be
described more precisely in Section 8. Differently from most conventional
languages (but similarly to, e.g., Alma-0 [1]), Singleton allows statements
to be used as boolean expressions and also, vice versa, boolean expressions to
be used as statements.

Definition 4.2 (Expression as statements) Let B be a boolean expression
used as a statement. If B evaluates to false the computation of the statement
fails. If B evaluates to true the computation continues.

Definition 4.3 (Statement as expressions) Let S be a statement used as an
expression. If execution of S succeeds, then the value returned by the state-
ment is true; otherwise, the value is false. In particular, a procedure call
succeeds (hence, returns a true value) if the called procedure terminates with
success. Furthermore, a compound statement begin S1; S2; ...; Sn end
is true if and only if all statements S1; S2; ...; Sn are true.

Any statement execution returns a boolean result. Statements, therefore,
can be used everywhere usual boolean expressions can occur. In particular,
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statements can be used as conditions in the test part of an if or of a while
statement, and as part of a larger boolean expression.

Example 4.4 Check whether all members of the collection S are negative
integer numbers.

if for x in S do x in integer and x < 0 end
then writel("all negative numbers")

end

The for statement is used as a boolean expression, while the boolean expres-
sion x in integer and x < 0 is used as a statement. 3

Of particular relevance is the use of equality both as a statement and as
a boolean expression. Equality is always and uniformly dealt with as unifica-
tion (specifically, set unification [4]), in the context of the constraint solving
procedure (see Section 6).

5 Uninitialized variables

A variable upon its declaration has no value associated with it, that is the
variable is uninitialized. A variable remains uninitialized until a value t is
assigned to it. After a variable x has got a value then no other assignment to
x is feasible. That is, all variables are dealt with as real “logical” variables.

Uninitialized variables can occur in: (i) set/list extensional aggregates
and compound set/list aggregates (with some restrictions in the case of list
aggregates); (ii) equality, disequalities and other constraint expressions (see
next section); (iii) in procedure calls, in correspondence with out and inout
parameters (see Section 9). No other expression can contain uninitialized
variables, and a run-time error is detected if this is not respected. 4

Set/List aggregates containing uninitialized variables represent partially
specified sets/lists, i.e., sets/lists where either some of the elements or part
of the sets/lists themselves are unknown. Actually, each partially specified
set/list denotes a possibly infinite collection of different objects, that is all
sets/lists which can be obtained by assigning values to the uninitialized vari-
ables.

Example 5.1 (Partially specified sets/lists)

3 Note that a statement that contains a condition E and a statement part S, e.g.
if E then S, fails only if the statement part S fails. Moreover, E is assumed to be de-
terministic: evaluating E does not leave any open choice point.
4 The fact that uninitialized variables can occur only in a quite limited number of different
expressions, possibly with restrictions, depends primarily on the capabilities of the con-
straint solver provided by the language. If, for instance, also arithmetic operators would be
dealt with as constraints then we could evaluate arithmetic expressions containing unini-
tialized variables as well. Including other constraint domains and the relevant solvers will
be a possible future extension of our language.

223



Rossi

• The extensional set aggregate {3+2,x,y}, where x and y are uninitialized
variables, represents a partially specified set which contains two unknown
elements, denoted x and y; note that the cardinality of the sets denoted by
this aggregate can vary from 3 to 1 depending on the values assigned to x
and y (being 1 if both x and y get the value 5).

• The compound set aggregate x+1 >> x+2 >> S, where S is an uninitialized
variable and x has value 3, represents a partially specified set containing
two elements, 4 and 5, and an unknown part S; in this case, the cardinality
of the denoted sets has no upper bound (the lower being 2).

Uninitialized variables can occur also in constraint expressions. Although
containing uninitialized variables such expressions can be always evaluated,
yielding a true or a false result. Constraints are addressed in more details the
next section.

6 (Set) Constraints

Basic set-theoretical operations, as well as equalities and disequalities, are
dealt with as constraints in Singleton. The evaluation of expressions con-
taining such operations is carried on in the context of the current collection
of active constraints C (the global constraint store) using domain specific con-
straint solvers. Those parts of these expressions, usually involving one or more
uninitialized variables, which cannot be completely solved are added to the
constraint store and will be used to narrow the set of possible values that can
be assigned to the uninitialized variables.

The approach adopted for constraint solving in Singleton is the one de-
veloped for CLP(SET )[3]. Basically, the constraint store is a conjunction of
atomic formulae built using basic set-theoretic operators, along with equality
and disequality. Satisfiability is checked in a set-theoretic domain, using a
suitable constraint solver which tries to reduce any conjunction of constraints
to a simplified form—the solved form—which can be easily tested for satis-
fiability. The success of this reduction process allows one to conclude the
satisfiability of the original collection of constraints. The reduction to false,
on the contrary, implies the unsatisfiability of the original constraints. Solved
form constraints are left in the current constraint store and passed ahead to
the new state. A successful computation, therefore, may terminate with a not
empty collection of solved form constraints in the final computation state.

Constraints in Singleton are basically the set constraints of CLP(SET ),
that is conjunctions of atomic constraint expressions based on: equality, mem-
bership, (strict) inclusion, union, disjunction, intersection, set difference, and,
for most of them, also their negative counterparts.

Example 6.1 Let x, y, R, S, and T be uninitialized variables, and let the
global constraint store be initially empty.
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• y in S and !subset({x},S): true, with the solved form constraint

S = y >>A ∧ set(A) ∧ x != y ∧ x !in A

added to the constraint store, where A is a new uninitialized variable and
set(A) a solved form constraint (set(t) is true whenever t denotes a set);

• S = y >> R and un({x},S,T) and disj({x},S): true, with the constraint
in solved form

T = x >> y >> R ∧ x != y ∧ x !in R

added to the constraint store.

The constraint solver is always able to decide whether a constraint is false
or true, even if all its arguments are uninitialized variables. Moreover, the or-
der of atomic constraints is completely immaterial. All these features strongly
contribute to support a highly declarative programming style.

An implicit delay mechanism is also provided for dynamically postponing
the evaluation of some constraints. Specifically, membership constraints of the
form x in T, where T is a predefined set, or membership constraints of the
form x in A where A is any aggregate but the constraint occurs in a variable
or in a formal parameter declaration (e.g., var x in {1..10000}) are always
automatically delayed until x becomes initialized to some value. A delayed
constraint is not evaluated until the blocking condition does not hold. At the
end of the computation, the delayed constraints that still remain blocked (if
any), are anyway evaluated disregarding their blocking conditions.

Finally, observe that the possibility to associate membership constraints
with variable declarations provides a sort of run-time typing for variables in a
program.

7 Nondeterminism

A computation in Singleton can be nondeterministic. Nondeterminism is
another key feature of a programming language to support declarative pro-
gramming. One distinguishing feature of Singleton, however, is that nonde-
terminism is confined to set operations. The notion of nondeterminism fits into
that of set very naturally (see for instance [7]). Set unification and many other
set operations are inherently and naturally nondeterministic. For example, the
evaluation of x in {1,2,3} with x an uninitialized variable, nondeterminis-
tically returns one among x = 1, x = 2, x = 3. Since the semantics of set
operations is usually well understood and quite “intuitive”, making nondeter-
ministic programming the same as programming with sets can contribute to
make the (not trivial) notion of nondeterminism easier to understand and to
use. Furthermore, restricting the creation and handling of choice points to
set operations is likely to make nondeterminism run-time support simpler to
implement.
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On the other hand, other kinds of nondeterministic constructs can be easily
“simulated” using the nondeterministic facilities provided by set operations.
For example the Alma-0 [1] nondeterministic statement EITHER S ORELSE T

END, is simulated in Singleton by:

x in {1,2};
if x = 1 then S else T end

Similarly, the Alma-0 nondeterministic statement SOME i:=s TO t DO S

END, whose logical meaning is the bounded existential quantification, ∃i ∈ [s..t] S,
is simulated by the Singleton statements:

i in {s..t}; S

A simple way to exploit nondeterminism in Singleton is through the use
of intensional sets. This powerful abstraction allows one to explore the whole
search space of a nondeterministic computation and to collect into a set all the
computed solutions. Then the collected set can be processed, e.g., by iterating
over all its elements using the for statement. In this way, for example, one
can easily simulate the behaviour of the rather complicated FORALL S DO T

END statement of Alma-0, whose purpose is to iterate over all choice points
created by S.

Example 7.1 Compute and print the number of occurrences of a string p in
a string s.
Let StringMatch(p,s,k) be a procedure which is able to check if p is a
substring of s and to return the position k where the substring p starts (see
Section 9).

write(#{k | StringMatch(p,s,k)});
where #A yields the number of elements of the set/list denoted by A.

Again we stress the fact that in Singleton nondeterminism is completely
confined to set operations. The user needs only to understand the semantics
of these operations: nondeterminism is naturally embedded in them.

8 Control structures

Singleton provides a few constructs for implementing the usual control
structures, namely the if , for, and while statements. The if statement is
defined in the very standard way. Conversely, the for and while statements,
though superficially similar to the usual ones, are substantially different from
them. Indeed, the absence of the assignment statement prevents one to use
modifiable loop control variables. We give an intuition of the syntactic form
and the semantics of the for and while statements through a couple of simple
examples.
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Example 8.1 Write the squares of the first ten natural numbers, one for each
output line.

for i in {1..10} do
write(i*i); nl

end

The for statement is used to specify that a certain action is to be performed
for each element of a given set/list (in particular, of an interval). At each
iteration, a new instance of the loop variable (i in the above example) is
obtained and the value of a new element from the set/list is assigned to it.
If the statement part fails for some value of the loop variable then the whole
statement for fails. Otherwise, it terminates with success.

Example 8.2 Check whether a sequence of characters L is symmetrical or
not.

while #(L) > 1 do
var first, last, NewL;

NewL = first <- L -> last;

first = last

end(NewL => L)

The while statement is repeatedly executed until the number of elements
in L, #(L), is less or equal to 1. All variables declared in the body of the while
statement—as well as those of a for statement—are local to the statement
itself. At each iteration, new fresh copies of all local variables are allocated, like
local variables in block structured languages. In Example 8.2, at each iteration
a new variable NewL is allocated and initialized with the list obtained from L

by removing its first and last elements. Unification is used as an assignment
to initialize NewL and as a test for checking whether first equals last. If
this test fails, the while statement fails. Otherwise, the while statement
terminates with success after #(L)/2 iterations.

Since the value of a variable x involved in a for/while loop can not be
changed, a mechanism is provided that allows to store the new value computed
from x in a new (local) variable y and to state that the latter is to be used in
place of the former at the next iteration. Syntactically, this is specified by a
clause y => x following the end keyword of the loop statement. In general, a
loop statement can be ended by a sequence of pairs Vi => Vj, where Vi and
Vj are variable identifiers, whose meaning is that Vi literally replaces Vj at the
next iteration (note that this is not an assignment: the value possibly bound
to Vj remains unaltered). In Example 8.2, for instance, the clause (NewL =>

L) requires that the current instance of NewL is used in place of L at the next
iteration.
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9 Procedure definition and parameter passing

Procedure declarations and procedure calls in Singleton have basically the
usual Pascal-like form. When used as a boolean expression, a procedure call
always (implicitly) returns a boolean value: namely, if execution of the proce-
dure terminates with success the procedure call returns a true result; otherwise
it returns false.

Formal parameters must be variables, possibly constrained by in con-
straints (e.g., inout X in integer). The parameter passing modes can be:
(i) in (the default mode), the actual parameter must be a completely specified
value; (ii) out, the actual parameter must be an uninitialized variable; inout,
the actual parameter can be a partially specified value. The flexible parame-
ter passing mechanism, along with the ability to compute with uninitialized
variables, allow in general to use procedures in a quite flexible way, e.g., using
the same procedure both for testing and computing solutions (see for example
the procedure max in Section 2).

Procedure definitions can be also recursive. The next example shows a
fully nondeterministic recursive definition of the classical list concatenation
procedure.

Example 9.1 L3 is the list obtained by concatenating the two lists L1 and
L2.

procedure concat(inout L1,L2,L3)

begin
var x, R, NewL3;

L1 in {[],x +> R};
if L1 = [] then L3 = L2

else L3 = x +> NewL3;

concat(R,L2,NewL3)

end
end

When L1 is initialized, the statement L1 in {[],x +> R} is just a test
that L1 is a list. If, in contrast, L1 is uninitialized (or it is initialized to
a partially specified list), the statement nondeterministically unifies L1 with
one of the two possible values, [] or x +> R. Without this statement, concat
could be used only to test or to generate L3 provided either L1 or L2 are
initialized to a list; with this statement (and the inout mode), concat can be
used both to check if a given concatenation of lists holds and to build any of the
three lists, starting from any of the other two (like in the usual well-known
definition of the append predicate in Prolog). Using this nondeterministic
version of the procedure concat, it is easy to write a declarative definition of
the StringMatch procedure of Example 7.1 (in the very same way as usual in
Prolog).
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Example 9.2 Check if p is a substring of s and returns the position k (with
respect to the beginning of s) where the substring p starts.

procedure prefix(inout L1; in L2) \\ L1 is a prefix of L2

begin
var a;

concat(L1,a,L2)

end;

procedure StringMatch(in p,s; out pos)

begin
var a, b;

prefix(a,s);

concat(a,p,b);

prefix(b,s);

pos = #a + 1

end;

10 Dealing with infinite sets/lists

The value of an intensional aggregate expression is the set/list of all elements
satisfying the property stated by the intensional definition. However, not al-
ways the evaluation of an intensional aggregate necessarily requires the explicit
construction of this set/list. For instance, c in {x | P(x)} can be equiva-
lently evaluated as P(c) without having to generate and collect all possible
values of x for which P(x) is true. This is particularly convenient if the set/list
denoted by the intensional aggregate is an infinite one. Dealing with c in {x
| P(x)} as P(c) allows to get an answer (true of false) even if {x | P(x)}
denotes an infinite set.

Following [2] we assume that intensional aggregates are dealt with so as
to reduce the need to perform set/list collection. Specifically, we assume
that membership predicates involving intensional aggregates are always trans-
formed as in the above example, thus completely avoiding the need to enu-
merate all the constituting elements. Moreover, equalities of the form x = e
where x is an uninitialized variable and e is an intensional aggregate do not
force evaluation of e: the aggregate is instead passed on through the compu-
tation unaltered. As soon as the intensional aggregate needs to be evaluated,
e.g. when it occurs in a write statement, then the appropriate set collection
operation is performed.

Example 10.1 Consider the sequence of statements

var nested lists = {z | (z = [x] and x in nested lists) or z = []};
[[]] in nested lists;

The intensional set aggregate denotes the sets of nested lists of the form [],
[[]], [[[]]], . . . , with arbitrary nesting depth, which is clearly an infinite set.
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This set however is not explicitly generated but is kept in an intensional form.
Thus when executing the second statement the expression actually evaluated
is

([[]] = [x] and in nested lists) or [[]] = [].

Evaluation of the left-hand part of the or expression gets [] in nested lists

which in turn is evaluated as

([] = [x] and x in nested lists) or [] = []

which succeeds (specifically, the left-hand part of the or fails whereas the
right-hand part succeeds).

The same technique could be applied to other set/list predicates and oper-
ators as suggested in [2]. Since this kind of general intensional set constraint
management has not been explored in depth yet, we prefer here to restrict the
current version of our language to membership predicates, leaving the other
cases for future work.

11 Semantics

Singleton programs can be translated into CLP(SET ) programs in a rel-
atively straightforward way. This translation can serve as a precise (logi-
cal) semantics for Singleton. Moreover, since CLP(SET ) is an executable
language, this translation provides also a quick implementation of the Sin-
gleton language. In fact, the current available implementation of our lan-
guage is based on a translator written in Prolog (using DCG) that generates
CLP(SET ) code.
The translation from Singleton to CLP(SET ) is defined by considering

first the translation of data expressions, then of boolean expressions, and
finally of statements and procedures. Hereafter we show the core part of the
definition of a function φ that translates any Singleton data expression t into
the corresponding CLP(SET ) definition. We assume φ has access to a global
collection of CLP(SET ) atoms Cφ and that the function add(a) is used to add
a new atom a to Cφ. φ(t) will return the CLP(SET ) term corresponding to t
and possibly will modify Cφ as a side-effect.

Definition 11.1 Let s, t, t1, . . . , tn be Singleton data expressions, X1, . . . ,
Xn be new CLP(SET ) variables not occurring in Cφ, and V (v) a function that
maps each Singleton variable v into a new distinct CLP(SET ) variable Xi.

φ(c), c numerical or character literal �→ c

φ(v), v variable �→ V (v)

φ({t1, . . . , tn}) �→ {φ(t1), . . . , φ(t1)}
φ(t >> s) �→ {φ(t) |φ(s)}
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φ(t << s) �→ X1; add(diff(φ(s), {φ(t)}, X1))
where diff is the CLP(SET ) constraint for the set difference operation
φ({t |varx1, . . . , xn; b)} �→ {X : exists([X1, . . . , Xm], X = φ(t) & ψ(b))}

where {X1, . . . , Xm} = {φ(x1), . . . , φ(xn)} ∪ vars(φ(t))

φ(a), a arithmetic expression �→ X1; add(X1 is a)

12 Conclusions, related and future work

We have presented a language that aims at amalgamating features of impera-
tive programming languages with features of CLP languages. The notion of set
plays a fundamental role in this combination. In particular, nondeterminism
is completely confined to set operations. Programs in this language exhibit
a quite good declarative reading, while maintaining most of the structure of
programs in conventional languages.

Two works influenced our work more than others: SETL [6] and Alma-
0 [1]. Like SETL, Singleton is strongly based on the notion of sets. SETL,
however, is much richer than Singleton as concerns primitive facilities for
dealing with sets. As a consequence SETL is also “heavier” and more com-
plex than Singleton. Moreover, a notable difference is that SETL is not a
constraint language. The notion of constraint is completely lacking in SETL
and computing with unspecified values (om in SETL terminology) is rather
cumbersome. Alma-0, instead, is a quite small elegant imperative language,
with nondeterministic constructs and logical variables. Constraints appeared
in the last versions of Alma-0, but are not completely developed yet. The data
structures are basically those of Pascal, hence static.

Both Alma-0 and SETL provide a number of constructs to support nonde-
terminism, whose semantics is not always easy to understand. Conversely, in
Singleton nondeterminism is naturally supported by set operations. Both
Alma-0 and SETL have assignment statement. While it is undeniable that
assignment is very useful and natural in many programming situations, it is
also quite clear that it strongly complicates the language definition and imple-
mentation when it has to coexist with logical variables and nondeterminism.
For that, we preferred to restrict our language to logical variables, provid-
ing suitable variants of the usual loop constructs that allow to maintain an
almost conventional programming style. As a future work, we plan to inves-
tigate the possibility to introduce also “programming language” variables as
an “impure” facility which extends the base language.

Many other new facilities could be added on the top of the base language,
as well, mostly by exploiting set abstractions. In particular, sets along with
membership constraints (possibly over infinite sets) can be used to provide in a
quite natural and flexible way run-time type information for variables. Static
program analysis tools then could exploit this information to perform also type
checking at compile-time. Arrays could be introduced, at least at the logical
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level, as sets of ordered pairs using the existing sets and list manipulation
facilities. Also functions could be represented, at least at the logical level,
through their graphs, that is sets of ordered tuples (possibly intensionally
defined, possibly infinite). For example, the function f(x) = 2x + 1 can be
equivalently defined as the set f = {[x,y] | y=2x+1}, and evaluating z =
f(2) amounts to solve the constraint [2,z] in f (which is actually already
solvable in Singleton). Having functions as sets would allow to manipulate
them as data and, for instance, to devise an object-oriented extension of the
language, using (nested) sets as the construct where to encapsulate data and
the related functions.
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