
Review article: Medical intelligence | Published 23 December 2015, doi:10.4414/smw.2015.14229

Cite this as: Swiss Med Wkly. 2015;145:w14229

Mesenchymal stem cells: myths and reality

Adelaida Sarukhana, Lucia Zanottib , Antonella Violac

a INSERM, Paris, France
b San Raffaele Hospital, Milan, Italy
c Department of Biomedical Sciences, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Italy

Summary

Mesenchymal stem cells (MSCs; also called mesenchymal
stromal cells) have received much attention during the last
two decades, at first because of their regeneration capacity
and poor immunogenicity and, more recently, because of
their proved immunomodulatory function. Consequently,
the number of studies addressing MSC biology and their
capacity to treat a broad range of human diseases at the
preclinical and clinical level has grown exponentially, with
often confusing and conflicting results. The use of poorly
defined cell preparations and experimental models, many of
them in vitro, has added to such confusion. In this review,
we identify what in our opinion remain the main open ques-
tions on MSC biology and we attempt to distinguish the
facts from the myths concerning endogenous and therapeutic
MSC.
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Introduction

Mesenchymal stem cells were first described in the 1960s
as a rare population of plastic-adherent, nonhaematopoietic
stromal cells in the bone marrow with osteogenic potential
[1, 2]. These cells, initially called colony-forming-unit-
fibroblast (CFU-F), were renamed mesenchymal stem cells
because of their potential for differentiating into adipo-
cytes, osteoblasts or chondrocytes [3]. Since then, it has
been reported that MSCs can also be induced to differenti-
ate into cells of ectodermal (epithelia, neurons) and endo-
dermal (lung cells, muscle cells, gut epithelial cells) tissues
[4, 5], although the physiological relevance of this remains
to be determined.
More recently, MSCs have been isolated from many other
tissues including adipose tissue [6], umbilical cord blood
[7], umbilical cord Wharton’s jelly [8], synovial membrane
[9] and tooth pulp [10]. This diversity in terms of tissue
origin, together with the use of different culture media and
protocols, has added to the complexity of defining and
comparing culture-expanded MSCs that in fact consist of
a heterogeneous population of cells and display a spec-
trum of phenotypic and functional properties. This led to

the proposal to establish minimum criteria for MSCs that
include plastic adherence, trilineage (adipogenic, chondro-
genic, osteogenic) differentiation in vitro, cell surface ex-
pression of CD90, CD73 and CD105, and absence of
haematopoietic markers such as CD45 [11]. To date, the
lack of specific markers to define MSCs poses an addi-
tional challenge in the field, and the use of more advanced
molecular criteria such as cell transcriptome, proteome and
secretome has been proposed [12].
Barely more than 10 years ago, the biomedical community
discovered that, rather surprisingly, MSCs were not only
poorly immunogenic (thus, potentially attractive candid-
ates for tissue regeneration therapies, given their supposed
stem cell capacities) but also displayed remarkable im-
munomodulatory capacities (making them attractive can-
didates in the treatment of inflammation-associated dis-
eases). Since then, these cells have captured an enormous
amount of attention from biomedical researchers. PubMed
identifies almost 35 000 references for “mesenchymal stem
cells”. As often happens in rapidly expanding fields, there
has also been a great number of preclinical and even clinic-
al studies performed with poorly defined MSC populations
and inappropriate experimental settings or read-outs, lead-
ing to controversial interpretation of results.
In this review we will identify and discuss what in our
opinion remain the main open questions in MSC biology
and will attempt to distinguish between myths and facts
concerning the cell regeneration potential and the immune
modulatory capacities of endogenous and therapeutic
MSC.

Endogenous mesenchymal stem cells

Do all endogenous mesenchymal stem cells have the
same origin?
The origin, identity and function of MSCs in vivo remain
enigmatic. Several studies show that MSCs lie adjacent to
blood vessels and are localised in almost every perivascu-
lar space of the body (rev in [13]). MSCs co-express many
markers in common with pericytes, a poorly defined cell
type that resides on the abluminal surface of endothelial
cells in the microvasculature of connective tissue. The cur-
rent consensus holds that perivascular cells (that include
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pericytes and adventitial cells) form mesenchymal stem
cells in most tissues (reviewed in [14]). A combination
of markers such as NG2, CD146, and PDGFRβ was re-
ported to label specifically pericytes in a range of human
organs, including foetal and adult skin, pancreas, heart,
brain, lungs, bone marrow and placenta. Long-term cul-
tures of these isolated cells displayed similar morpholo-
gical features to those of cultured mesenchymal stromal
cells, as well as trilineage potential in vitro and osteogenic
potential in vivo [15]. Furthermore, human perivascular
stem cells displayed greater healing capacity in a mouse
bone injury model, as compared to the total stromal vas-
cular fraction [16]. These results have led to suggest that
it would be more appropriate to refer to MSCs as “mul-
tipotent perivascular-derived cells” [17]. However, despite
their being perivascular, not all MSCs can be referred to
as pericytes, and not all pericytes exhibit MSC-specific
properties [13]. Furthermore, two recent studies show that
MSCs may originate from other cells in addition to peri-
cytes. Using genetic lineage tracing and a mouse model of
tooth damage, Feng and colleagues showed that pericytes
do not account for all of the odontoblasts, suggesting mo-
bilisation of another source of MSCs of nonpericyte ori-
gin [18]. Another recent study using permanent genetic la-
belling of Schwann precursor cells showed that peripheral
nerve-associated glial cells generate multipotent MSCs that
produce pulp cells and odontoblasts during tooth devel-
opment, renewal and repair [19]. Altogether, these results
show that MSCs in a single tissue may have more than one
origin and suggest that the contribution of pericytes may
depend on the extent of vascularisation.

What is the function of endogenous mesenchymal stem
cells?
The functional characterisation of the MSC has been
mainly deduced from in-vitro studies with culture-expan-
ded cells. Thus, many open questions remain concerning
the physiological activities of these cells in vivo, particu-
larly regarding endogenous MSCs. MSCs were originally
isolated from bone marrow, where they appear to play a
key role in constructing and maintaining the haematopoi-
etic stem cell (HSC) microenvironment [20]. MSCs ex-
pressing the neural stem cell marker Nestin have been
shown to associate physically with HSCs and adrenergic
nerve fibres, and to express high levels of HSC mainten-
ance factors such as CXCL-12, c-kit ligand, angiopoiet-
in-1, interleukin-7 (IL7), vascular cell adhesion molecule-1
(VCAM-1), and osteopontin [21]. In the bone marrrow,
MSCs are thought to exhibit a homoeostatic default im-
munosuppressive phenotype, via the expression of molec-
ules such as Gal-1, angiopoietin-1, osteopontin and throm-
bospondin, in order to inhibit inappropriate HSC differen-
tiation [22]. Altogether, these data support the notion that
MSC may play a direct role in the support of haematopoi-
etic cells inside the bone marrow stem cell niche.
In addition to the haematopoietic niche, MSCs are localised
in almost every perivascular space of the body. It is be-
lieved that this allows them to detect local or distant tissue
damage and respond by migrating to such sites and promot-
ing tissue repair and healing. However, there is little evid-
ence supporting in-vivo mobilisation of endogenous MSCs.

The most solid data may come from a couple of studies
analysing foetal stem cell mobilisation. One study showed
that microchimerism was detected in human maternal bone
marrow decades after pregnancy [23]. Furthermore, ex-
periments with mice suggest that luciferase-positive foetal
MSCs that colonise the maternal bone marrow can then mi-
grate to wounds inflicted on post-partum wild-type moth-
ers [24]. However, induction of MSC mobilisation upon in-
jury is not supported by studies in heart [25] or lung [26]
transplant patients, where the MSCs present in the trans-
planted organ were all of donor origin, even several years
after transplantation, suggesting that MSCs do not migrate
between tissues, even under inflammatory conditions such
as those found in the transplanted organs.
It has been hypothesised, at least for umbilical cord MSCs,
that their primary role in situ is to maintain stromal tissue by
differentiating into myofibroblasts that elaborate the extra-
cellular matrix, and that the disturbance of the perivascular
niche (for example by growth or injury) provides the specif-
ic cues required for MSC regeneration capacities [27].
An interesting perspective on the role of endogenous MSCs
has recently been put forth by Caplan and colleagues, who
propose that local MSCs function by managing the repair
and regeneration activities of the body in a site-specific
manner: when sensing damage, pericytes become MSCs
and provide the appropriate microenvironment for local
tissue regeneration by secreting immunomodulatory, an-
giogenic and trophic factors, after which they can then re-
vert to their pericyte phenotype [28].

Are all mesenchymal stem cells, stem cells?
Independently of their origin, the stem cell nature of MSCs
has been a widely accepted notion. However, very few
studies have demonstrated the existence of stem cells
among human cultured MSCs at the clonal level. Human
bone marrow stromal cell clones gave rise to chondrogenic
or adipogenic progenitors [29] and experiments combining
the use of green fluorescent protein-tractable cells from
human umbilical cord with rigorous cell seeding showed
the existence of a small subpopulation of multipotent cells
that give rise to more restricted self-renewing progenitors
with a hierarchical process of differentiation into five dis-
tinct mesenchymal lineages – adipogenic, chondrogenic,
osteogenic, myogenic and fibroblastic [27]. This study also
showed that the greater the potential of a cell for differ-
entiation, the rarer it is within the mesenchymal compart-
ment. Therefore, only a very small fraction of MSCs are
in fact, bona fide stem cells. This may explain why, al-
though MSCs were first heralded for their therapeutic po-
tential in tissue regeneration based on a “cell replacement”
concept, there has been scarce evidence for in-vivo differ-
entiation of MSCs into different cell types. In addition, the
evidence is controversial, since bone marrow-derived mes-
enchymal stromal cell cultures have been shown to contrib-
ute to many tissues upon transplantation through heterotyp-
ic fusion with endogenous cells. In this sense, it has been
proposed that therapeutic recovery of myocardial function
observed upon MSC administration may be due, at least
partially, to fusion of MSCs with resident cardiomyocytes
leading to nuclear reprogramming [30, 31]. However, the
low frequency of this biological process is unlikely to ac-
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count for the improvements in preclinical models of in-
jured tissue. These are more likely a result of the secretion
by the MSC of paracrine factors that can favour angiogen-
esis or inhibit inflammation. In fact, the MSC secretome
contains numerous pro-angiogenic factors such as growth
factors (e.g. vascular endothelial growth factor and mac-
rophage colony stimulating factor), chemokines/cytokines
(e.g. monocyte chemoattractant protein-1 and interleuk-
in-6 [IL6]) and angiopoietin 1 and 2, indicating that they
may represent a promising therapeutic strategy in disorders
characterised by insufficient angiogenesis such as chron-
ic wounds, stroke and myocardial infarction (reviewed in
[32]). It should be noted, however, that they can also
secrete antiangiogenic factors such as tissue inhibitor of
metalloproteinase-1 [33, 34] (Zanotti, manuscript in pre-
paration) whose relevance in vivo remains to be determin-
ed. Thus, beyond their angiogenic potential, MSCs seem
to contribute to tissue regeneration mainly by modulating
inflammation (reviewed in [35]). Accordingly, the clinical
value of MSCs is derived from their immunomodulatory
activity rather than from their stem cell properties.

Exogenous mesenchymal stem cells

The immunosuppressive capacity of the MSC was first
documented in reports that showed that human allogeneic
MSCs suppressed T cell proliferation in a mixed lymph-
ocyte reaction assay in vitro via the secretion of soluble
factors [36, 37] and that baboon MSCs prolonged skin graft
survival in vivo [38]. Since then, there is a considerable
amount of literature showing that MSCs can produce a
multitude of cytokines and growth factors, soluble or in
extracellular vesicles, that can suppress immune responses
by inhibiting B and T cell proliferation, dendritic cell and
monocyte maturation, and by promoting generation of reg-
ulatory T cells and anti-inflammatory (M2-like) macro-
phages (review in [17, 39, 40] (table 1).
There are a number of excellent recent reviews on the
mechanisms by which MSCs modulate innate and adaptive
immune responses [39, 41–43]. However, a recurring prob-
lem in the field of MSC research is that the mechanisms by
which these cells modulate immune responses has mostly
been characterised in vitro. It is unclear to what degree
these mechanisms are relevant to transplanted or endogen-
ous MSCs in vivo. Here, we will focus on discussing cer-
tain concepts that have been proposed and accepted on the
basis of in vitro, and sometimes in vivo, experiments but
that are not supported by recent evidence.

Is homing to inflamed tissue a requirement for the
function of exogenous mesenchymal stem cells?
Culture-expanded MSCs express low levels of major his-
tocompatibility complex (MHC) class I and practically no
MHC class II or costimulatory molecules, and therefore it
is widely accepted that soluble factors mediate their im-
mune suppressive activity. Many factors released by MSC,
such as transforming growth factor-β (TGFβ), hepatocyte
growth factor, prostaglandin E2 (PGE2), indolamine
2,3-dioxygenase (IDO) (for human MSCs), NO (for
mouse MSCs), IL6 and possibly IL10 have been shown to

contribute to their modulatory effects on innate and adapt-
ive cells, at least in vitro (reviewed in [44, 45].
It has been assumed that, in order to exert their immun-
omodulatory or regenerative effect in vivo, MSCs must mi-
grate to damaged tissue sites, where they release a cocktail
of soluble factors in response to the inflammatory microen-
vironment [35, 46, 47]. However, there is accumulating ex-
perimental evidence that does not support this notion and
that indicates that MSCs may induce immune and regener-
ative effects in the host via endocrine signalling.
First, although very few studies have successfully ad-
dressed the fate of systemically administered MSCs in vivo,
the number of MSCs reaching the target tissue seems to be
extremely low [48, 49]. In fact, it has been shown that the
vast majority of intravenously infused MSCs are trapped
in the lung where they die shortly after [50, 51]. So, how
can the effect of intravenously administered MSCs be ex-
plained? Interestingly, in a mouse myocardial infarction
model, infused human MSCs were shown to exert their
protective function by secreting the anti-inflammatory
factor tumour necrosis factor-α (TNF-α)-induced protein 6
(TSG-6) upon their trapping and activation in the lung [52].
In addition, phagocytosis of dead MSCs in the lung could
eventually result in the generation of macrophages with a
regulatory phenotype [53]. It is possible, though unlikely,
that some MSCs may escape elimination and account for
the therapeutic effect.
Second, a number of studies, where MSCs have been ad-
ministered via other routes that prolong their survival but
limit their migration, showed that these cells can exert an
effect on distant tissue. For example, MSCs administered
intraperitoneally have been shown to reduce joint inflam-
mation, independently of MSC viability and migration to
the joints [54]. A recent study using a mouse model of
colitis shows that intraperitoneal administration of MSC
ameliorates colitis in mice via the release of TSG-6 and
independently of their capacity to localise to the intestine
[55]. Furthermore, by administering subcutaneously mouse
MSCs encapsulated in alginate microcapsules, we have
conclusively shown that MSCs do not need to migrate to
inflamed tissue in order to modulate local, antigen-specific
immune responses in vivo [56]. In our model we observed
a decrease in recruitment of all immune cells that correl-
ated with a decrease in endothelial cell activation and an-
giogenesis (Zanotti, manuscript in preparation). This is in
line with studies showing that intravenously administered
MSCs decrease dendritic cell maturation and migration to-
wards reactive lymph nodes [57].
Evidently, the question remains as to the precise soluble
factors underlying the endocrine function of MSCs.
Cytokine-activated MSCs secrete a wide range of bioactive
molecules such as cytokines, antioxidants, pro- and anti-
angiogenic molecules and growth factors [58], and injec-
tion of MSC-conditioned medium into mice was reported
to mimic the beneficial effect of transplanted MSCs in
terms of wound healing and arteriogenesis [59, 60]. In this
context, the role of MSC microvesicles has received much
attention during recent years. MSC derived microvesicles
have been shown to protect against kidney injury [61]. In
another study, microvesicles derived from MSCs could in-
hibit proliferation of lymphocytes isolated from mice with
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experimental autoimmune encephalomyelitis and were
shown to express programmed death ligand 1 (PD-L1), ga-
lecin-1 and membrane-bound TGF-β [62], and infusion of
MSC exosomes was reported to enhance the survival of al-
logeneic skin grafts in mice and the induction of regulatory
T cells (Tregs) [63]. Although the idea of replacing cellu-
lar therapies based on MSC with MSC-derived microves-
icles is attractive and presents a series of advantages, their
immunomodulatory capacity in vitro seems to be lower as
compared with their cellular counterparts [64]. Thus, the
role of these vesicles in vivo and their capacity to suppress
ongoing immune responses remains to be confirmed. It is
likely that the endocrine effect of MSCs may involve the
secretion of soluble factors that promote the induction of
resident cells with regulatory phenotypes, such as M2-type
macrophages [25].

Are exogenous mesenchymal stem cells
immunoregulatory by default?
MSCs have been reported to modulate the immune system
through a broad panel of mechanisms. They secrete anti-
inflammatory factors such as TGFβ, hepatocyte growth
factor and PGE2 [36, 65] and express inhibitory molecules
such as PD-L1, FasL (Augello et al. 2005 [67]; Gu et al.
2013 [68]) or human leucocyte antigen-G (Selmani et al.
2008 [106]) that directly inhibit T cell proliferation. By
producing TGFβ and other factors such as PGE2, they
may also promote the induction of cells with regulatory
functions, such as Tregs [66], regulatory B cells [67, 68],
and anti-inflammatory macrophages [69] and have recently
been shown to induce regulatory dendritic cells via Notch
signalling [70].
The question is whether all these effects are relevant in vivo
and in all settings. Several studies indicate that MSCs are
not constitutively inhibitory and that their immunoregulat-
ory effect is activated by an inflammatory environment (re-
viewed in [39, 71]). Accordingly, MSCs have been shown
to be most effective when administered after the onset of
the inflammatory response [72].
MSCs may sense the local environment via different re-
ceptors, including Toll-like receptors (TLRs) and cytokine
receptors. Human and mouse MSCs express several TLRs
and, depending on their tissue origin, their expression can
be up- or downregulated by environmental cues such as
hypoxia and inflammatory cytokines [73]. Based on studies
showing that TLR4 stimulation led to the upregulation of
proinflammatory cytokines such as IL6, while TLR3 prim-
ing led to the production of anti-inflammatory molecules
such as IL4 and PGE2, it was proposed that MSCs may ad-
opt a MSC1 or MSC2 phenotype [74]. However, the effect
of TLR3 and TLR4 stimulation remains controversial, with
some studies showing that both receptors enhance immun-
osuppresion in vitro through IDO induction [75] and others
showing upregulation of proinflammatory cytokines [76].
In addition, priming through other TLRs may also upregu-
late the expression of immunomodulatory proteins [77, 78].
It is clear that more investigation is needed to understand
if and how different damage-associated molecular pattern
molecules play a role in determining MSC function in vivo.
Cytokine signalling prior to TLR stimulation seems to be
important for inducing immunoregulatory MSCs. For ex-

ample, MSCs were shown to ameliorate sepsis in mice
upon stimulation by lipopolysaccharide and TNFα. This
led to nuclear factor kappa-light-chain-enhancer of activ-
ated B cells (NF-κB) signalling, cyclooxygenase-2 expres-
sion and synthesis of PGE2 by MSC, which binds to EP2/
EP4 receptors on macrophages and leads to IL10 produc-
tion [79]. The amount of inflammatory cytokines may also
be important and only high levels of interferon-γ (IFNγ)
and IL1 or TNFα were able to induce upregulation of in-
ducible nitric oxide synthase (iNOS) by MSCs at sufficient
levels to inhibit T cell proliferation [80]. In fact, it has been
proposed that iNOS for murine cells or IDO for human
cells may represent the “molecular switch” for immune-
suppressive MSCs. Injection of iNOS-deficient MSCs into
the footpad of mice led to an aggravated ovalbumin-in-
duced delayed-type hypersensitivity response in terms of
footpad thickness and enhanced leucocyte infiltration,
while wild-type MSCs were protective [80, 81].
Overall, these results suggest that MSCs are receptive to
environmental cues that play a key role in determining
their activation and function. However, the precise mech-
anisms underlying these findings remain to be determined
in vivo, particularly in experimental settings where MSCs
do not migrate to inflamed tissues. It is highly likely that
the paracrine/endocrine function of MSCs that are encap-
sulated [56], injected subcutaneously (our unpublished res-
ults) or intraperitoneally [55, 82] is also dependent on the
environment. These cells could be activated by circulating
inflammatory factors, or simply as a result of their dynamic
compaction into spheres, which has been shown to activate
caspase-dependent IL1 signalling and the secretion of in-
flammation modulators such as TSG-6 and PGE2 [82]. In-
travenously infused MSCs, which have a very short life and
limited distribution to inflamed tissues, have in fact been
shown to induce a systemic inflammatory response with-
in hours after infusion [48]. This could contribute to the
documented transient T cell apoptosis observed, leading
to TGFβ production by macrophages and enhanced Treg
generation [83]. One could speculate that the effect of in-
fused MSCs depends on a short-lived but dynamic regulat-
ory feedback between MSCs and macrophages. This would
agree with recent studies that indicate that the ability of
MSCs to suppress T cell proliferation is monocyte depend-
ent and involves polarisation of monocytes to anti-inflam-
matory macrophages (reviewed in [39]).

Mesenchymal stem cells in clinical
trials

Based on the ability of MSCs to expand in culture and
differentiate into multiple cellular phenotypes, they were
considered as potentially useful therapeutic agents for tis-
sue repair [3]. Although animal experiments suggested that
MSCs were capable of homing to and proliferating within
injured tissues, it soon became apparent that their effect
did not require significant engraftment or differentiation
[84]. In fact, it was shown that in response to injury, MSCs
secrete large quantities of bioactive molecules able to me-
diate tissue repair by limiting apoptosis and stress response,
and by recruiting immune cells that enhance wound repair
[52, 84, 85]. For these reasons, we will focus on the clinical
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value of MSC based on their immunoregulatory capacity
rather than on their stem cell properties.
In one of the first clinical applications of MSCs, Le Blanc
and colleagues used maternal-derived haploidentical MSCs
to treat a boy suffering from treatment-resistant graft versus
host disease (GvHD) and reported recovery and survival
beyond 1 year after two administrations of MSCs [86]. Since
then, the number of clinical trials using MSC has soared
(nearly 350 registered trials, most of them in phase I or II)
and are addressing their efficacy in the prevention or treat-
ment of a broad spectrum of diseases, mostly of autoimmune

Figure 1

Summary of the main categories of disease present in the clinical
trials that are completed, active or waiting for activation (registered
as of July 15th, 2015 at http://clinicaltrial.gov).
GVHD = graft versus host disease

origin but also in solid organ transplantation, neurological
disorders and even autism [58, 78, 87, 88] (fig. 1). Relat-
ively small trials have been conducted by academic institu-
tions with unmatched and haploidentical MSCs from early
passages, for example in the treatment of acute GvHD [89],
with relative success. However, MSC-based therapies have
been predominately developed by companies that, by ex-
tensive culture expansion, generate therapeutic doses to treat
entire cohorts of patients, and products developed by com-
panies such as FBC-Pharmicell’s Hearticellgram®-AMI and
Mesoblasts’ Prochymal® have already received regulatory
approval in certain countries [90].

Factors that may influence response to therapeutic
mesenchymal stem cells
MSCs are currently being tested in a wide range of clinical
settings, mainly in autoimmune diseases (multiple scler-
osis, rheumatoid arthritis, Crohn’s disease, etc.), GvHD,
wound repair, ischaemia/stroke, liver diseases and HSC en-
graftment. Despite the large number of ongoing clinical tri-
als, the demonstration of a beneficial effect from MSCs
in large placebo-controlled trials remains elusive. In some
cases, MSCs have even been reported to lead to the ex-
acerbation of disease symptoms [91, 92]. This heterogen-
eity in response to MSC administration is most likely due
to the fact that their function may vary according to factors
such as the administration route, the timing, and their tissue

Table 1: soluble factor that mediates anti-inflammatory mechanism of mesenchymal stem cells.

Target cell Mediator Action(s) Reference
Cleaved CCL2 Inhibits CD4+ Th17 cells [102]

CXCL9/CXCL10 Promotes T cell chemotaxis [81]

sGalectin1 and 3 Inhibits T cell proliferation [103]

Haem oxygenase-1 Inhibits T cell response [104]

induces IL-10+ Tr1 and TGF-β + Treg [105]

HGF inhibits T cell proliferation [36]

sHLA-G5 suppresses T cell function [106, 107]

Induces Treg [106]

IDO* Inhibits T cell proliferation [108]

IL6 inhibits T cell proliferation [109]

IL10 Inhibits T cell responses [110]

Decreases Th17 cell differentiation [111]

iNOS/NO* Inhibits T cell proliferation [81]

LIF Inhibits T cell proliferation [112]

PGE2 Inhibits T cell proliferation [113]

Modulates Th1, Th2 cytokine production [113]

T cell

TGFb Induces Treg [114]

Cleaved CCL2 Suppression of immunoglobulin production [115]B cell
IDO Induces Breg [116]

IDO Impairs NK cell proliferation and function [117]

sHLA-G5 Inhibits NK cell function [106]

PGE2 Inhibits NK cell function [118]

Natural killer cell

TGFb Inhibits NK cell activation and function [118]

IL6 Modulation of DC maturation [119]

PGE2 Modulation of DC maturation [120,121]

Dendritic cell

Modulates mature DC cytokine production [65]

CCL2/CCL3/CCL12 Promotes macrophage chemotaxis [60]

IDO Promotes type II macrophage differentiation [122]

PGE2 Promotes type II macrophage differentiation [79,123]

Macrophage

TSG6 Regulates macrophage (downregulation of NF-κB) [124]

HLA-G = human leucocyte antigen G; IDO = indolamine 2,3 dioxygenase;IL-6, interleukin-6; iNOS = inducible NO synthase; MSC = mesenchymal stem cell; NF-κB =
nuclear factor kappa-light-chain-enhancer of activated B-cells; NO = nitric oxide; LIF = leukaemia inhibitory factor; TGF-β = transforming growth factor-β; PGE2 =
prostaglandin E2; TSG6 = tumour necrosis factor-α-induced protein.
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and/or donor origin. In clinical settings, systemic intraven-
ous delivery route for MSCs has shown clinical efficacy
despite entrapment in nontarget tissues (reviewed in [93]).
However, local administration, although less explored, may
prove to be highly effective. For example, intrafistular ad-
ministration of MSCs in patients with Crohn’s disease led
to amelioration of mucosal healing and was associated with
an increase in circulating and mucosal Tregs [94]. In a pre-
clinical model of GvHD we have shown that encapsulated
MSCs were more efficient in modulating antigen-specific
responses than intravenously administered MSCs [56]. Not
all MSCs may work the same: while human umbilical cord
(UBC) MSCs were capable of preventing GvHD in a hu-
manised NOD/SCID model, murine MSCs had no effect.
However, even the same UBC-MSCs were not protective
when administered at onset or late in the course of the
disease [95]. Similarly, mouse MSCs were shown to pro-
tect from GvHD only at timepoints when the animals had
high levels of IFNγ [72], supporting the notion that MSCs
are immunosuppressive only when activated by inflammat-
ory cytokines. This would help explain why MSCs im-
proved overall survival in patients with acute GvHD [89]
but not in patients that received MSCs at the time of HSCT
[96]. Furthermore, Ball et al. showed that the administra-
tion of MSCs early after the diagnosis of steroid refractory
GvHD resulted in higher complete response rates and bet-
ter overall survival [97]. This suggested the use of MSCs
as second-line treatment in subsequent paediatric European
clinical trials in order to prevent massive damage to gut and
liver (HOVON113).
Therefore, a better understanding of the patient inflammat-
ory status at the time of MSC infusion could allow the de-
velopment of relevant biomarkers to decide the best tim-
ing and route of MSC administration [39]. Concerning the
donor origin of MSCs, the assumption that they are im-
munologically privileged has encouraged the use of large-
scale allogeneic MSC preparations as a “one-size fits all”
therapy [17]. However, recent data indicate that allogeneic
MSCs can provoke an immune response resulting in re-
jection. MSCs exposed to IFNγ upregulate MHC class I
and class II [86] and it has been shown that intraperitoneal
injections of allo-MSCs can result in elevated titres of
allo-reactive antibodies and rejection of same-party skin
grafts [98]. Transplantation of allogeneic but not syngeneic
transgene-expressing MSCs has been shown to result in
humoral and cellular responses to the neoantigen [99, 100].
Thus, while MSCs are poorly immunogenic, they cannot be
considered as immune-privileged. Furthermore, these res-
ults indicate that, while both auto- and allo-MSCs are being
used in clinical trials, direct efficacy comparisons between
both cell sources are urgently required. In any case, the im-
mune memory generated by allo-MSCs calls for caution
about their sequential administration [17].
Another issue for concern is the potential ability of MSCs
to transform upon culture expansion. Since it was reported
that sarcoma developed following transplantation of MSCs
into animals [101], determination of their therapeutic ef-
ficacy and safety is now required for clinical applications.
However, human MSCs are less susceptible to transforma-
tion upon long-term in-vitro culture [39] and, so far, no ma-
lignant transformation has been reported in clinical trials.

Concluding remarks

During the last two decades, the amount of scientific liter-
ature on MSCs has increased exponentially. However, there
has also been an overwhelming number of poorly reprodu-
cible, confusing and/or controversial reports, in great part
due to the use of poorly defined cell populations and/or ex-
perimental models. Recent evidence, obtained mainly from
experiments in vivo, has helped to start distinguishing facts
from myths surrounding MSC biology. It is now quite clear
that only a small population of MSCs are in fact pluripo-
tent stem cells, and that their clinical potential relies on
their capacity to modulate inflammation and tissue repair
rather than on their cell differentiation capacity. It is also
becoming evident that MSCs do not need to migrate to the
inflamed tissue in order to exert their function but rather,
in response to inflammatory cues, release a series of sol-
uble factors that act in a paracrine and even endocrine man-
ner. Further characterisation of the human and mouse MSC
secretome is therefore an attractive research avenue.
For MSC to fulfil their potential in the prevention and/or
treatment of immune-mediated human diseases, further in-
vestigation into several issues is urgently needed. Foremost,
unifying mechanisms of MSC function in vivo need to be
identified. Second, standardised protocols for the culture and
expansion of therapeutic MSCs, including their tissue and
donor origin, need to be established. Third, relevant bio-
markers that may guide clinicians as to the best route and
timing of MSC administration and/or help them evaluate the
efficacy of the therapy are needed. Finally, large placebo-
controlled trials are required and long-term safety data on
MSC-based therapies have yet to be obtained.
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Figures (large format)

Figure 1

Summary of the main categories of disease present in the clinical trials that are completed, active or waiting for activation (registered as of July
15th, 2015 at http://clinicaltrial.gov).
GVHD = graft versus host disease
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