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Abstract 

Bus travel time analysis is essential for transit operation planning. Then, this topic obtained large attention in transport engineering 
literature and several methods have been proposed for investigating its variability. Nowadays, the availability of large data 
quantities through automated monitoring allows more in-depth this phenomenon to be pointed out with new experimental evidence. 
The paper presents the results of some analyses carried out using automatic vehicle location (AVL) data of bus lines and automated 
vehicle counter (AVC) data on some corridors in the urban area of Rome where the bus services are mixed with other traffic and 
travel times are subject to high degrees of variability. The results show the effect of temporal dimension and similarity between 
travel time and traffic temporal patterns, and could open the road for the improvement of the short-term forecasting methods, too. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Transit operators face with relevant travel time variability issues related to the design of new transit lines or to the 
improvement of the performances of existing lines, especially when transit vehicles share the lanes with other traffic 
components. In this case, bus travel times are subject to high degrees of variability, as their temporal patterns are 
similar to general traffic ones, whose investigations show seasonality and trend/cycle (Fusco et al., 2016). Therefore, 
reliable long-term travel time forecasts availability is one of the most relevant attributes for transit operators, to be 
used for improving transit service planning in terms of optimization of timetable and vehicle scheduling. 

To accomplish this, a study was addressed to investigate bus travel times and traffic patterns through time series 
methods, analyzing automatic vehicle location (AVL) and automated vehicle counter (AVC) data of some bus lines, 
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which share the lanes with other traffic components, in the city of Rome. The main objectives of the study were to 
analyze to what extent bus travel time patterns and general traffic patterns are similar and to what extent bus travel 
time variability is explained by temporal congestion variability and by all other variables.  

The results are reported in this paper, which is organized as follows. A brief state of art of long term bus travel time 
forecasting methods is reported in Section 2. Section 3 synthetizes the data available, while Section 4 reports the 
analyses performed and the results obtained. Finally, Section 5 draws conclusions and further research development. 

2. Long-term bus travel time forecasting methods 

A variety of methods to obtain long-term bus travel time forecasts has been developed over the years. The most 
widely used (Bolshinsky and Freidman, 2012; Kieu et al., 2012; Fan et al., 2015; Moreira et al., 2015; Nuzzolo and 
Comi, 2016; Yu et al., 2017) refer to: regression methods and time series methods. 

Regression methods require a mathematical function to explain a dependent variable (i.e. travel time) with a set of 
independent variables. Complex models such as support vector regression, k-nearest neighbor regression, project 
pursuit regression and artificial neural network are the most popular approaches to this problem due to their ability to 
find complex non-linear relationships between the target variable and the independent ones (Moreira et al., 2015). 
They are able to work satisfactorily even if traffic conditions are not stable. Such methods have been used by many 
authors (e.g. Chen et al., 2004; Mendes-Moreira et al., 2012; Moreira-Matias et al., 2016), because they have a relative 
advantage in revealing which independent variables are less or more important for reproducing/predicting travel times. 

Time series-based methods enlighten travel time pattern dependency on time processing observed historical data 
(William and Hoel, 2003; Jeong, 2004; Billings and Jiann-Shiou, 2006; Suwardo et al., 2010). The strength of time 
series based methods are high computation speed due to simple formulation of the algorithm and do not need large 
number of bus operation variables: only time related bus travel times. They allow the variability structure of travel 
time to be pointed out and to reveal effects along time (e.g. day hours, weekday, year period), which are relevant in 
bus route sharing the lanes with other traffic components. These models, of course, are useful for re-scheduling of 
existing lines. If the route of the line and the structure of time dependency remain the same and the other variables, 
for example the road network characteristics, do not change, such an analysis results can be usefully applied for the 
re-definition of more reliable timetables and subsequent vehicle scheduling. Otherwise, regression models are in 
general to be preferred. 

The literature review points out that there is a quite extensive literature on long term travel time prediction, but few 
studies have enlightened the relationships between performances of transit systems and temporal congestion 
variability (which derives from total traffic variability), whose effects are significant in developing models for both 
long and short-term travel time prediction. Further, very few studies consider terminal-to-terminal travel time, whose 
analyses is quite relevant for transit operators that have to plan system in order to define timetable and bus scheduling 
able to limit, during operations, deficiencies in service providing respecting constraints of service commitment in 
terms of reliability (Cats, 2014). Therefore, due to the complexity affecting bus travel time related to the randomness 
of various factors of the bus journey, the need of further investigations germinates. 

The two subsequent sections present the results of some analyses carried out combining automatic vehicle location 
(AVL) data of bus lines and automated vehicle counter (AVC) data in the urban area of Rome, on some corridors 
where buses share the lanes and the bus travel times are characterized by high variances. The attention was paid to 
terminal-terminal travel time, which is one of the main variables to be considered in transit planning, requiring long-
term forecasting. The analyses were based on time series decomposition methods, aiming to recognize time patterns, 
analyzing three-month data relative to some bus lines and to automated vehicle counts of the same corridors, and 
discovering component of trend, seasonality and cycle very similar for bus travel time and general traffic flow. 

3. Data collected 

The analysis described below were performed combining automatic vehicle location (AVL) data of two bus lines 
and automated vehicle counter (AVC) data in the urban area of Rome. Table 1 summarizes the characteristics of bus 
service lines (A and B), while Figure 1 plots the observed travel times with respect to time of the day during working 
days (from Monday to Friday). The high variance according to the time of the day can be pointed out showing similar 
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shape if travel is to or from the city center. In particular, for both the investigated bus lines, the variance is higher in 
the morning peak hour than in the afternoon.  

In addition, data were also available on automatic counter sections. They allowed the average speed and the number 
of vehicles travelling through these sections to be obtained and hence the traffic patterns to be investigated.  

According to these data, in the following, aiming to verify receptiveness in travel time determinants, before time 
series components of bus travel time data are studied, hence traffic count data are analyzed to reveal to what extent 
their patterns are similar. 

Table 1. Main characteristics of bus analyzed services  

Line Daily average 
travel time 
(to the city center) 
[minutes] 

Daily average travel 
time 
(from the city center) 
[minutes] 

Travel 
length 
 
[km] 

Peak-hour 
headway 
 
[minutes] 

Off-peak hour 
headway 
 
[minutes] 

One-way 
number of 
stops 

Observation 
period (T) 
 
[weeks] 

A  39.5 41.7 11 20 30 37 8 

B  57.5 58.4 23 15 30 60 12 

 
 to the city center from the city center 

Line A 

  

Line B 

  

Figure 1. Hourly fluctuation of travel time of analyzed bus lines (working days). 

4. Bus travel time analysis 

Terminal-to-terminal bus travel time (TV) is formally expressed as: 

TV = RT + DW  (1) 

where 
 RT is the running time, which depends on the below determinants: 
○ flow speeds, which are related to link capacity, link flow and flow composition, 
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○ infrastructure link characteristics, which are related to number of link lanes, lane length, signals, pedestrian 
crossings, type of parking, road work, 

○ functional link characteristics, which are related to interferences with other mobility components (e.g. shoppers, 
students), 

○ context conditions, e.g. weather conditions (raining, sunny, etc.); 
 DW is the dwelling time, which depends on: 
○ alighting, boarding and on-board users, 
○ bus features, e.g. number of doors, lift operations. 
Therefore, the variability of bus travel times can be analysed starting from the investigation of the fluctuations of 

the above identified determinants. Besides, such fluctuations can present a systematic nature (receptiveness) and time 
series based methods should be a powerful tool in such an analysis. Then, aiming to discover such a systematic nature 
in travel time fluctuations, the results obtained using time series methods are presented below. 

A given time series Yt can be considered as comprising three components: a seasonal component (St), a trend-cycle 
component (Tt, containing both trend and cycle), and a remainder component (Et, containing anything else in the time 
series). Therefore, if an additive relation is assumed, follows: 

 t t t t t t tY f T ,S ,E T S E     

Let Yi denote the i-th observation and îY  denote a modelled value of Yi. The modelled error is simply  

 i i îe Y Y   (2) 

which is on the same scale as the data. 
To assess the modelled accuracy (Hyndman and Athanasopoulos, 2016), the mean absolute error (MAE), the root 

mean squared error (RMSE) and the mean absolute percentage error (MAPE) are used.  

The two-used scale-dependent measures are based on the absolute errors ie  or squared errors  2
ie : 

 
 2

Mean absolute error: MAE = mean

Root mean squared error: RMSE= mean

i

i

e

e
  (3) 

The percentage error is given by 100i i ip e Y  , which has the advantage of being scale-independent. The used 
measure is: 

 Mean absolute percentage error: MAPE = mean ip  (4) 

4.1. Bus travel time series decomposition 

Figure 2 reports the decomposition of bus travel time series of line A and B in the months of February and March 
2016 performed through the seasonal and trend decomposition using loess (STL; Cleveland et al., 1990; Jeon and 
Hong, 2016) decomposition method implemented in R software. Trend/cycle and seasonality can be pointed out, in 
particular: 

1. trends/cycles are quite flattened with a small difference between maximum and minimum values: less than 5% 
for line A and 2% per line B, at least in this test case, which considers three months; 

2. the effects of daily seasonality emerge for all days with smaller values on Saturday and Sunday (Figure 3) 
deriving from lower congestion in the weekend than in the workdays; 

3. seasonality is quite relevant for hours of the day because of variance of traffic flows and hence of the variance 
of road congestion. In fact, buses share the lanes and subsequently the traffic flow influences bus travel time; 
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4. seasonality is different for to or from the city center. Going to the city, high concentrations were revealed in the 
morning (e.g. due to concentration of arrival constraints at work or at school), while in the afternoon the effects 
along the hours are more distributed; 

5. as reported in Table 2, the contribution of remainder (E) is low and in terms of variance is about 29% (line A) 
and 21% (line B), which are mainly due to the singular variability revealed in some days due to particular events 
concentrated in time and space than structural factors. 

 
 to city center from city center 

Line A 

  
Line B 

  

Figure 2. Travel time STL decomposition with weekly period (February – March 2016). 

 to the city center from the city center 
Line A 

  
Line B 

  

Figure 3. Hourly fluctuation of travel time in the time period for the analyzed bus lines. 

15
00

25
00

35
00

d
a

ta

-1
00

0
0

50
0

10
00

se
a

so
n

a
l

23
50

24
00

24
50

tr
e

n
d

-1
00

0
0

50
0

15
00

2 4 6 8

re
m

a
in

d
e

r

time

15
00

25
00

35
00

da
ta

-5
00

0
50

0

se
as

on
al

22
60

23
00

23
40

23
80

tre
nd

-1
00

0
0

50
0

2 4 6 8

re
m

ai
nd

er

time

20
00

40
00

60
00

da
ta

-1
00

0
0

10
00

20
00

se
as

on
al

33
40

33
80

34
20

tre
nd

-1
00

0
0

10
00

20
00

1 2 3 4 5 6

re
m

ai
nd

er

time

20
00

30
00

40
00

50
00

da
ta

-1
00

0
0

50
0

10
00

se
as

on
al

33
00

33
20

33
40

33
60

tre
nd

-5
00

50
0

15
00

25
00

1 2 3 4 5 6

re
m

ai
nd

er

time

Monday   Tuesday Wed.    Thursday Friday Saturday Sunday  Monday   Tuesday Wed.    Thursday Friday Saturday Sunday 

   Monday    Tuesday     Wednesday   Thursday      Friday           Monday    Tuesday      Wednesday   Thursday    Friday  



106 Antonio Comi  et al. / Transportation Research Procedia 27 (2017) 101–108
6 Comi, A., Nuzzolo, A., Brinchi, S. and Verghini, R. / Transportation Research Procedia 00 (2017) 000–000 

Table 2. Variance (2) and mean (µ) of the observed travel time (Y) and remainder (E). 

 to the city center from the city center 
Line A 2 [Y] = 297 754 

µ [Y] = 2 412 seconds 
 

2 [E] = 83 436 
µ [E] = 30 seconds 

2 [Y]= 198 696 
µ [Y] = 2 357 seconds 

 
2 [E] = 58 329 

µ [E] = 23 seconds 
Line B 2 [Y] = 405 878 

µ [Y] = 3 435 seconds 
 

2 [E] = 85 447 
µ [E] = 32 seconds 

2 [Y] = 248 132 
µ [Y] = 3 366 seconds 

 
2 [E] = 52 089 

µ [E] = 2 seconds 
 
Finally, the accuracy in using only systematic components (i.e. trend/cycle - Tt - and daily/hourly seasonality - St) 

in reproducing travel time variability was evaluated. Therefore, the modelled (decomposition) error (e) can be assumed 
to be the remainder (E), i.e. e ≡ E. Figure 4 plots an extract of how reproduction works, while Table 3 synthetizes the 
above accuracy for whole investigated period of the two plotted routes (i.e. route of line A to the city center and line 
B from the city center). As synthetized by MAPE, which is smaller than 7.5%, trend/cycle and seasonality allow the 
main part of variance to be explained. It means an average error in reproducing travel time of about 3 minutes for line 
A to city center and 1.5 minutes for line B from city center. Besides, although the findings of these analyses refer 
mainly to the improvement of long-term travel time forecasting, they can open new research opportunities for short-
term forecasting to develop methods and models that take the expected pattern into account. 

 

  

Figure 4. Example of travel time modelling for two routes of the investigated bus lines. 

Table 3. Accuracy indicators relative to the whole period of analysis for a route of lines A and B 

Line A – to city center Line B – from city center 
average ei = -30.2 average ei = 15.3 

standard deviation of ei = 288.7 standard deviation of ei = 228.2 
MAE = 187.4 - RMSE = 290.3 - MAPE = 7.4% MAE = 139.8 - RMSE = 254.0 - MAPE = 4.2% 

 

4.2. Bus travel time and congestion 

The above identified characteristics of bus travel time and their dependences on the congestion were confirmed by 
the analysis of the time series of traffic counts even if in a road sections not along the bus routes. As shown in Figure 
5, which reports the STL decomposition of flow and vehicle speed time series, the contribution of trend/cycle to 
variability is low, given that its profile is quite flattened along the day from the week after the beginning of the school 
time (9th of September), while a daily seasonality effect emerges in both direction (i.e. from and to the city center) 
showing similar patterns for working and weekend days. Comparing Figure 3 and Figure 6, very similar patterns of 
seasonality in both directions (i.e. to and from the city center) emerge. 

Line B – from the city center Line A – to the city center 
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These results confirm the findings obtained in other urban contexts. For example, Rajbhandari (2006), investigating 
similar types of data from some cities in New Jersey, obtained that on each day of the week, morning and evening 
peak hours showed higher travel times than other times of day. However, the peaks varied on different days, i.e. the 
mean of travel time increased from early morning towards the morning rush and in the afternoon peak, while decreased 
thereafter, which, as emerged from Rome data, is a very typical observation of traffic condition. Yetiskul et al. (2012) 
revealed the effects of temporal dimension through data of AVL of the city of Ankara. Among the days of the week, 
Wednesday exhibited the highest source of variation. Recurrent traffic congestion was consistently observed during 
peak hours in the morning with subsequent bus travel-time variation increase. Similarly, Hassan et al. (2016) analysed 
through regression methods AVL data of four routes of two bus lines (with maximum planned headway of 11 min). 
They also found significant effects due to departure time (i.e. time of day) and day, and driver’s style in driving, which 
Rome data do not allow this last factor to be pointed out. 

 
 to the city center from the city center 

Flows 
[veh/h] 

  
Average 

speed 
[km/h] 

  

Figure 5. Flow and speed STL decomposition of traffic counts with weekly period (September – October 2016). 

to the city center from the city center 

  

Figure 6. Seasonal component of flow time series at counter section (direction to and from the city center). 
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5. Conclusions 

An investigation of the variability of bus travel times was carried out and the first results for the urban area of 
Rome, whose findings can be used for designing transit service timetable and vehicle scheduling in re-planning of 
existing lines, are presented. The focus was on systematic components and the results are mainly devoted to bus lines 
that share the lanes. The analyses were performed through time series methods, which allowed to recognize temporal 
patterns and to point out that also day of the week (i.e. Wednesday vs Thursday) has significant effects on travel time 
variability and have to be taken into account. Traditionally, such characteristics are neglected in short-term forecasting 
methods that, in general, do not take into accounts the expected temporal patterns. Besides, given that the investigated 
bus services share the lanes with other traffic, a comparison between bus travel time patterns and traffic ones, using 
also data from AVC system, was performed, and the travel time patterns were confirmed as very similar to the traffic 
count ones. Further developments in this study are in progress. They mainly concern additional investigations on new 
bus lines and traffic counters, and further types of automated data such as floating car data for revealing local traffic 
patterns, analysis of residuals deriving from decomposition method applying, in particular test of data autocorrelation 
and ARIMA models, including the seasonal ARIMA (SARIMA) based regressions models. Finally, the development 
of more performing models for long and short-term predictions that include the findings of these analyses (e.g. the 
expected temporal patterns), through the conjoint use of time series and regression methods, will be embarked. 
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