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SUMMARY

This work introduces a novel time-domain numerical simulator of integrated optical waveguides.
Only solutions of two scalar Helmholtz-equations are used in the evaluation of electric and magnetic
Hertzian-potentials that yields the electromagnetic field in the time domain, and the frequency response by
the discrete Fourier transform. All the field components are obtained directly from the scalar
potentials, and are not interrelated as in finite-difference time domain method. The Hertzian potential
method (HPM) considers the field-perturbation effect in proximity of the dielectric discontinuities by
generators modeling and takes into account the numerical error of a wave that travels in a dielectric
multilayered optical guide. We present in this work the general finite difference discretization
and the numerical setting of the HPM related to optical waveguide full-wave modeling. Copyright r
2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time domain methods such as finite-difference time-domain (FDTD) [1, 2], transmission line
matrix [3], and wavelet-Galerkin method [4] are gaining importance by virtue of their versatility
and represent the natural way in which they simulate what happens in electromagnetic (EM)
problems. For high-frequency optical structures, the complexity of problems grows, and a high
computer performance is requested. The rigorous Hertzian Potentials formulation can be used
for simulation of full-wave propagation and reflection in the time domain, it is not time- and
memory-intensive and is suitable for structure of large optical dimensions [5, 6]. We propose an
efficient numerical algorithm to solve the EM field in a general optical waveguide by considering
the typical analysis of the optical waveguides. This method considers the Hertz vectors [7–9]
starting from the Helmholtz scalar equations [9, 10] and the perturbed effect of the dielectric
discontinuities [11–13]. The equations to solve are reduced to two scalar equations instead of six;
subsequently all the EM components are obtained by the Hertzian potentials [7–9]. In the
frequency domain, the transmission and reflection properties of dielectric discontinuities may be
derived by means of an equivalent circuit [11–13] that automatically ensures continuity of
the fields and their first derivatives along the propagation-directions. If potentials are used,
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instead, second derivatives are involved and generators are necessary at each dielectric interface.
The generators [5, 6] decrease the grid cell dimension and so the computational time with a good
convergent solution [6]. The method is developed by considering the modal approach of the
waveguides shown in Figure 1, by evaluating the effective refractive index along the non-
uniform dielectric direction, and then by modeling the waveguides by the Hertzian potential
formulation. The analytical model (used to reduce a 3D problem in 2D one through the effective
index of the vertical direction), and the numerical time-domain Hertzian Potentials Method
(HPM) model with generators represent together a good approach for simulating complex 3D
structures that require a high computational cost [6]. In this work, we describe in detail the
application of the Hertzian potentials in a general optical waveguide by focusing the theory in
the evaluation of important parameters related to the waveguide analysis.

2. TIME DOMAIN HERTZIAN POTENTIALS METHOD (HPM)

In Figure 2 the time-domain Hertzian Potentials algorithm used in this work [5, 6] is shown. The
Hertzian electric and magnetic vectors [7–9] are represented in rectangular coordinates by

�e ¼aceðx; y; z; tÞ

�h ¼achðx; y; z; tÞ
ð1Þ

where a is unit vector. From (1) it is possible to evaluate all the components of the EM field as

E ¼HH ��e � em
@2

@t2
�e � m

@

@t
ðH��hÞ
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@t2
�h1e
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ð2Þ

where
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Figure 1. (a) 1D dielectric multilayer structure; (b) 2D asymmetrical waveguide; (c) 2D tapered waveguide;
and (d) 3D ridge waveguide.
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with
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ð4Þ

By using (3) and (4), Equation (2) becomes
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All the EM components of Equation (5) for a general unit vector a are given by:
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The potentials Ce,h(x,y,z,t) represent the solutions of the homogeneous wave equations for a
non-dissipative medium [5]

H2ce;hðx; y; z; tÞ � me
@2ce;hðx; y; z; tÞ

@t2
¼ 0 ð7Þ

and for a dissipative medium

H2ce;hðx; y; z; tÞ � me
@2ce;hðx; y; z; tÞ

@t2
� ms

@ce;h ðx; y; z; tÞ
@t

¼ 0 ð8Þ

Figure 2. 2D HPM algorithm with analytical approximation: the input parameters (thicknesses, refractive
indices, working wavelength) are given after the analysis of the symmetrical and the asymmetrical slab

waveguide.
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where e is the electrical permittivity (F/m), m is magnetic permeability (H/m), and s is the electric
conductivity (S/m) which is zero in a perfect dielectric.

For the solution of Equations (7) and (8), we use the finite difference (FD) discretization [14],
which for a general three-dimensional (x,y) space is represented by

@cn
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and for the second order by:

@2cn
e;hði; j; kÞ

@x2
’

cn
e;hði11; j; kÞ � 2cn

e;hði; j; kÞ1cn
e;hði� 1; j; kÞ

D2x
@2cn

e;hði; j; kÞ

@y2
’

cn
e;hði; j11; kÞ � 2cn

e;hði; j; kÞ1cn
e;hði; j� 1; kÞ

D2y

@2cn
e;hði; j; kÞ

@z2
’

cn
e;hði; j; k11Þ � 2cn

e;hði; j; kÞ1cn
e;hði; j; k � 1Þ

D2z
@2cn

e;hði; j; kÞ

@t2
’

cn11
e;h ði; j; kÞ � 2cn

e;hði; j; kÞ1cn�1
e;h ði; j; kÞ

D2t

ð10Þ

3. HPM GENERATORS MODELING FOR DIELECTRIC DISCONTINUITIES

It is known that the scalar wave equation may lead to inconsistencies because in an
inhomogeneous medium, it is, in general, not equivalent to Maxwell’s equations. EM scattering
problems, including free space, involve the calculation of the fields produced in the presence of
geometrical discontinuities by arbitrary currents and voltages (generators). Such discontinuities
may be replaced by equivalent generators [4], giving an accurate solution of the EM fields for
structures with high dielectric contrast. In fact the scalar wave equation (7) for a non-dissipative
medium can be rewritten as [5]

H2Ce;hðx; y; z; tÞ � me
@2Ce;hðx; y; z; tÞ

@t2
� m

@2Ppertðx; y; z; tÞ
@t2

¼ 0 ð11Þ

where

Ppertðx; y; z; tÞ ¼ Deðx; y; z; tÞCe;hðx; y; z; tÞ ð12Þ

represents the dielectric polarization, and for a 3D case we have:

De ¼ ei11 � ei; i ¼ cell position in the x� direction ð13Þ

De ¼ ej11 � ej; j ¼ cell position in the y � direction ð14Þ

De ¼ ek11 � ek ; k ¼ cell position in the z� direction ð15Þ

Therefore, we solve (11) in proximity of the dielectric interfaces, and (7) in the homogenous
regions. The difference between the parametric solution of (11), and (7) in the iterative form (by
using the FD discretization [14]), is in the coefficients [5, 6]; in fact for one propagation
direction, (7) and (11) become, respectively,
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Figure 3 shows the time evolution of the Ey component (normal to plane of the figure) one
cell before the dielectric multilayer 1D of Figure 1(a). We observe that the parameters (20)
represent the values of the generators (see inset of Figure 3) and give a good convergent solution
with a low grid size [6], in fact, it is clear how by using a no-small cell size (Dz5 4� 10�8m) with
respect to the dielectric thicknesses the generators provide a no-oscillating closed solution.

Electric field

-1.80E+15

-1.30E+15

-8.00E+14

-3.00E+14

2.00E+14

7.00E+14

1.20E+15

0

Time-steps

E
y 

am
pl

itu
de

HPM generators modeling

original dielectric profile 

10 20 30 40 50 60 70 80 90 100

Figure 3. Time evolution of Ey field component one cell before the dielectric multilayer structure of Figure
1(a). In particular the multilayer structure is characterized by 15-layer of Si and SiO2 materials, n1 5 3.48,
d1 5 0.11mm, n2 5 1.44, d2 5 0.26 mm. The structure is discretized by 70 domain cells with Dz5 4� 10�8m,
dt5 1.33� 10�16 s, the first five cells and the last five ones are filled by air. The input signal is a sinusoidal

signal with working wavelength 1.523mm modulated by a Gaussian pulse.
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The oscillations, which represent numerical errors, will not appear with a very fine space
discretization but this requires a high computational cost [6].

4. ABSORBING BOUNDARY CONDITIONS AND GENERAL SETTING

The absorbing boundary conditions (ABCs) [14, 15], around the computational domain
O5 (x,y,z), permit all outward-propagating numerical waves to exit O as if the simulation were
performed on a computational domain of infinite extent. In the HPM kernel, we use for the
implementation of (8), (9), and (12) in a matrix structure as

#! i; j space domain position

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC � � cnði; jÞ cnði11; jÞ cnði12; jÞ � � ABC

ABC � � � cnði11; j11Þ � � cnðm; j11Þ ABC

ABC � � � � � � � ABC

ABC � � � cnði11; lÞ � � � ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

0
BBBBBBBB@

1
CCCCCCCCA

m�l

ð21Þ

where m� l is the nodes number of the spatial domain, time-step and the k coordinate are fixed,
and ABC indicates the ABCs Mur boundary conditions [14, 15]. ABCs consider the wave
equation:
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where x5 0, nx, y5 0, ny, z5 0, nz represent the boundary-coordinates of a three-dimensional
domain (x,y,z). To obtain a stable simulation, we consider a temporal step size condition [14, 15]

cdto
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Dx2
1 1

Dy2 1 1

Dz2

r ð23Þ

A key part of an HPM simulation is the launch field used to excite the structure. The
excitation, also referred to as the launched field, should be chosen to correspond to the type of
simulation results required. For example, a continuous wave excitation:

Ce;h
source ¼ sinðo � t � dtÞ ð24Þ

should be used when the steady-state performance of a structure is desired, and a pulsed
excitation (carrier modulated by an exponential field)

Ce;h
source ¼ expð�ðt � dt=T0Þ

2Þ � sinðo � t � dtÞ ð25Þ

can be used when the spectral characteristics of a structure are needed. In Figure 4 we show an
example of Equation (25) in the time-domain evolution. We observe that in a 2D case the
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sources used in Equations (24) and (25) are decomposed into two components Ce and Ch [6]
that construct the wavefront in the spatial domain. In Figure 5 we show an example of
wavefront propagation in a symmetrical slab waveguide: the wavefront is the superposition
effect of Ce and Ch sources [6] represented in Equation (25).

5. TE AND TM ANALYSIS, EFFECTIVE DIELECTRIC CONSTANT (EDC) METHOD,
AND FREQUENCY RESPONSE

The transverse electric (TE) and the transverse magnetic (TM) approach of an optical
waveguide are based on the field characterization of these modes. In particular by considering
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Figure 5. Time evolution of electric Ez component in an Si (e5 9) slab waveguide in air after (a) 20 time-
steps; (b) 50 time-steps; (c) 100 time-steps; and (d) 200 time-steps for a pulsed excitation at l0 5 1.55mm.
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the asymmetrical waveguide shown in Figure 1(b) the Ey field component characterizes the
TE modes and the Ex component characterizes the TM modes. The power density [16, 17]
along the propagation axis (z) W(z,t) (W/m) is derived by performing the integration of
Poynting’s vector

W ðz; tÞ ¼
ZZ

cross section

P ðx; y; z; tÞ dx dy

¼
ZZ

cross section

ðEyHx1ð�ExHyÞÞ dx dy

¼WTEðz; tÞ1WTMðz; tÞ

ð26Þ

By the effective dielectric constant (EDC) method [16] it is possible to analyze
complex 3D optical waveguides in a 2D case [6]. In fact, for example, the ridge waveguide
of Figure 1(d) can be analyzed as a 2D waveguide of Figure 1(b) by evaluating the
effective refractive index in the z-direction. Figure 6 illustrates the EDC method applied
to a ridge waveguide and an example of the TE dispersion equation implemented in the
HPM solver (the propagation constants are evaluated numerically by the intersection
of the w1 and w2 plots shown in Figure 6(c)). The implemented dispersion equation of the
TE modes is [16, 18]

w1ðuÞ ¼
ðu2tanð2uÞ � u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � u2

q
Þ

u1tanð2uÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � u2

q ð27Þ
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Figure 6. (a) Cross section of ridge waveguide and effective dielectric constants; (b) 2D analysis of the
equivalent 3D structure; and (c) example of TEz analysis for different core thicknesses d in an asymmetrical

slab waveguide. The working wavelength is l0 5 1.55mm, n1 5 3.408, n2 5 3.042, n3 (air)5 1.
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where

v1 ¼k0d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e1

p
v3 ¼k0d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e3

p
w2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v23 � u2

q
k0 ¼o

ffiffiffiffiffiffiffiffiffi
e0m0

p
ð28Þ

and e3 5 1(air superstrate), e2 5 ecore, e3 5 esubstrate, k0 is the wave number in the free space. By
using (27) and (28) we evaluate kz 5 u/d (where d is the core thickness) and then effective index
in the z-direction neffz by the wavenumber conservation equation [18, 19]

k20eeffz ¼ k20e2 � k2z ð29Þ

The transverse propagation constant kx instead is obtained by considering the dispersion
equations of the symmetrical waveguide [14, 19] in the x-direction (Figure 6(b)), and eeffz ¼ n2

effz

of Equation (29) as effective indices.
In order to define the frequency response, we consider the discrete Fourier transform (DFT).

The scattering parameters Sm,n can be obtained as follows [14]:

Sm;nðo; ym; ynÞ ¼
Êmðo; ymÞ

Ênðo; ynÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0;nðoÞ
Z0;nðoÞ

s
ð30Þ

where Êm is the phasor voltage (DFT of Ez component) at the port m at observation plane ym; Ên

is the phasor voltage at the port n at observation plane yn; and Z0,m and Z0,n are the
characteristic impedances of the transmission lines connected to these ports defined as:

Z0ðo; yiÞ ¼ DFTðEz; yiÞ=DFTðHx; yiÞ ð31Þ

In Figure 7 we show an example of the S21 transmission parameter related to the optical
waveguide of Figure 1(c) for different a angles. We validate the model presented in this work
(analytical model by using effective index and numerical generators model) by comparing the
Central Processing Unit time for different numerical methods. The computation time
comparison is reported in Table I for different tapered waveguides with L1 5L2 5 5 mm
(Figure 1(c)), and for a 1-GHz PC, 512/MRAM. In this comparison, we consider the 2D FDTD
method (with effective index approach and Dx5Dy5 0.01 mm), and the 3D FEM method. In
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order to compare the 2D Hertzian Potentials solution with the 3D FEM one, we refine the
length of tetrahedral elements (FEM mesh) below the specified value of 0.01 mm.

6. DISSIPATIVE MEDIUM AND QUALITY FACTOR Q

The material losses in the metallic and in the dielectric structures are characterized by Equation
(8) in which the electric conductivity may represent an ideal dielectric material (s5 0) or a
perfect metallic material (s5N). In order to observe the spatial dielectric loss, we excite with a
Gaussian pulse signal defined as:

Ce;h
source ¼ expð�ðt � dt=T0Þ

2Þ ð32Þ

In Figure 8 we show the time evolution of a Gaussian pulse signal in different positions after
some cells far from the source. The signal propagates in the dielectric material with an amplitude
which decreases with the distance. In Figure 9 the spatial configuration of the exponential signal
after different time steps is illustrated. It is evident by analyzing the evolution of the
signal for different positions how the signal is attenuated. We use in the 1D simulation
Dz5 10�8m, dt5 6.67� 10�17 s, T0 5 0.1� 10�17 s and the source (32) is centered in the
dielectric material.

The losses of a non-dissipative dielectric periodic struture such as dielectric multilayer
stack and cavity resonators are evaluated by the introduction of the quality factor Q. The
general expression of the Q factor of any resonator is given by [17]

Q ¼
o0 � ðEnergy storedÞ
ðAverage power lossÞ

¼
o0 � U

WL
ð33Þ

where U is computed inside the volume V of the cavity as:

U ¼
e
2
�
Z

V
jEj2 dV ð34Þ

Table I. Comparison between CPU time for the 2D Hertzian potentials method (HPM), FDTD 2D, and
3D FEM method regarding the results of Figure 7.

a (deg.) m (mm) CPU time 2D HPM (s) CPU time 2D FDTD (s) CPU time 3D FEM (min)

14 16.22 1.9 4.3 42
23.2 6.73 1.3 2.9 38
45 2.86 0.7 1.6 25

Figure 8. 1D simulation: time evolution of a Gaussian pulse signal after 10 (left) and
20 (right) cells from the source.
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By supposing a y-propagation direction it is possible to evaluate WL (dissipated power) by
Poynting’s vector

Pyðx; y; z; tÞ ¼ EzHx � ExHz ð35Þ

By evaluating (35) in the case of an homogeneous structure (uniform guide without
discontinuities) and in the case of an inhomogeneous structure (guide with discontinuities), it is
possible to evaluate WL as the difference of the two cases.

In Figure 10 an example of a quasi one-dimensional photonic band gap structure [14] is
reported. As expected the maximum Q factor is obtained near the resonance of the cavity mode
at l5 1.595 mm (Figure 11).

7. IMPLEMENTATION OF BERENGER’S PERFECTLY MATCHED LAYER

The HPM simulator employs Berenger’s perfectly matched layer (PML) [20] to absorb radiated
waves and guided modes at domain boundaries. The continuous time-domain differential
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Figure 10. Relative dielectric permittivity in a quasi one-dimensional photonic band gap structure
(rectangular air holes in semiconductor waveguide with refractive index n5 3.3).
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Figure 9. Spatial configuration (nz 5 1000) for 300 and 400 time steps in a material characterized by e5 4,
s5 1.061� 10�6 S/m.
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equations governing fields in the PML are

mr
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@Hxz

@t
1

s�z
Z0
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@Ey

@z
;

er

c0

@Exy

@t
1syZ0Exy ¼ Z0
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@y

mr
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@Hxy
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1

s�y
Z0
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@Ez

@y
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mr
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1
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Z0

Z0Hyx ¼
@Ez

@x
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@Hyz
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1
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@x

mr
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@Hzy
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@Ex
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;
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@Ezx
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1sxZ0Ezx ¼ Z0
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@x

mr

c0
Z0
@Hzx

@t
1

s�x
Z0

Z0Hzx ¼ �
@Ey

@x
;

er

c0

@Ezy

@t
1syZ0Ezy ¼ �Z0

@Hx

@y

ð36Þ

Assuming exp(jot) time variation, and combining split components result in

Hx ¼ az
@Ey

@z
� ay

@Ez

@y
; Ex ¼ by

@Hz

@y
� bz

@Hy

@z

Hy ¼ ax
@Ez

@x
� az

@Ex

@z
; Ey ¼ bz

@Hx

@z
� bx

@Hz

@x

Hz ¼ ay
@Ex

@y
� ax

@Ey

@x
; Ez ¼ bx

@Hy

@x
� by

@Hx

@y

ð37Þ

where

ai ¼
1

jomr=c01Z0s
�
i

bi ¼
1

joer=c01Z0si

ð38Þ

and the EM field components are provided by Equation (6). Figure 12 depicts the
placement strategy of the PML. The code in this work used an nth-order conductivity
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Figure 11. Quality Q factor of the quasi one-dimensional photonic band gap structure.
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gradient defined as

siðiÞ ¼ smax
i
Di

� �n

; i ¼ x; y; z ð39Þ

where Di is the width of the PML.
In Figure 13 we show the comparison between the reflection coefficients of the ABCs Mur

and that of the PML: the simulation concerns the propagation of the modulated pulse of
Figure 4 propagating in the Si (e1 5 9) slab waveguide of Figure 12(a). In this analysis, PML has
a very small reflection coefficient of �105 dB if compared with the results of the ABCs Mur
approach.

7. CONCLUSION

The HPM method combines the analytical approach for optical integrated waveguides and the
numerical advantages of a time-domain with a low computational cost. By using the HPM
formulation, this paper presents an accurate investigation of optical waveguides finding wide
applications in optics. The HPM method with the effective index method can also be applied for
complex and irregular periodic 3D structures by considering the analysis in the 2D time domain
with a low computational cost. The HPM provides an accurate and flexible tool for
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Figure 13. Reflection coefficients of the absorbing boundaries: Berenger’s PML and ABCs Mur.
The simulation is performed by considering Dx5Dy5 0.01mm with si varying quadratically

in the x-, and y-direction.

(a)

PML

(b)

Conductivity gradient

Figure 12. The PMLs are placed as depicted in (a) with the z PMLs following the same convention. The
conductivity gradient in the PML is depicted in (b) with the associated parameters.
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computational optics. Berenger’s PML technique is implemented in the proposed tool by
optimizing the ABCs.
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